
J Field Robotics. 2020;37:1300–1313.wileyonlinelibrary.com/journal/rob1300 | © 2020 Wiley Periodicals, Inc.

Received: 30 October 2019 | Revised: 5 February 2020 | Accepted: 4 April 2020

DOI: 10.1002/rob.21952

R EGU LAR AR T I C L E

Falco: Fast likelihood‐based collision avoidance with
extension to human‐guided navigation

Ji Zhang1 | Chen Hu1 | Rushat Gupta Chadha2 | Sanjiv Singh1,2

1Robotics Institute, Carnegie Mellon

University, Pittsburgh, Pennsylvania

2Near Earth Autonomy, Pittsburgh,

Pennsylvania

Correspondence

Ji Zhang, Robotics Institute, Carnegie Mellon

University, Pittsburgh, PA 15213.

Email: zhangji@cmu.edu

Abstract

We propose a planning method to enable fast autonomous flight in cluttered en-

vironments. Typically, autonomous navigation through a complex environment re-

quires a continuous search on a graph generated by a k‐connected grid or a

probabilistic scheme. As the vehicle travels, updating the graph with data from

onboard sensors is expensive as is the search on the graph especially if the paths

must be kinodynamically feasible. We propose to avoid the online search to reduce

the computational complexity. Our method models the environment differently in

two separate regions. Obstacles are considered to be deterministically known within

the sensor range and probabilistically known beyond the sensor range. Instead of

searching for the path with the lowest cost (typically the shortest path), the method

maximizes the likelihood to reach the goal in determining the immediate next step

for navigation. With such a problem formulation, the online method realized by a

trajectory library can determine a path within 0.2–0.3ms using a single central

processing unit thread on a modem embedded computer. The method supports two

configurations working with and without a prior map. Both configurations can be

used to plan toward a goal point. Further, the later can allow human guidance for the

navigation through a directional input. In experiments, it enables a lightweight un-

manned aerial vehicle to fly at 10m/s in a cluttered forest environment (see Figure 1

as an example).

K E YWORD S

aerial robotics, obstacle avoidance, planning

1 | INTRODUCTION

The paper aims to solve a path planning problem to enable fast au-

tonomous flight in complex environments. The problem remains

challenging because planning paths to avoid obstacles discovered by

onboard sensors requires creating and updating a representation of

the environment that can be searched for kinodynamically feasible

paths. The process is computationally expensive. Since computational

resources available for lightweight aerial vehicles are limited, we need

a method that can guide an aerial vehicle with low computational

complexity. A typical way is to use a hierarchical approach that se-

parates the planning problem into two subproblems. The first problem

solves a global planning problem possibly assisted by a heuristic to

ensure the path does not fall into local minima. A second problem

solves a local planning problem that runs in parallel to track the global

path as well as avoid obstacles. This method has been used success-

fully in autonomous navigation (Droeschel et al., 2016; Gonzlez, Prez,

Milans, & Nashashibi, 2016; Scherer, Singh, & Chamberlain, 2008) but

still requires considerable computation. In this paper, we propose a

method that reduces the computational complexity considerably such

that it can ensure safe flight using very lightweight computation

onboard the aerial vehicle (Figure 1).

The key idea to make the low computational complexity possible is

avoiding the online search. Instead of searching a graph that is

http://orcid.org/0000-0002-3122-3106
mailto:zhangji@cmu.edu

continuously being updated by onboard sensors, we formulate the

planning problem from a likelihood point of view. The method does not

seek the path with the lowest cost (typically the shortest path) but

maximizes the probability to reach the goal in determining the immediate

next step for execution of the navigation. This is through modeling of the

configuration space differently in two separate regions. Obstacles are

considered to be deterministically known within the sensor range as they

are perceived by onboard sensors, and probabilistically known beyond

the sensor range as they are from a prior map. A trajectory library is used

to bridge the probabilities across the sensor range, where the trajectories

are separated into groups. During the navigation, the method evaluates

each of the groups to determine the path.

Solving the planning problem with a probabilistic representation of

the environment also associates new behaviors to the vehicle. Most of

the existing methods find a single path with the lowest cost. The path can

be the shortest in length but may guide the vehicle through narrow

pathways leaving very few choices for the vehicle to avoid more ob-

stacles, if more obstacles are discovered due to dynamic obstacles or

environmental changes such that the prior map is outdated. The pro-

posed method, seeking the highest probability of successful navigation,

prefers opener spaces for traversal even though the resulting path can be

longer, leaving more choices for obstacle avoidance during the navigation.

Further, we have identified certain cases where existing methods based

on deterministic representations of the environment encounter difficulty

in finding feasible paths. The proposed method handles the cases (see

Section 5.1 for details).

The method supports two configurations working with and without a

prior map. In both configurations, the method can be used to guide the

vehicle toward a goal point. In addition, the configuration without a prior

can also accept human input in guiding the navigation. For example, an

operator can use a joystick controller to give a directional input. The

method determines a path for safe navigation taking into account the

human input.

During the navigation, the method can find a path within 0.2–0.3ms

using a single central processing unit (CPU) thread on a modem em-

bedded computer. Our experiment results are in a public video.1

2 | RELATED WORK

The proposed method is most related to the literature in path planning

and collision avoidance. The problem involves solving for a path for a

vehicle to travel from start to goal given a representation of the en-

vironment. Graph search‐based methods, such as Dijkstra (Kala &

Warwick, 2013), A* (MacAllister, Butzke, Kushleyev, Pandey, &

Likhachev, 2013), and D* (Rufli & Siegwart, 2009) algorithms, traverse

different states on the graph to search for paths. On the other hand,

sampling‐based methods cover the graph with random samples. Paths

are generated by connecting selected samples. Contemporary

sampling‐based methods, such as Rapidly exploring Random Tree

(RRT; LaValle, 2006) and its variants (Akgun & Stilman, 2011;

Gammell, Srinivasa, & Barfoot, 2014, 2015; Karaman & Frazzoli, 2011;

Kuffner & LaValle, 2019; Otte & Correll, 2013), have shown promising

results to handle maps in large scales, generating paths in a relatively

short amount of time. However, these methods require updating the

graph and searching the graph continuously during the navigation. The

computational complexity can be excessive if the environment is

cluttered and complex. Finding a path is not guaranteed within a fixed

amount of time.

