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Abstract

We present a data processing pipeline to online estimate ego‐motion and build a map

of the traversed environment, leveraging data from a 3D laser scanner, a camera, and

an inertial measurement unit (IMU). Different from traditional methods that use a

Kalman filter or factor‐graph optimization, the proposed method employs a

sequential, multilayer processing pipeline, solving for motion from coarse to fine.

Starting with IMU mechanization for motion prediction, a visual–inertial coupled

method estimates motion; then, a scan matching method further refines the motion

estimates and registers maps. The resulting system enables high‐frequency, low‐
latency ego‐motion estimation, along with dense, accurate 3D map registration.

Further, the method is capable of handling sensor degradation by automatic

reconfiguration bypassing failure modules. Therefore, it can operate in the presence

of highly dynamic motion as well as in the dark, texture‐less, and structure‐less
environments. During experiments, the method demonstrates 0.22% of relative

position drift over 9.3 km of navigation and robustness w.r.t. running, jumping, and

even highway speed driving (up to 33m/s).
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1 | INTRODUCTION

This paper aims at developing a method for online ego‐motion

estimation with data from a 3D laser scanner, a camera, and an

inertial measurement unit (IMU). The estimated motion further

registers laser points to build a map of the traversed environment. In

many real‐world applications, ego‐motion estimation and mapping

must be conducted in real time. In an autonomous navigation system,

the map is crucial for motion planning and obstacle avoidance, while

the motion estimation is important for vehicle control and maneuver.

Very often, high‐accuracy global positioning system (GPS)–inertial

navigation system (INS) solutions are impractical when the applica-

tion is GPS‐denied, lightweight, or cost‐sensitive. The proposed

method utilizes only perception sensors without reliance on GPS.

Specially, we are interested in solving for extremely aggressive

motion. Yet, it remains nonobvious how to solve the problem reliably

in 6 degrees of freedom (DOF), in real time, and in a small form

factor. The problem is closely relevant to sensor degradation due to

sparsity of the data during dynamic maneuver. To the best of our

knowledge, the proposed method is by far the first to enable such

high‐rate ego‐motion estimation capable of handling running and

jumping (see Figure 1 as an example), while at the same time develop

a dense, accurate 3D map, in the field under various lighting and

structural conditions, and using only sensing and computing devices

that can be easily carried by a person.

The key reason that enables this level of performance is our novel

way of data processing. As shown in Figure 2a, a standard Kalman

filter‐based method typically uses IMU mechanization in a prediction

step followed by update steps seeded with individual visual features

or laser landmarks. On the other hand, a factor‐graph optimization‐
based method combines constraints from all sensors in one

optimization problem (see Figure 2b). In comparison, our modular-

ized pipeline sequentially recovers motion in a coarse‐to‐fine manner

(see Figure 2c). Starting with motion prediction from an IMU, a
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visual–inertial coupled method estimates motion and registers laser

points locally. Then, a scan matching method further refines the

estimated motion. The last module also registers laser points to build

a map.

The method design follows a key insight: Drift in ego‐motion

estimation has a lower frequency than a module’s own frequency.

The three modules are therefore arranged in decreasing order of

frequency. High‐frequency modules are specialized to handle

aggressive motion, while low‐frequency modules cancel drift

from the previous modules. The sequential processing also

favors computation: Modules in the front take less computation

and execute at high frequencies, giving sufficient time to modules

in the back for thorough processing. The method is therefore able

to achieve a high level of accuracy while running online in

real time.

Further, the data processing pipeline is carefully designed to

handle sensor degradation. If the camera is nonfunctional, for

example, due to darkness, dramatic lighting changes, or texture‐less
environments, or if the laser scanner is nonfunctional, for example,

due to structure‐less environments, the corresponding module is

bypassed and the rest of the pipeline is staggered to function reliably.

The method is tested through a large number of experiments and

results show that it can produce high accuracy over several

kilometers of navigation and robustness w.r.t. environmental

degradation and aggressive motion. The main contributions of the

paper are as follows:

• We propose a modularized data processing pipeline to leverage

range, vision, and inertial sensing for motion estimation and

mapping through mulilayer optimization. Therefore, it achieves

high accuracy and low drift.

• The proposed pipeline is dynamically reconfigurable. It fully or

partially bypasses failure modules and combines the rest of the

pipeline to handle sensor degradation. Therefore, it can handle

environmental degradation and aggressive motion.

• The proposed pipeline employs a two‐level voxel representation
and a multithread processing implementation to accelerate scan

matching.