Certain planning methods preprocess a map to extract traversable

information as a means to facilitates the online search. For example,

Probabilistic Roadmap (PRM; Hsu, Latombe, & Kurniawati, 2006;

Kavraki, Kolountzakis, & Latombe, 1998) based methods randomly

sample on the map to create a connectivity graph. Paths are then

found by searching the graph. Other examples include Voronoi graph

(Beeson, Jong, & Kuipers, 2005) and vector field (Pereira, Choudhury,

& Scherer, 2016). In essence, these methods share the insight of

moving part of the processing offline before the navigation starts to

accelerate the online processing. However, the online processing still

needs to traverse the graph to search for the path, and hence can be

computationally expensive.

The proposed method employs a probabilistic representation of

the environment. The concept of modeling uncertainty has been in-

troduced to the path planning literature (Fraichard & Mermond, 1998).

For example, the method of Van Den Berg, Abbeel, and Goldberg

(2011) uses a linear‐quadratic controller with Gaussian models to take

into account the uncertainties of the robot motion and state. Melchior

and Simmons (2007) extend RRT with particles on each node to handle

the uncertainty of terrain friction. These methods involve probabilities

to model the motion or state of the vehicle. Chung, Smith, Skeele, and

Hollinger (2019) model the edge costs on a graph with uncertainties

for graph search. Heiden, Hausman, Sukhatme, and Agha‐mohammadi

(2017) use probabilities to model the traversability of map voxels. The

proposed method, however, models obstacles within the sensor range

deterministically, and beyond the sensor range probabilistically as they

are known from a prior map.

Our previous work dedicated to enabling fast autonomous

flight in cluttered environments (Zhang, Chadha, Velivela, &

Singh, 2018, 2019a). These methods use a prior map to preplan al-

ternative paths offline. The online navigation chooses one of the

preplanned paths to execute. This paper is an extended version of

F IGURE 1 A photo from a flight experiment where our method

enables a lightweight aerial vehicle to maneuver at 10m/s in a cluttered
forest environment. More details regarding the experiment are in
Section 5.2 [Color figure can be viewed at wileyonlinelibrary.com]

1Experiment video: https://youtu.be/VYtQt2NcY0Q

ZHANG ET AL. | 1301

http://wileyonlinelibrary.com
https://youtu.be/VYtQt2NcY0Q

our conference paper (Zhang, Hu, Chadha, & Singh, 2019b). The

contribution is proposing a method to enable the capability of fast

flight in cluttered environments without the necessity of a prior map.

On the basis of a probabilistic representation of the environment, the

method maximizes the likelihood of successful navigation to the goal.

Further, this journal version extends the method to incorporate

human‐guided autonomous navigation, which is validated with both

aerial and ground vehicles. To the best of our knowledge, the re-

sulting capability of fast aerial maneuver without a prior map has not

yet been demonstrated.

3 | PROBLEM DEFINITION

Define ⊂ as the configuration space of a vehicle. Let A ∈ be

the vehicle current position and B ∈ be the goal point. The vehicle

is equipped with perception sensors. Define ⊂ as the space

covered in the range of the perception sensors, namely, sensor range.

Obstacles are modeled to be deterministically known in and

probabilistically known in \ . Consider the vehicle has multiple

directions to choose for the immediate first step as it starts to move

from A. For convenience, let us name the state of the vehicle at this

step the start state, denoted as xs. Obviously, different choices of xs

can lead to different routes. As a convention of this paper, let us

define PB (⋅) to be the probability for the vehicle to successfully reach

B from a given state. The probability associated with start state xs is

P xB s(). Our planning problem can be defined as the following:

Problem 1. Given A B, ,∈ ⊂ , and obstacles in , determine

start state xs* to maximize the probability P xB s(),

x P xarg max .s
x

B s
s

* = () (1)

The above problem is solved at each step as the vehicle travels along

the path, that is, the vehicle maximizes the probability to reach B at

every instant time during the navigation.

4 | METHOD

4.1 | Probabilistic model

The proposed method maximizes the likelihood for the vehicle to

successfully travel from A to B. As stated in the problem definition,

obstacles within sensor range are considered to be deterministi-

cally known as the information is acquired from the perception

sensors. Obstacles beyond are considered to be probabilistically

known if a prior map is available. Otherwise, however, the case is

equivalent to no obstacle being present a priori. Figure 2 illustrates

as the gray area. Define ⊂ as the sensor frontier indicated by the

red solid curve. Given start state xs, a path connects A and B as the

black curve. For all possible paths, they must intersect with . Here,

one can argue that the vehicle can move laterally and does not in-

tersect with . In this case, due to the nature of the problem, has

to be expanded based on the vehicle motion model so that the ve-

hicle does not traverse an area uncovered by . Define xf as the state

of the vehicle while passing . The conditional distribution of xf

given x p x x,x f s(∣), can be derived from the obstacle information

provided by the perception sensors. Further, the probability density

for the vehicle to reach B from x p x,f B f(), can be obtained from the

obstacles on the prior map. We have

p x p x p x x dx .B s B f f s f∫() = () (|) (2)

Here, notation P xB s() in (1) is rewritten as p xB s() to denote the

probability density. Consider n Z∈ + samples i n, 1, 2, ,iξ = … , drawn

from p x xf s(∣). According to the Monte Carlo theory of sampling

(Robert, 2004), we can establish

p x p x x dx
n

p
1

.B f f s f n
i

n

B i
1

ξ∫ ∑() (|) ≈ ()↑∞

=

(3)

Combine (2) and (3) and consider n as a constant:

p x
n

p
1

.B s
i

n

B i
1

ξ∑() ≈ ()
=

(4)

Equation (4) indicates that the probability density to navigate to B

from x p x,s B s(), can be approximated by n 1≫ samples drawn from

the conditional distribution p x xf s(∣). Note that modeling the dis-

tribution with samples discretes the problem and leads the problem

to be solved using a finite number of paths and voxels.

4.2 | Local probabilities

Given start state xs, the vehicle can follow different paths to reach

sensor frontier . Here, let us name a path group as the set of paths

sharing the same xs. Consider a discrete model of xs. Figure 3 gives an

example of path groups. On the top row, 7 path groups are present in

top‐down view, where xs is at the start of the paths curving left or

right. The path group in the middle corresponds to straight forward

motion. On the bottom row, 5 path groups are shown in side view,

where the paths curve upward or downward. Consider both

F IGURE 2 Illustration of sensor range ⊂ as the gray area
and sensor frontier ⊂ as the red solid curve. The black curve is a

path to navigate from A to B, which starts at xs and intersects with
at xf [Color figure can be viewed at wileyonlinelibrary.com]

1302 | ZHANG ET AL.

http://wileyonlinelibrary.com

horizontal and vertical directions, there are totally 7× 5 = 35 path

groups in this example. All paths end on .

Each path is generated as a cubic spline curve. The paths in a

group split in multiple directions horizontally and vertically. In

Figure 3, the path first splits in 35 directions (7 horizontal and 5

vertical) and each splits in another 35 directions. This results in

352 = 1,225 paths in a group. Consider the 35 path groups, there are

35× 1,225 = 42,875 paths in total. Figure 4 shows all path groups

together where color codes the group index. Note that these ex-

ample paths are generated based on the vehicle motion constraints.

The method, however, is not limited to a specific motion model and

can support various path group configurations.

The paths in a group can be considered as viable routes from xs

to . The states of the paths at the ends can be viewed as samples

i n, 1, 2, ,iξ = … , of xf , where the distribution is drawn from p x xf s(∣).

During the navigation, obstacles are detected by perception sensors

occluding certain paths. Figure 5 gives an example of an obstacle and

the corresponding collision‐free paths in a group. Define a Boolean

function c iξ() to indicate the path clearance:

c
1, is unoccluded ,

0, otherwise .i
iξ
ξ

() = ⎧
⎨⎩

(5)

We can compute P xB s() based on (4):

P x
c p

c
.B s

i
n

i B i

i
n

i

1

1

ξ ξ

ξ
() ≈

∑ () ()

∑ ()

=

=

(6)

Equation (6) is applied to all path groups and xs* of the group with the

highest P xB s() is chosen for the vehicle to execute.

4.3 | Global probabilities

Our environment is represented with voxels. Different from the

traditional voxel representation, our voxels contain both position and

orientation information. As shown in Figure 6a, a voxel is separated

into multiple directions based on a constant angular interval, denoted

as δ . The angular intervals set the directions from which the vehicle

inters the voxel. Define x j k Z, ,j
k ∈ as the state of the voxel, where j

is the voxel index and k is the direction index. The position associated

with xj
k is modeled to be uniformly distributed within the voxel and

the orientation is modeled to be uniformly distributed within

2 2δ δ[− ∕ ∕] around the direction of xj
k . The probability density to

reach B from xj
k is denoted as p xB j

k().

F IGURE 3 Example path groups. On the top row, we show 7 path groups curving from left to right in top‐down view. On the bottom row, we
show 5 path groups curving from downward to upward in side view. Consider both horizontal and vertical directions, there are 7× 5 = 35 path
groups [Color figure can be viewed at wileyonlinelibrary.com]

F IGURE 4 All 35 path groups. The paths are color coded based

on the group index. There are 1,225 paths in each group and 42,875
paths in total [Color figure can be viewed at wileyonlinelibrary.com]

F IGURE 5 Collision‐free paths in a group with an obstacle as the
gray dot. The paths start at xs. The path ends are considered Monte

Carlo samples i n, 1, 2, ,iξ = … , whose distribution is drawn from
p x xf s(∣) [Color figure can be viewed at wileyonlinelibrary.com]

ZHANG ET AL. | 1303

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
http://wileyonlinelibrary.com

The probabilities are transmittable between adjacent voxels. As

illustrated in Figure 6b, consider the case that the probabilities are

transmitted to xj
k from the adjacent voxels, denoted as jl on the

bottom‐left side and jr on the upper‐right side. Let kθ be the direction

associated with xj
k . As the position is modeled to be uniformly dis-

tributed within a voxel, the probabilities to be transmitted to xj
k are

from the gray regions in voxels jl and jr , with areas 1 tan 2kθ− ∕ and

tan 2kθ ∕ of a voxel, respectively. Here, the gray regions are de-

termined by drawing a line in jl and jr in parallel to the direction of xj
k

joining the bottom‐left and upper‐right vertices of voxel j. From each

of the gray regions, the probabilities are transmitted from three

adjacent directions. The probability density transmission is defined as

p x a b r1
tan

2

tan

2
,B j

k k k
j

θ θ()()() = − + (7)

where

a w p x w p x w p x

b w p x w p x w p x

,

.

y B j
k

f B j
k

y B j
k

y B j
k

f B j
k

y B j
k

1 1

1 1

l l l

r r r

() () ()
() () ()

= + +

= + +

− +

− +

In (7), rj represents the traversability of voxel j due to obstacles, where

r 1j = means complete clearance and r 0j = means complete occlusion.

wf and wy determine the probability distribution corresponding to for-

ward motion and tuning in yaw, respectively. We require that

w w2 1.f y+ = (8)

The three‐dimensional (3D) case is a direct extension to the 2D case

where each voxel has multiple layers of the representation in Figure 6a.

Each layer is associated with a pitch angle. Let lα be the pitch of layer

l l Z, ∈ . We modify the voxel state for the 3D case to be xj
l k, . The

probability density p xB j
l k,() is transmitted from three adjacent voxels—

two voxels are the same as in the 2D case and the third voxel is right

above or below voxel j . If 0lα > , the voxel which can transit to voxel j is

on the bottom, and if 0lα < , the voxel is on the top. Consider 0lα > as

an example. Let us denote the voxel below voxel j as voxel jb. The region

in voxel jb which can transit to voxel j by following the direction of xj
l k,

has an area tan sin cos 2l k kα θ θ∣ ∣(+)∕ of a voxel. Correspondingly, the

regions in voxels jl and jr which can transit to voxel j have areas

1 tan sin cos 2 1 tan 2l k k kα θ θ θ(− ∣ ∣(+)∕)(− ∕) and 1 tan lα(− ∣ ∣

sin cos 2 tan 2k k kθ θ θ(+)∕) ∕ of a voxel, respectively. The probability

density is calculated as

p x c

d e w

1
tan

2
sin cos 1

tan

2

tan

2

tan

2
sin cos .