F IGURE 1 Representative results of
our odometry and mapping data processing

pipeline. (a) An operator carries the sensor
suite on a helmet and a processing
computer in a backpack, running, and
jumping over a vehicle. The method

estimates ego‐motion of the sensor suite in
real time, as well as develops a precise 3D
map using only onboard processing. (b) It

presents the map built with the vehicle
labeled in orange. (c) It shows the
estimated trajectory. The coordinate frame

in (c) illustrates the sensor pose at the
point in (a) [Color figure can be viewed at
wileyonlinelibrary.com]

F IGURE 2 Diagram of the odometry and mapping data processing
pipeline. (a) It shows a standard Kalman filter setup. IMUmechanization

is used for prediction, then each visual feature and laser landmark seeds
an individual update step. (b) It shows a factor‐graph optimization
setup. All constraints from the IMU, visual features, and laser landmarks
are combined in an optimization problem. (c) It presents the proposed

sequential data processing pipeline. Starting with IMU mechanization
for prediction, a visual–inertial coupled method estimates ego‐motion;
then, a scan matching method further refines the estimated motion.

From left to right, motion is recovered from coarse to fine and accuracy
is improved step by step to a high level. Further, both modules on the
right provide feedback to correct velocity drift and biases of the IMU.

IMU: inertial measurement unit [Color figure can be viewed at
wileyonlinelibrary.com]
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• The proposed pipeline is extendable to localization on an existing

map and therefore can enable collaborative mapping, for example,

between ground and air (more details in Section 10.3).

• The proposed pipeline is thoroughly tested with a large number of

datasets in various difficult environments, with moving object,

aggressive motion, and in large scale.

The rest of this paper is organized as follows. In Section 2, we

discuss related work. In Section 3, we make assumptions, define

coordinate systems, and state the problem. In Section 4, we introduce

the IMU prediction module. In Sections 5 and 6, we summarize the

visual–inertial odometry module and the scan matching module,

respectively. Section 7 discusses the transform integration and

Section 8 the robustness in degraded environmental conditions. The

extension to localization on an existing map is presented in Section 8.

Experiment results are shown in Section 10 and conclusion is made in

Section 11.

2 | RELATED WORK

This paper is most related to vision‐ and laser‐based state estimation.

For vision‐based methods, stereo camera systems (Corke, Strelow, &

Singh, 2004; Konolige, Agrawal, & Sol, 2011; Maimone, Cheng, &

Matthies, 2007; Nister, Naroditsky, & Bergen, 2006) are commonly

used. These systems benefit from the baseline between the two

cameras as a reference to determine scale of the motion estimation.

However, if a monocular camera is used (Engel, Koltun, & Cremers,

2016; Forster, Pizzoli, & Scaramuzza, 2014; Klein & Murray, 2007;

Newcombe, Lovegrove, & Davison, 2011), without aiding from

additional sensors or assumptions about motion, scale is generally

unsolvable. In recent years, RGB‐D cameras have gained popularity in

the research community. These cameras provide depth information

associated with individual pixels and hence can help determine scale

easily. With RGB‐D cameras, methods (Engelhard, Endres, Hess,

Sturm, & Burgard, 2011; Henry, Krainin, Herbst, Ren, & Fox, 2012;

Huang et al., 2011; Kerl, Sturm, & Cremers, 2013; Whelan,

Johannsson, Kaess, Leonard, & McDonald, 2013) have shown

promising results. However, these methods only utilize the image

areas with coverage of depth information, possibly causing large

image areas being wasted if in an open environment where depth can

only be sparsely available. The visual–inertial odometry involved in

the pipeline is closely relevant to RGB‐D methods since the method

is assisted by laser ranging and associates the range information to

visual features. In comparison, our method involves both features

with and without depth to maximize features’ usage. Further, it also

retrieves depth by triangulation using previously estimated motion

for features without range coverage.

Another category is to couple cameras with an IMU, where scale

constraints are provided from IMU accelerations. To this end, Huang,

Kaess, and Leonard (2014) and Li and Mourikis (2013) tightly couple

a monocular camera and an IMU in a Kalman filter. Weiss et al.

(2013) loosely couple an IMU with an independent monocular visual

odometry method (Klein & Murray, 2007). Other methods (Forster,

Carlone, Dellaert, & Scaramuzza, 2015; Leutenegger, Lynen, Bosse,

Siegwart, & Furgale, 2015) use optimization to solve for the motion.

We prefer optimization‐based methods over filter‐based methods.

The visual–inertial odometry in our pipeline involves constraints

from visual features and an IMU.