B j
l k l

k k
k

k l
k k j

l k

,

,

α
θ θ

θ

θ α
θ θ

((
)

() ()
)

() = −
| |

(+) −

+ +
| |

(+)

(9)

where

c w p x w p x w p x

w p x w p x w p x

w p x w p x w p x

d w p x w p x w p x

w p x w p x w p x

w p x w p x w p x

e w p x w p x w p x

w p x w p x w p x

w p x w p x w p x

,

,

.

py B j
l k

p B j
l k

py B j
l k

y B j
l k

f B j
l k

y B j
l k

py B j
l k

p B j
l k

py B j
l k

py B j
l k

p B j
l k

py B j
l k

y B j
l k

f B j
l k

y B j
l k

py B j
l k

p B j
l k

py B j
l k

py B j
l k

p B j
l k

py B j
l k

y B j
l k

f B j
l k

y B j
l k

py B j
l k

p B j
l k

py B j
l k

1, 1 1, 1, 1

, 1 , , 1

1, 1 1, 1, 1

1, 1 1, 1, 1

, 1 , , 1

1, 1 1, 1, 1

1, 1 1, 1, 1

, 1 , , 1

1, 1 1, 1, 1

b b b

b b b

b b b

l l l

l l l

l l l

r r r

r r r

r r r

() () ()
() () ()
() () ()

() () ()
() () ()
() () ()

() () ()
() () ()
() () ()

= + +

+ + +

+ + +

= + +

+ + +

+ + +

= + +

+ + +

+ + +

− − − − +

− +

+ − + + +

− − − − +

− +

+ − + + +

− − − − +

− +

+ − + + +

Here, w j
l k, represents the traversability of xj

l k, due to obstacles. wp is the

weight corresponding to turning in pitch, for the probability transmission

from p xB j
l k1,()
*

− and p xB j
l k1,()
*

+ to p xB
l k,(), where * stands for b l, , or r . wpy

is the weight corresponding to turning in both pitch and yaw, for the

probability transmission from p x p x p x, ,B j
l k

B j
l k

B j
l k1, 1 1, 1 1, 1() () ()

*

− −

*

− +

*

+ − , and

p xB j
l k1, 1()
*

+ + to p xB
l k,(). Again, we require no probability loss during the

transmission, with

w w w w2 2 4 1.f p y py+ + + = (10)

If 0lα < , voxel jb in (9) is replaced by the voxel above voxel j, namely,

voxel ja. Two special cases exist. First, if 0lα = , the vehicle moves

horizontally. The probabilities are transmitted from voxels jl and jr
but not voxel ja or jb to voxel j, in 3D case. Second, if 0kθ = , the

vehicle moves in parallel to voxel jr . The probabilities are transmitted

from voxel jl but not voxel jr to voxel j, in both 2D and 3D cases.

During initialization, the probability densities are evenly distributed

among all directions in the voxel containing B. Propagation of the

probability is through an iteration process. Figure 7 gives an example

of the propagated probability densities in a 2D environment.

Brighter voxel indicates higher probability density.

4.4 | Method implementation

The path groups described in Section 4.2 are generated offline.

For collision check, we use a voxel grid overlaid with sensor range .

(a) (b)

F IGURE 6 (a) Voxel representation. Each voxel contains multiple

directions at a constant angular interval. The state of a voxel is
denoted as x j k Z, ,j

k ∈ , where j is the voxel index and k is the direction
index in the voxel. (b) Probability transmission. The probabilities are

transmitted to xj
k from the adjacent voxels jl and jr in three directions

from each voxel [Color figure can be viewed at wileyonlinelibrary.com]

1304 | ZHANG ET AL.

http://wileyonlinelibrary.com

The correspondences between the voxels and paths are pre‐
established and stored in an adjacency list. In the adjacency list, each

row is associated with a voxel and consists of indexes of the paths

that are occluded by an obstacle placed at the center of the voxel.

Here, the vehicle radius is taken into account for calculating the

occlusions. Upon system starts, the paths and adjacency list are

loaded into the vehicle computer memory. The online collision check

processes all perception sensor data points and labels the corre-

sponding paths to be occluded according to the adjacency list. Then,

the algorithm traverses all paths in each group to compute P xB s()

based on (6) and chooses the path group with the highest P xB s(). The

algorithm returns xs* as

x P xarg max .s B s* = () (11)

Recall n is the number of paths in a path group. Let h Z∈ + be the

number of path groups and m Z∈ + be the number of perception sensor

data points. The online processing algorithm is described in Algorithm 1.

Theorem 1. The online processing algorithm has a computational

complexity of O mnh().

Theorem 1 analyzes the computational complexity in the worst case

where every perception sensor data point blocks all paths in each

group. In practice, a data point can block a few paths so that the

computation is much lighter. The probability propagation in the

global scale uses a second voxel grid covering the environment, run

only once before the navigation. This uses an implementation similar

to the A* algorithm (Zeng & Church, 2009), where only the prob-

ability densities in the voxels adjacent to those in the open set are

updated. This process terminates if the changes to the probability

densities in the voxel containing A are smaller than a threshold.

In the case that a prior map is unavailable, we can alternatively

use a heuristic function to compute pB iξ() in (6):

p
y

p y

, 2 D case ,

, 3 D case,
B i

i

i i
ξ() = ⎧

⎨⎩

−|Δ |

−|Δ Δ |
(12)

where piΔ and yiΔ are the relative angles between iξ and the goal

direction in pitch and yaw, respectively. Equation (12) essentially

biases the path planner toward the goal direction. Note that the same

function can be used to process human input, for example, from a

joystick controller. The result is that the vehicle is guided by an

operator while itself conducts collision avoidance during the

navigation.

5 | EXPERIMENTS

5.1 | Simulation

We first validate the method in simulation. We use a prior map in these

experiments and we compare the time of probability propagation in our

method to the state‐of‐the‐art planning methods. A 3.1GHz i7 computer

F IGURE 7 Propagated probability densities in a 2D environment.