When using laser scanners for motion estimation, the downside is

from the fact that laser points are received continuously at different

time stamps. When the scanning rate is slow, a scan cannot be consider

as a rigid body but distortion is present due to external motion of the

laser scanner. To date, it has been shown that motion can be recovered

with a laser scanner itself (Ceriani, Sanchez, Taddei, Wolfart, & Sequeira,

2015; Velas, Spanel, & Herout, 2016; Wei, Wu, & Fu, 2015). This

requires a motion model being involved. Tong, Anderson, Dong, and

Barfoot (2014) model the motion as constant velocity or with Gaussian

processes. The method matches visual features from images generated

by laser intensity returns. Combining a 2D laser scanner and an IMU,

Bosse and Zlot’s method (Bosse, Zlot, & Flick, 2012; Zlot et al., 2014)

uses IMU mechanization as the motion model. The method matches

spatiotemporal patches formed by laser points to estimate sensor

motion and correct IMU biases in offline batch optimization.

The same problem of motion distortion is observed with rolling‐
shutter cameras, that is, image pixels are perceived continuously over

time, resulting in image distortion caused by extrinsic motion of the

camera. A few visual odometry methods use an IMU to compensate

for the rolling‐shutter effect given readout time of the pixels (Guo

et al., 2014; Li & Mourikis, 2014). Further, Furgale, Barfoot, and

Sibley (2012) show that the continuous motion of the camera can be

modeled with a set of temporal basis functions.

An alternative way is to use other sensors to assist laser

scanners. Scherer et al. (2012) navigation system uses stereo visual

odometry (Geiger, Ziegler, & Stiller, 2011) loosely coupled with an

IMU to estimate motion of a microhelicopter. The estimated motion

registers laser points on a map. Also taking visual odometry output as

motion approximation, Droeschel, Stuckler, and Behnke (2014)

method and Holz and Behnke (2014) method further match laser

scans to refine the motion. The proposed pipeline is inspired by the

same concept, but is more complete with range, vision, and inertial

sensors all coupled. The difference is that methods (Droeschel et al.,

2014; Holz & Behnke, 2014) consider the camera and the laser

scanner as independent modules, while in our pipeline the modules

are highly interactive and dynamically reconfigurable. This allows

both the camera and the laser scanner to correct velocity drift and

biases of the IMU. In the case that the camera or the laser scanner

degrades, the other one substitutes and couples with the IMU. More

importantly, it enables different combinations in the pipeline adapted

to specific environments and motion, which ensures the robustness

w.r.t. environmental degradation and aggressive motion that typically

cause different modules to fail.

The proposed method is based on our pervious work where a

visual odometry method (Zhang, Kaess, & Singh, 2014) and a laser

odometry method (Zhang & Singh, 2014) are proposed separately. In

Zhang and Singh (2017a), the work is extended to perform
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localization based on existing maps. The visual odometry method is

now key‐framed and coupled with an IMU. The laser odometry

method is further improved by a two‐level voxel representation and

multithread processing for better real‐time performance. The fully

integrated pipeline reaches the level of accuracy that is unachieved in

our previous work (Zhang et al., 2014; Zhang & Singh, 2014, 2015).

Further, the method now handles sensor failures. By combining

functioning modules, it can reliably operate in the presence of

aggressive motion as well as in low‐light, texture‐less, and structure‐
less environments. The paper is an extended version of our

conference papers (Zhang & Singh, 2017a, 2017b) with more

technical details and experiment results.

3 | ASSUMPTIONS, COORDINATES, AND
PROBLEM

3.1 | Assumptions and coordinate systems

Considering a sensor system including a laser scanner, a camera, and an

IMU, we assume that the camera is modeled by a pinhole camera model

(Hartley & Zisserman, 2000) and the intrinsic parameters are known

(Zhang, 2000). The extrinsic parameters among the three sensors are

calibrated. The relative pose between the camera and the laser scanner

is obtained based on (Unnikrishnan & Hebert, 2005), and the relative

pose between the laser scanner and the IMU is calibrated in the same

way as Geiger, Lenz, Stiller, and Urtasun (2013) by solving a hand–eye

problem (Horaud & Dornaika, 1995). As extrinsic calibration is made,

we use a single coordinate system for the camera and the laser scanner.

This is chosen to be the camera coordinate system—all laser points are

projected into the camera coordinate system in preprocessing. For

simplicity of notations, we also assume that the IMU coordinate system

is parallel to the camera coordinate system—IMU measurements are

rotationally corrected upon receiving. We define coordinate systems in

the following (see Figure 3 for illustration),

• Camera coordinate system C{ } is originated at the camera optical

center. The x‐axis points to the left, the y‐axis points upward, and

the z‐axis points forward coinciding with the camera principal axis.

• IMU coordinate system I{ } is originated at the IMU measurement

center. The x‐, y‐, and z‐axes are parallel to C{ } pointing to the

same directions.

• World coordinate system W{ } is the gravity aligned coordinate

system coinciding with C{ } at the start.

3.2 | Maximum a posterior (MAP) estimation
problem

A state estimation problem can be formulated as a MAP estimation

problem. We follow the definition in Dellaert and Kaess (2006).

Define X = …x i m{ }, {1, 2, , }i , as the set of system states,

U = …u i m{ }, {1, 2, , }i , as the set of control inputs, and

Z = …z k n{ }, {1, 2, , }k , as the set of landmark measurements. Given

the proposed pipeline, Z is composed of both visual features and

laser landmarks. The joint probability of the system is defined as

follows,

X U Z∣ ∝ ∣
=

−
=

( )∏ ∏x x x xP P P u P z( , ) ( ) ( , ) ,
i

m

i i i
k

n

k i0
1

1
1

k (1)

where xP ( )0 is a prior of the initial system state, ∣ −x xP u( , )i i i1

represents the motion model, and ∣xP z( )k ik represents the landmark

measurement model. For each problem formulated as (1), there is a

corresponding Bayesian belief network representation of the

problem (Kaess, Ranganathan, & Dellaert, 2008). The MAP estima-

tion is to maximize (1). Under the assumption of zero‐mean Gaussian

noise, the problem is equivalent to a least‐squares problem,

X
X

∥ ∥= +
= =
∑ ∑r r* arg min .
i

m

k

n

1
x

2

1
z

2
i k (2)

Here, rxi and rzk are residual errors associated with the motion model

and the landmark measurement model, respectively.

The standard way of solving (2) is to combine all sensor data, i.e.,

visual features, laser landmarks, and IMU measurements, into a large

factor‐graph optimization problem. The proposed data processing

pipeline, instead, formulates multiple small optimization problems

and solves the problems in a coarse‐to‐fine manner. We give the

problem statement as,

Problem 1 Given data from a laser scanner, a camera, and an

IMU, formulate and solve problems as (2) to determine poses of

C{ } w.r.t W{ }, then use the estimated poses to register laser points

and build a map of the traversed environment in W{ }.

4 | IMU PREDICTION SUBSYSTEM

4.1 | IMU mechanization

This subsection describes the IMU prediction subsystem. As our

method considers C{ } as the fundamental sensor coordinate system,

we also characterize the IMU w.r.t. C{ }. Recalling in Section 3.1, we

have stated that I{ } and C{ } are parallel coordinate systems. Let ω t( )

and a t( ) be two ×3 1 vectors indicating the angular rates and

accelerations of C{ } at time t . Let ωb t( ) and b t( )a be the corresponding

biases, and ωn t( ) and n t( )a be the corresponding noises. All above

terms are defined in C{ }. Additionally, let g be the constant gravity

vector in W{ }. The IMU measurement terms are,

z

x
y

{C} {I}z

x
y

z

x
y

{C} { }z

x
y

F IGURE 3 Illustration of coordinate systems in top‐down view.
C{ } is the camera coordinate system. All laser points are converted into
C{ } in preprocessing. I{ } is the inertial measurement unit coordinate
system [Color figure can be viewed at wileyonlinelibrary.com]
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ω ω= + +ω ωb nt t t tˆ ( ) ( ) ( ) ( ), (3)

∣∣ ∣∣ω= − − + +a a g t b nt t t t t tRˆ ( ) ( ) ( ) ( ) ( ) ( ),aW
C

C
I 2

a (4)

where tR( )W
C is the rotation matrix from W{ } to C{ }, and tC

I is the

translation vector between C{ } and I{ }.

Note that the term ∣∣ ∣∣ωt t( )C
I 2 represents the centrifugal force due

to the fact that the rotation center (origin of C{ }) is different from the

origin of I{ }. State‐of‐the‐art visual–inertial navigation methods

(Huang et al., 2014; Li & Mourikis, 2013) tend to model the motion

in I{ } to eliminate this term. Since our method uses visual features

both with and without depth information (discussed in Section 5.3),

converting features without depth from C{ } to I{ } is not straight

forward. We model the motion in C{ } instead. Practically, the camera

and the IMU are mounted close to each other to maximally reduce

effect of the term.

The IMU biases are slowly changing variables. We take the most

recently updated biases for motion integration. First, (3) is integrated

over time. Then, the resulting orientation is used with (4) for

integration over time twice to obtain translation.