The arrow represents the direction in the voxels that the probability
densities are associated. Red areas are obstacles with the
traversability defined in (7) set at r 0.01j = . Brighter voxels have

higher probability densities to navigate from itself to B and darker
voxels have lower probability densities. 2D, two dimensional [Color
figure can be viewed at wileyonlinelibrary.com]

ZHANG ET AL. | 1305

http://wileyonlinelibrary.com

is used to record the CPU processing time. Figure 8 shows the result of a

test containing a narrow pathway and a wide pathway. Common planning

methods mostly find the shortest path connecting A to B regardless of

the width of the pathway. In Figure 8, the orange curve is generated by

RRT* (Karaman & Frazzoli, 2011). Our method seeks the highest prob-

ability to reach the goal and therefore prefers the wider pathway. Wide

pathways are preferable in aerial navigation keeping the vehicle safe as

well as leaving more choices for obstacle avoidance. Note that this be-

havior can be produced by other methods if considering the distance

from a node to the closest obstacle in the cost function. Our method

incorporates such behavior as its inherent characteristic.

Figure 9 shows the result of a test involving an environment

change between the prior map and actual world. Figure 9a shows

the prior map where an opening is available to the right. Our

method uses the prior map for probability propagation before the

navigation starts. Obstacles on the prior map have the traversa-

bility set at r 0.01j = . Figure 9b shows the actual world where the

opening on the prior map is closed. Another opening is now

available to the front. After the navigation starts, our method

generates a path curving to the right as an effect of the opening

on the prior map. As the vehicle approaches, the method realizes

the environment change from the perception sensors and then

guides the vehicle toward the opening to the front. Thanks to the

minor probabilities propagated through the obstacles on the prior

map. On the other hand, traditional methods based on determi-

nistic representations of the environment encounter difficulty. In

Figure 9c RRT* generates a path using the prior map when the

navigation starts. As the vehicle travels, in Figure 9d, the en-

vironment seen by the perception sensors is updated indicating

that the opening to the right is unavailable. However, the opening

to the front has not been seen. As a result, RRT* finds no path

from A to B.

The proposed method is further tested in 2D random world en-

vironments. The result is in Figure 10, where our method is compared

with RRT (LaValle, 2006), RRT‐Connect (Kuffner & LaValle, 2019),

RRT*, and batch informed tree (BIT*; Gammell et al., 2015) planners.

Figure 10a shows an example environment and representative paths

generated by all methods. The obstacle ratio is set at 20%. Figure 10b

compares the runtime and corresponding success rate. Each method is

tested in 50 randomly generated environments and executed 10 times

F IGURE 8 Narrow pathway test result. The environment contains a

narrow pathway on the left and a wide pathway on the right. The
widths of the narrow and wide pathways are 5m and 20m,
respectively. Existing planning methods, such as RRT* (magenta curve)

mostly seek the shortest path regardless of the width of the pathway.
Our method (red curve) maximizes the probability to reach the goal and
therefore prefers the wider pathway. Wider pathways help keep the

vehicle safe during the flight and leave more choices for obstacle
avoidance in the presence of dynamic obstacles. RRT, Rapidly exploring
Random Tree [Color figure can be viewed at wileyonlinelibrary.com]

F IGURE 9 Outdated prior test result. The test involves an environment change between the prior map and actual world. (a) shows the prior

map where an opening is available to the right. Our method uses the prior map for probability propagation. Obstacles on the prior map have the
traversability set at r 0.01j = . (b) shows the actual world where the opening is to the front due to the environment change. Upon the navigation
starts, the vehicle curves to the right as an effect of the opening on the prior map. As the vehicle approaches, perception sensor data indicates

the environment change and the vehicle is then guided toward the opening to the front because of minor probabilities propagated through the
obstacles on the prior map. On the other hand, existing methods based on deterministic representations of the environment encounter
difficulty. In (c), at the start of the navigation, RRT* uses the prior map to plan a path. During the navigation, the environment within is

updated continuously by the perception sensors. In (d), the vehicle realizes the opening to the right is unavailable. However, the opening to the
front has not yet been seen. RRT, Rapidly exploring Random Tree [Color figure can be viewed at wileyonlinelibrary.com]

1306 | ZHANG ET AL.

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com

in each of the environments. Note that RRT and RRT‐Connect termi-

nate after finding the first path. Given the same success rate, their

runtime is faster than ours but the resulting paths are not practically

useful. RRT* and BIT* are configured to terminate after finding the

near‐optimal path. Their runtime is much slower than ours given the

same success rate.

We also test the method in 2D maze environments. As shown

in Figure 11, the size of the maze is set at 45× 45. Figure 11a

shows an example environment. All methods generate similar

paths in the maze environments because of constrained space for

navigation. Figure 11b compares the runtime. Our method runs

more than 10 times faster than RRT‐Connect and about 100

times faster than RRT, RRT*, and BIT* while producing the same

success rate.

The proposed method is tested in 3D cases. Figure 12 presents

the result in 3D random world environments. Figure 12a gives an

example environment with a representative path from each method.

The obstacle ratio is set at 20%. Figure 12b shows the runtime and

corresponding success rate, tested in 50 randomly generated en-

vironments and executed 10 times in each environment. Similar to

the result in Figure 10, RRT and RRT‐Connect terminate after finding

the first path. Even though their runtime is faster than ours, the

resulting paths are practically useless. compared with RRT* and BIT*,

our method consumes much less runtime at the same success rate

while the three methods produce similar paths.

Finally, we evaluate the method in 3D maze environments.