4.2 | Bias correction

The IMU bias correction can be made by feedback from either the

camera or the laser scanner. Each one contains the estimated

incremental motion over a short amount of time. When calculating

the biases, we model the biases to be constant during the

incremental motion. Still starting with (3), by comparing the

estimated orientation with IMU integration, we can calculate ωb t( ).

The updated ωb t( ) is used in one more round of integration to

recompute the translation, which is compared with the estimated

translation to calculate b t( )a .

To reduce the effect of high‐frequency noises, a sliding window is

used keeping a certain number of biases. The averaged biases from

the sliding window are used. In this implementation, the length of the

sliding window functions as a parameter determining update rate of

the biases. We are aware that a rigorous way is to model the biases

as random walks and update the biases through optimization (Forster

et al., 2015; Leutenegger et al., 2015). However, we prefer this

nonstandard implementation to keep IMU processing in a separate

module. The implementation favors dynamic reconfiguration of the

pipeline, that is, the IMU can be coupled with either the camera or

the laser scanner. If the camera is nonfunctional, the IMU biases are

corrected by the laser scanner instead (more discussion in Section 8).

5 | VISUAL– INERTIAL ODOMETRY
SUBSYSTEM

This section summarizes the visual–inertial odometry subsystem. This

is based on a method proposed in our previous work (Zhang et al.,

2014). A system diagram is shown in Figure 4. The method couples

vision with an IMU. Both provide constraints to an optimization

problem that estimates incremental motion. At the same time, the

method associates depth information to visual features. If a feature is

located in an area where laser range measurements are available,

depth is obtained from laser points. Otherwise, depth is calculated

from triangulation using the previously estimated motion sequence. As

the last option, the method can also use features without any depth by

formulating constraints in a different way. This is true for those

features which do not have laser range coverage or cannot be

triangulated due to the fact that they are not tracked long enough or

located in the direction of camera motion.

5.1 | Camera constraints

The visual–inertial odometry is a key‐frame‐based method. A new

key‐frame is determined if more than a certain number of features

lose tracking or the image overlap is below a certain ratio. Here, let

us use right superscript  +l Z to indicate the last key‐frame, and

 +c c Z, and >c l, to indicate the current frame. As we have

discussed, the method combines features with and without depth.

For a feature that is associated with depth at key‐frame l, we denote

it as =X x y z[ , , ]l l l l
T in C{ }l . Correspondingly, a feature without depth

is denoted as ̄ ̄=X x y[ , , 1]l l l
T using normalized coordinates instead.

Note that ̄X X x, ,l l l, and ̄xl are different from X and x in (1) which

represent the system state. We only associate depth to features at

key‐frames, for two reasons: (a) Depth association takes some

processing and executing at key‐frames only helps reduce computa-

tion intensity; and (b) laser points need to be registered on a

depthmap (more discussion in Section 5.3); however, the transform

to frame c has not been established at this point and the depthmap is

not available at frame c. We denote a normalized feature in C{ }c

as ̄ ̄=X x y[ , , 1]c c c
T .

Let Rl
c and tl

c be the ×3 3 rotation matrix and ×3 1 translation

vector between frames l and c, where R SO(3)l
c and  t R,l

c
l
c3 and

Tl
c form an SE(3) transformation (Murray & Sastry, 1994). The motion

function between frames l and c is written as,

= +X X tR .c l
c

l l
c

(5)

Recalling that Xc has unknown depth, let dc be the depth, where

̄=X Xdc c c. Substituting Xc with ̄Xdc c and combining the first and

second rows with the third row in (5) to eliminate dc , we have,

̄ ̄− + − =R R Xx t x t( (1) (3)) (1) (3) 0,c l c (6)

− + − =R R Xy t y t( (2) (3)) (2) (3) 0.c l c (7)

F IGURE 4 Diagram of the visual–inertial odometry subsystem.
IMU: inertial measurement unit [Color figure can be viewed at
wileyonlinelibrary.com]
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Here, R h( ) and t h h( ), {1, 2, 3}, are the hth rows of Rl
c and tl

c . In the

case that depth in unavailable to a feature, let dl be the unknown

depth at key‐frame l. Substituting Xl and Xc with ̄Xdl l and ̄Xdc c ,

respectively, and combining all three rows in (5) to eliminate dl and dc ,

we obtain another constraint,

̄̄ ̄− − + − =Xy t t x t t x t y t R[ (3) (2), (3) (1), (2) (1)] 0.c c c c l
c

l (8)

5.2 | Motion estimation

The motion estimation is to solve an optimization problem combining

three sets of constraints: (a) From features with known depth as (6)

and (7); (b) from features with unknown depth as (8); and (c) from the

IMU prediction. Let us define Ta
b as the ×4 4 transformation matrix

between frames a and b,

⎡
⎣⎢

⎤
⎦⎥

= t

0
T

R

1
,a

b a
b

a
b

T
(9)

where Ra
b and ta

b are the corresponding rotation matrix and

translation vector. Further, let θa
b be a ×3 1 vector corresponding

to Ra
b through an exponential map (Murray & Sastry, 1994), where

θ so(3)a
b . The normalized term ∕∣∣ ∣∣θ θ represents direction of the

rotation, and ∣∣ ∣∣θ is the rotation angle. Each Ta
b corresponds to a set of

θa
b and ta

b containing 6‐DOF motion of the camera.

To formulate the IMU pose constraints, we take the solved

motion transform between frames l and −c 1, namely −Tl
c 1. From

IMU mechanization, we obtain a predicted transform between the

last two frames −c 1 and c, denoted as −T̂c
c

1. The predicted

transform at frame c is calculated as,

= −
−T T Tˆ ˆ .l

c
c
c

l
c

1
1 (10)

Let θ̂l
c
and t̂l

c
be the 6‐DOF motion corresponding to T̂l

c
. It is worth to

mention that the IMU‐predicted translation, t̂l
c
, is dependent on the

orientation, that is, the orientation determines projection of

the gravity vector through rotation matrix tR( )W
C in (4), and hence

the accelerations being integrated. We formulate t̂l
c
as a function of

θl
c and rewrite it as θt̂ ( )l

c
l
c from now on. At this point, we should

clarify that the 200 Hz pose and so as the 50 Hz pose in Figure 2c are

in indeed pose functions. When calculating θt̂ ( )l
c

l
c , we start at frame c

and integrate accelerations inversely w.r.t. time. Let θl
c be the

rotation vector corresponding to Rl
c in (5), θl

c and tl
c are the motion to

be solved. The constraints are expressed as,

⎡
⎣

⎤
⎦

θ θ θΣ − − =( )( ) t t 0ˆ , ˆ ( ) ,l
c

l
c

l
c T

l
c

l
c

l
c T T

(11)

where Σl
c is a relative covariance matrix scaling the pose constraints

appropriately w.r.t. the camera constraints.

In the visual–inertial odometry subsystem, the pose constraints

fulfill the motion model and the camera constraints fullfill the

landmark measurement model in (2). The optimization problem is

solved by the Newton gradient‐descent method (Nocedal & Wright,

2006) adapted to a robust fitting framework (Andersen, 2008) for

outlier feature removal. In this problem, the state space contains θl
c

and tl
c . In other words, we do not perform full‐scale MAP estimation

but only solve a marginalized problem. The landmark positions are

not optimized. This means only six unknowns in the state space

keeping computation intensity low. The argument is that the method

involves laser range measurements to provide precise depth

information to features, warranting motion estimation accuracy.

Further optimizing the features’ depth in bundle adjustment is

practically unnecessary.

5.3 | Depth association

The method registers laser points on a depthmap using previously

estimated motion. Laser points within the camera field of view are

kept for a certain amount of time. The depthmap is downsampled to

keep a constant density and stored in a two‐dimensional K‐D tree (de

Berg, Cheong, van Kreveld, & Overmars, 2008) for fast index. In the

K‐D tree, all laser points are projected onto a unit sphere around the

camera center (as in Figure 5). A point is represented by its two

angular coordinates. When associating depth to features, we project

the features onto the sphere. The three closest laser points are found

on the sphere for each feature. Then, we further check their validity

by calculating distances among the three points in Cartesian space. If

a distance is larger than a threshold, the chance that the points are

from different objects, for example, a wall and an object in front of

the wall, is high and the validity check fails. Finally, the depth is

interpolated from the three points assuming a local planar patch in

Cartesian space.

For those features without laser range coverage, if they are

tracked over a certain distance and not located in the direction of

camera motion, we triangulate them using the image sequences

where the features are tracked. This uses a similar procedure as

Forster et al. (2014) and Vogiatzis and Hernandez (2011), where the

depth is updated at each frame based on a Bayesian probabilistic

mode. Figure 6 shows an example depthmap and 3D projected

features. The green points have depth from the depthmap, the blue

points are by triangulation, and the red points have unknown depth.