The result is in Figure 13. The size of the maze is set at

25 ×25 × 25. Figure 13a shows an example environment. Similar

F IGURE 10 Two‐dimensional random world test result. The proposed method is compared with RRT, RRT‐Connect, RRT*, and BIT* in random
world environments. The obstacle ratio is set at 20%. (a) An example environment and the path from each method. (b) A comparison of the runtime
by testing in 50 environments. Note that RRT and RRT‐Connect terminate after finding the first path. Their runtime is faster than our method but

the paths are not practically useful. RRT* and BIT* terminate after finding the near‐optimal path. Their paths are similar to our method but the
runtime is slower. BIT, batch informed tree; RRT, Rapidly exploring Random Tree [Color figure can be viewed at wileyonlinelibrary.com]

F IGURE 11 Two‐dimensional maze test result. The proposed method is compared with RRT, RRT‐Connect, RRT*, and BIT* in maze

environments. The size of the maze is set at 45× 45. (a) An example environment and the paths where all methods generate similar paths. (b) A
comparison of the runtime by testing in 50 environments. Our method is more than 10 times faster than RRT‐Connect and about 100 times faster
than RRT, RRT*, and BIT*. BIT, batch informed tree; RRT, Rapidly exploring Random Tree [Color figure can be viewed at wileyonlinelibrary.com]

ZHANG ET AL. | 1307

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com

to Figure 11, all methods produce similar paths in the maze en-

vironments. Figure 13b compares the runtime. Our method out-

performs the other methods by a factor of 10 in terms of runtime

while producing the same success rate.

5.2 | Unmanned aerial vehicle (UAV) experiments

The UAV experiment platform is shown in Figure 14. This is a DJI

Matrice 600 Pro aircraft carrying a DJI Ronin MX gimbal. A

sensor–computer pack is mounted to the gimbal and therefore is kept

in the flight direction for obstacle detection. The sensor–computer

pack consists of a Velodyne Puck laser scanner, a camera at 640 360×

pixel resolution, and a micro‐electromechanical system (MEMS)‐based
Inertial Measurement Unit (IMU). A 3.1 GHz i7 embedded computer

carries out all onboard processing. The state estimation is based on our

previous work (Zhang & Singh, 2018), which integrates data from the

three sensors to provide vehicle poses and registered laser scans. The

tests use the path groups described in Section 4.2. Sensor range is

set at 30m in front of the vehicle and the collision check uses a voxel

grid overlaid with at 0.1m resolution.

The site of UAV Test 1 is in a forest as shown in Figure 15. The flight

test does not use a prior map but the heuristic function in (12) to guide

the navigation. Figure 15a shows an aerial overview of the test site.

Figure 15b presents an image logged by an onboard camera during the

flight. Figure 15c shows a render of the map built during the flight with

the executed path overlaid on the map, from the same viewpoint as in

Figure 15b. Figure 15d presents the registered scans as the perception

sensor data during the flight (colored points) and the determined

collision‐free paths (white curves). The yellow curve is the selected path

for the vehicle to execute. The vehicle pose in Figure 15d is the same as

in Figure 15b. Figure 15e shows the entire map and overall path of the

F IGURE 12 Three‐dimensional random world test result. The obstacle ratio is set at 20%. (a) An example environment and the path from each
method. (b) A comparison of the runtime by testing in 50 environments. Similar to Figure 10, RRT and RRT‐Connect terminate after finding the first path.

Their runtime is faster than our method but the paths are practically useless. RRT* and BIT* are set to find the near‐optimal path. Their paths are similar
to our method but the runtime is slower given the same success rate. BIT, batch informed tree; RRT, Rapidly exploring Random Tree [Color figure can be
viewed at wileyonlinelibrary.com]

F IGURE 13 Three‐dimensional maze test result. The size of the maze is set at 25 ×25 × 25. (a) An example environment and the paths where

all methods generate similar paths. (b) A comparison of the runtime by testing in 50 environments. Given the same success rate, our method
outperforms RRT, RRT‐Connect, RRT*, and BIT* by a factor of 10 in terms of runtime. BIT, batch informed tree; RRT, Rapidly exploring Random
Tree [Color figure can be viewed at wileyonlinelibrary.com]

1308 | ZHANG ET AL.

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com

flight. The vehicle position in Figure 15b,d is labeled with number 1 in

Figure 15e. The canopy of the forest is manually cropped to reveal the

flight path. The traveling distance is approximately 300m and the max-

imum speed during the flight reaches 10m/s as indicated in Figure 16.

Further, let us inspect some metrics from UAV Test 1. Different

from the simulation tests, the test does not use a prior map or

propagate the probabilities. At initialization, the onboard navigation

system reads the paths and adjacency list (described in Section 4.4)

into the computer memory. The onboard processing time is listed in

Table 1. Collision check first processes all perception sensor data

points to determine the collision‐free paths, taking 213.7 μs on

average. Then, the processing traverses all paths to compute P xB s()

for each group and select the path group with the highest P xB s(),

taking 38.4 μs on average. The method runs at 5 Hz. The resulting

CPU load is 5%< of a single thread.

UAV Test 2 is conducted in an orchard as shown in Figure 17.

In this test, an operator uses a joystick controller to guide the

navigation. The system uses (12) to interpret the directional input

from the joystick controller. Figure 17a gives an aerial overview

of the test site with the start point and target. Figure 17b shows a

F IGURE 14 UAV experiment platform. A DJI Matrice 600 Pro
aircraft carries our sensor–computer pack on a DJI Ronin MX gimbal.
The gimbal keeps the sensors in the flight direction for obstacle

detection. The sensor–computer pack consists of a Velodyne Puck
laser scanner, a camera at 640 360× pixel resolution, and an
MEMS‐based IMU. An i7 embedded computer carries out all onboard

processing. Note that GPS data are unused in the test. GPS, Global
Positioning System; IMU, Inertial Measurement Unit; MEMS, micro‐
electromechanical system; UAV, unmanned aerial vehicle
[Color figure can be viewed at wileyonlinelibrary.com]

F IGURE 15 Result of UAV Test 1. The flight test is conducted in a forest environment. No prior map is used in the test. The method uses the
heuristic function in (12) to guide the navigation. (a) An aerial overview of the test site. (b) An image from an onboard camera captured

during the flight. (c) A render of the map built during the flight and the executed path overlaid on the map. (d) The perception sensor data during
the flight as the colored points and the corresponding collision‐free paths as the white curves. The yellow curve is the selected path for
the vehicle to execute. The vehicle pose is the same as in (b). (e) The entire map and overall path of the flight. The vehicle position in (b) and