F IGURE 5 Illustration of feature depth association. Features (orange)
and laser points on the demthmap (green) are projected from Cartesian
space onto a unit sphere. Then, the three closest laser points on the

sphere are found for each feature using a 2D K‐D tree. The three points
form a local planar patch in Cartesian space, and the depth is
interpolated for the feature [Color figure can be viewed at

wileyonlinelibrary.com]
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6 | SCAN MATCHING SUBSYSTEM

This subsystem further refines motion estimates from the previous

module by scan matching. The method is based on our previous work

published in Zhang and Singh (2014). A diagram is present in

Figure 7. The subsystem registers laser points in a local point cloud

using provided odometry estimation. Then, geometric features are

detected from the point cloud and matched to the map. The scan

matching minimizes the feature‐to‐map distances, similar to many

existing methods (François Pomerleau & Siegwart, 2015). However, the

odometry estimation from the previous module also provides pose

constraints in the optimization. The implementation uses voxel

representation of the map. Further, it can dynamically configure to

run on one to multiple central processing unit (CPU) threads in parallel.

6.1 | Laser constraints

When receiving laser scans, the method first registers points from a

scan into a common coordinate system. Let us use  +m Z to indicate

the scan number. Recall that we use the camera coordinate system

for both the camera and the laser scanner. For scan m, we associate it

with the camera coordinate system at the beginning of the scan,

denoted as C{ }m . To locally register the laser points, we take the

odometry estimation from the visual–inertial odometry as key‐poses,
and use IMU measurements to interpolate in between the key‐poses.

Let Pm be the locally registered point cloud from scan m. We

extract two sets of geometric features from Pm, one on sharp edges,

namely edge points and denoted as Em, and the other on local planar

surfaces, namely planar points and denoted as Hm. When extracting

geometric features, we use the term defined in Zhang and Singh

(2014) to evaluate smoothness of local surfaces around the points.

Denote a point as  P=X Xx y z[ , , ] ,m
i

m
i

m
i

m
i T

m
i

m. The set of surround-

ing points of Xm
i inPm is denoted asCm

i . Given that orientations of the

points around Xm
i from a laser scanner distribute evenly, the

smoothness is defined as,

� �⋅
= −( )∑

X
X Xc

1
.

X
m
i

m
i

m
i

j i
m
i

m
j

, ≠m
j

m
i

(12)

Edge points and planar points are extracted with large and small cm
i

values, respectively. We avoid selecting points whose neighbor points

are already selected, points on boundaries of occluded regions (point

B in Figure 8), or points whose local surfaces are close to be parallel

to laser beams (point D in Figure 8). These points are likely to contain

large noises or change positions over time as the sensor moves.

Figure 9a gives an example of detected edge points (blue) and planar

points (yellow).

The geometric features are then matched to the current map

built. Let Q −m 1 be the map point cloud after processing the last scan,

Q −m 1 is defined in W{ }. The points inQ −m 1 are separated into two sets

containing edge points and planar points, respectively. We use voxels

to store the map truncated at a certain distance around the sensor.

For each voxel, we construct two 3D K‐D trees (de Berg et al., 2008),

one for edge points and the other for planar points. Using K‐D trees

for individual voxels accelerates point searching since given a query

point, we only need to search in a specific K‐D tree associated with a

single voxel (more discussion in Section 6.3).

F IGURE 6 (a) Example depthmap (colored points) and 3D projected visual features. The green points are features whose depth is from the
depthmap. The blue points are by triangulation. (b) Corresponding features in an image. The red points have unknown depth, hence are not
drawn in (a) [Color figure can be viewed at wileyonlinelibrary.com]

F IGURE 7 Diagram of the scan matching subsystem. MAP:
maximum a posterior [Color figure can be viewed at
wileyonlinelibrary.com]

F IGURE 8 Illustration of geometric feature selection. Point A is a
good edge point but point B is not. This is because point B is on the

boundary of an occluded region, making it appear to be an edge
point. Point C is a good planar point but point D is not, because the
local surface of point D is close to be parallel to the laser beam.

Points B and D are likely to contain large noises or change positions
as the sensor moves, hence are not selected [Color figure can be
viewed at wileyonlinelibrary.com]
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When matching scans, we first project Em andHm into W{ } using

the best guess of motion available, then for each point in Em andHm,

a cluster of closest points are found from the corresponding set on

the map. To verify geometric distributions of the point clusters, we

examine the associated eigenvalues and eigenvectors. Specifically,

one large and two small eigenvalues indicate an edge line segment,

and two large and one small eigenvalues indicate a local planar patch.