(d) is labeled with number 1 in (e). The canopy of the forest is removed to reveal the path. The flight has 300m of travel and the vehicle
speed is at 10m/s through the course of the flight. UAV, unmanned aerial vehicle [Color figure can be viewed at wileyonlinelibrary.com]

F IGURE 16 Speed in UAV Test 1. The maximum speed of the
UAV reaches 10m/s while flying in a forest environment as
presented in Figure 15. UAV, unmanned aerial vehicle [Color figure

can be viewed at wileyonlinelibrary.com]

ZHANG ET AL. | 1309

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
http://wileyonlinelibrary.com

photo of the UAV‐operator setup. The operator uses goggles to

see first‐person‐view images from the UAV. Figure 17c is an ex-

ample first‐person‐view image when the UAV is approaching the

target. Figure 17d shows a photo of the UAV during the flight

when the UAV is passing underneath a wire. Figure 17e presents

the perception sensor data as the colored points and the corre-

sponding collision‐free paths as the white curves. Figures 17f,g,

are two different views of the map built during the flight and the

flight path. The vehicle position in Figure 17d,e is labeled with

number 1 in Figure 17f. The target is labeled in red. Figure 17g

gives a zoomed‐in view of the flight path underneath the wire.

After approaching the target, the UAV follows the same path

back to the start point. The flight speed is 5 m/s over 284 m of

travel.

TABLE 1 Online processing time in UAV

Test 1
Collision check Path selection Overall

Mean (μs) Worst (μs) Mean (μs) Worst (μs) Mean (μs) Worst (μs)

213.7 286.2 38.4 41.3 252.1 327.5

Abbreviation: UAV, unmanned aerial vehicle.

F IGURE 17 Result of UAV Test 2. The flight test is conducted in an orchard. Here, an operator uses a joystick controller to guide the flight.
(a) An aerial overview of the test site with the start point and target. (b) A photo of our UAV‐operator setup. The operator uses goggles to see
first‐person‐view images from the UAV. (c) An example first‐person‐view image when the UAV is approaching the target. (c) A photo of the UAV

during the flight while passing underneath a wire. (e) The perception sensor data as the colored points and the corresponding collision‐free
paths as the white curves. A photo of the joystick operation is shown at the bottom‐right corner. (f, g) Two views of the map and flight path. The
vehicle position in (d) and (e) is labeled with number 1 in (f). The target is labeled in red. (g) A zoomed‐in view of the flight path underneath the

wire. The UAV follows the same path back to the start point after approaching the target. The flight speed is 5m/s over 284m of travel.
UAV, unmanned aerial vehicle [Color figure can be viewed at wileyonlinelibrary.com]

1310 | ZHANG ET AL.

http://wileyonlinelibrary.com

F IGURE 18 Result of Ground Vehicle Test 1. (a) A photo of the ground vehicle navigating on the university campus. The vehicle shares the

same sensor configuration with the UAV in Figure 14. (b) The corresponding data render where the colored points are from registered
scans and the white curves show the collision‐free paths. (c) The resulting map and navigation paths. The test consists of two runs. The blue path
is from the first run where the vehicle is guided by an operator. Upon finishing the first run, a map is built. Way‐points are selected based on the

map as the orange dots. The orange path is from the second run where the vehicle follows the way‐points. Both runs start from the blue
dot. The speed is 1m/s. The vehicle position in (a) and (b) is labeled with number 1 in (c). UAV, unmanned aerial vehicle [Color figure can be
viewed at wileyonlinelibrary.com]

F IGURE 19 Result of Ground Vehicle Test 2. The vehicle passes through two tight openings as in (a) and (c). (b, d) The corresponding data
render where the colored points show the registered scans and the white curves are collision‐free paths [Color figure can be viewed at
wileyonlinelibrary.com]

ZHANG ET AL. | 1311

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com

5.3 | Ground vehicle experiments

The ground vehicle experiments use a wheelchair‐based vehicle with

the same sensor configuration as the UAV in Figure 14. Figure 18

shows the result of Ground Vehicle Test 1. A photo of the vehicle is

present in Figure 18a while the vehicle is navigating on the university

campus. Figure 18b shows the corresponding data render where the

colored points are from registered scans and the white curves show

the collision‐free paths. Different from the UAV tests, the paths used

in the ground vehicle tests are in 2D and spread out in all directions

except to the back. Sensor range is set at 3 m around the vehicle

and the collision check uses a voxel grid overlaid with at 0.02m

resolution. Figure 18c shows the map built during the test and the

navigation paths. The test consists of two separate runs. In the first

run, the vehicle is guided by an operator with a joystick controller.

The navigation path is in blue. Upon finishing the first run, a map is

built. Way‐points are then defined based on the map as the orange

dots. In the second run, the vehicle follows the way‐points autono-

mously. The navigation path is in orange. Both runs start from the

blue dot. The speed is 1m/s. The vehicle position in Figure 18a,b is

labeled with number 1 in Figure 18c.

Further, Ground Vehicle Test 2 contains two tight openings in an

indoor environment as shown in Figure 19. Figures 19a,c are two photos

of the vehicle passing through the tight openings. Figures 19b,d are the

corresponding data renders. Note that all ground vehicle experiments use

the same set of parameters for planning and collision avoidance.

6 | CONCLUSION AND FUTURE WORK

The paper proposes a planning method to enable fast autonomous

flight in complex environments. The environment is modeled to be

deterministically known within the sensor range where obstacle in-

formation is from the perception sensors, and probabilistically known

beyond the sensor range. Instead of searching for the path with the

lowest cost, the method maximizes the likelihood to successfully

reach the goal in determining the immediate next step for execution

of the navigation. If a prior map is available, probabilities are pro-

pagated offline through the environment. If without a prior map, the

method takes a directional input either from the goal point or a

human commander as the guidance for the navigation. The online

method realized by a trajectory library determines a path within

0.2–0.3 ms using a single CPU thread on a modem embedded com-

puter. In experiments, it enables a lightweight UAV to fly at 10m/s in

a cluttered forest environment.

ORCID

Ji Zhang http://orcid.org/0000-0002-3122-3106

REFERENCES

Akgun, B., & Stilman, M. (2011). Sampling heuristics for optimal motion

planning in high dimensions. In IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS). San Francisco, CA.

Beeson, P., Jong, N. K., & Kuipers, B. (2005). Towards autonomous

topological place detection using the extended Voronio graph. In IEEE

International Conference on Robotics and Automation (ICRA). Barcelona,

Spain.

Chung, J., Smith, A., Skeele, R., & Hollinger, G. (2019). Risk‐aware graph

search with dynamic edge cost discovery. The International Journal of

Robotics Research, 38(2–3), 182–195.

Droeschel, D., Nieuwenhuisen, M., Beul, M., Holz, D., Stuckler, J., & Behnke, S.

(2016). Multi‐layered mapping and navigation for autonomous micro

aerial vehicles. Journal of Field Robotics, 33(4), 451–475.

Fraichard, T., & Mermond, R. (1998). Path planning with uncertainty for

car‐like robots. In IEEE International Conference on Robotics and

Automation (ICRA). Leuven, Belgium.

Gammell, J. D., Srinivasa, S., & Barfoot, T. (2015). Batch informed trees

(BIT*): Sampling‐based optimal planning via the heuristically guided

search of implicit random geometric graphs. In IEEE International

Conference on Robotics and Automation (ICRA). Seattle, WA.

Gammell, J. D., Srinivasa, S. S., & Barfoot, T. D. (2014). Informed RRT*:

Optimal sampling‐based path planning focused via direct sampling of

an admissible ellipsoidal heuristic. In IEEE/RSJ International Conference

on Intelligent Robots and Systems (IROS). Chicago, IL.

Gonzlez, D., Prez, J., Milans, V., & Nashashibi, F. (2016). A review of

motion planning techniques for automated vehicles. IEEE Transactions

on Intelligent Transportation Systems, 17(4), 1135–1145.

Heiden, E., Hausman, K., Sukhatme, G., & Agha‐mohammadi, A. (2017).

Planning high‐speed safe trajectories in confidence‐rich maps. In IEEE/

RSJ International Conference on Intelligent Robots and Systems (IROS).

Vancouver, Canada.

Hsu, D., Latombe, J.‐C., & Kurniawati, H. (2006). On the probabilistic

foundations of probabilistic roadmap planning. The International

Journal of Robotics Research, 25(7), 627–643.

Kala, R., & Warwick, K. (2013). Multi‐level planning for semi‐autonomous

vehicles in traffic scenarios based on separation maximization. Journal

of Intelligent and Robotic Systems, 72(3/4), 559–590.

Karaman, S., & Frazzoli, E. (2011). Sampling‐based algorithms for optimal

motion planning. The International Journal of Robotics Research, 30(7),

846–894.

Kavraki, L. E., Kolountzakis, M. N., & Latombe, J.‐C. (1998). Analysis of

probabilistic roadmaps for path planning. IEEE Transactions on Robotics

and Automation, 14(1), 166–171.

Kuffner, J. J., & LaValle, S. M. (2019). RRT‐connect: An efficient approach

to single‐query path planning. In IEEE International Conference on

Robotics and Automation (ICRA). San Francisco, CA.

LaValle, S. M. (2006). Planning algorithms. New York, NY: Cambridge

University Press.

MacAllister, B., Butzke, J., Kushleyev, A., Pandey, H., & Likhachev, M.

(2013). Path planning for non‐circular micro aerial vehicles in

constrained environments. In IEEE International Conference on

Robotics and Automation (ICRA). Karlsruhe, Germany.

Melchior, N. A., & Simmons, R. (2007). Particle RRT for path planning with

uncertainty. In IEEE International Conference on Robotics and

Automation (ICRA). Roma, Italy.

Otte, M., & Correll, N. (2013). C‐FOREST: Parallel shortest path planning

with superlinear speedup. IEEE Transactions on Robotics and

Automation, 29(3), 798–806.

Pereira, G. A. S., Choudhury, S., & Scherer, S. (2016). A framework for

optimal repairing of vector field‐based motion plans. In International

Conference on Unmanned Aircraft Systems (ICUAS). Arlington, VA.

Robert, C. (2004). Monte Carlo methods. John Wiley & Sons Ltd.

Rufli, M., & Siegwart, R. Y. (2009). On the application of the D search

algorithm to time‐based planning on lattice graphs. In The European

Conference on Mobile Robots (ECMR). Dubrovnik, Croatia.

Scherer, S., Singh, S., & Chamberlain, L. (2008). Flying fast and low among

obstacles: Methodology and experiments. The International Journal of

Robotics Research, 27(5), 549–574.

1312 | ZHANG ET AL.

http://orcid.org/0000-0002-3122-3106

Van Den Berg, J., Abbeel, P., & Goldberg, K. (2011). LQG‐MP: Optimized

path planning for robots with motion uncertainty and imperfect state

information. The International Journal of Robotics Research, 30(7),

895–913.

Zeng, W., & Church, R. L. (2009). Finding shortest paths on real road

networks: The case for A*. International Journal of Geographical

Information Science, 23(4), 531–543.

Zhang, J., Chadha, R. G., Velivela, V., & Singh, S. (2018). P‐CAP: Pre‐
computed alternative paths to enable aggressive aerial maneuvers in

cluttered environments. In IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS). Madrid, Spain.

Zhang, J., Chadha, R. G., Velivela, V., & Singh, S. (2019a). P‐CAL: Pre‐
computed alternative lanes for aggressive aerial collision avoidance.

In The 12th International Conference on Field and Service Robotics (FSR).

Tokyo, Japan.

Zhang, J., Hu, C., Chadha, R. G., & Singh, S. (2019b). Maximum likelihood

path planning for fast aerial maneuvers and collision avoidance. In

IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS). Macau, China.

Zhang, J., & Singh, S. (2018). Laser‐visual‐inertial odometry and mapping

with high robustness and low drift. Journal of Field Robotics.

How to cite this article: Zhang J, Hu C, Chadha RG, Singh S.

Falco: Fast likelihood‐based collision avoidance with

extension to human‐guided navigation. J Field Robotics.

2020;37:1300–1313. https://doi.org/10.1002/rob.21952

ZHANG ET AL. | 1313

https://doi.org/10.1002/rob.21952