If the matching is valid, an equation is formulated as for the distance

from a point to its correspondence,

θ= ( )X td f , , ,m
i

m
i

m m (13)

where  EXm
i

m or  H s oθX , (3)m
i

m m and  tm
3 indicate the

6‐DOF pose of C{ }m in W{ }. Specifically, if Xm
i is an edge point, (13)

describes the distance between Xm
i and the corresponding edge line

segment,

∣ ∣
θ θ

=
− × −

−

− −

− −

( )( )X t X X t X

X X
d

ˆ ( , ) ˆ ˆ ( , ) ˆ

ˆ ˆ
,m

i
m
i

m m m
j

m
i

m m m
k

m
j

m
k

1 1

1 1

(14)

where θX tˆ ( , )m
i

m m is the projected point of X̂m
i
into W{ } using θm and

−t X, ˆm m
j

1 and −X̂m
k

1 are two points located on the edge line segment in

W{ }. If Xm
i is a planar point, (13) describes the distance between Xm

i

and the corresponding local planar patch,

θ

=

−

− × −

− × −

−

− − − −

− − − −
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(15)

where − − −X X Xˆ , ˆ , ˆ
m
j

m
k

m
l

1 1 1 are three points located on the local planar

patch in W{ }. Figure 9b shows an example where a scan is matched.

The gray points are from a scan, and the colored points are from

the map.

6.2 | Motion estimation

The scan matching is formulated into an optimization problem

minimizing the overall distances described by (13). The optimization

also involves pose constraints from prior motion. Let −Tm 1 be the

×4 4 transformation matrix as for the pose of −C{ }m 1 in −W T{ }, m 1 is

generated by processing the last scan. Let −T̂m
m

1 be the pose

transform from −C{ }m 1 to C{ }m , as provided by the odometry

estimation. Similar to (10), the predicted pose transform of C{ }m in

W{ } is,

= − −T T Tˆ ˆ .m m
m

m1 1 (16)

Let θ̂m and t̂m be the 6‐DOF pose corresponding to T̂m, and let Σm be a

relative covariance matrix. The constraints are,

θ θΣ − − =t t[( ˆ ) , (ˆ ) ] 0.m m m
T

m m
T T (17)

Equation (17) refers to the case that the prior motion is from the

visual–inertial odometry, assuming the camera is functional. Other-

wise, the constraints are from the IMU prediction. Let us use θ′ˆ m and

θ′t̂ ( )m m to denote the same terms by IMU mechanization. θ′t̂ ( )m m is a

function of θm due to the fact that integration of accelerations is

dependent on the orientation (same with θt̂ ( )l
c

l
c in (11)). The IMU

pose constraints are,

θ θ θΣ′ ′ − ′ − =t t[( ˆ ) , (ˆ ( ) ) ] 0,m m m
T

m m m
T T (18)

where Σ′m is the corresponding relative covariance matrix. In the

optimization problem, (17) and (18) are linearly combined into one

set of constraints. The linear combination is determined by working

F IGURE 9 (a) Example edge points
(blue) and planar points (yellow) detected

from a scan. (b) Matching a scan (grey
points) to the map (colored points), and
then, the scan is merged with the map to
extend the map further [Color figure can

be viewed at wileyonlinelibrary.com]

F IGURE 10 (a) Voxels on the mapM −m 1 (all voxels in (a)), and voxels
surrounding the sensorS −m 1 (orange voxels).S −m 1 is a subset ofM −m 1.
If the sensor approaches the boundary of the map, voxels on the

opposite side of the boundary (bottom row) are moved over to extend
the map boundary. Points in moved voxels are cleared and the map is
truncated. (b) Each voxel  S −j m 1 (an orange voxel in (a)) is formed by a

set of voxelsS −m
j

1 that are a magnitude smaller (all voxels in (b)
 S −m

j
1). Before scan matching, we project points inEm andHm onto the

map using the best guess of motion. Voxels in S S− −j{ },m
j

m1 1

occupied by points from Em andHm are labeled in green. Then, map

points in green voxels are extracted as Q −m 1. The figure is drawn in 2D
but the algorithm is implemented in 3D [Color figure can be viewed at
wileyonlinelibrary.com]
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mode of the visual–inertial odometry (recapped in Section 8). The

optimization problem refines θm and tm, which is solved by the

Newton gradient‐descent method (Nocedal & Wright, 2006) adapted

to a robust fitting framework (Andersen, 2008).

6.3 | Map in voxels

The points on the map are kept in voxels. We use a two‐level voxel
implementation as illustrated in Figure 10a. Let us use M −m 1 to

indicate the set of voxels on the map after processing the last scan.

Voxels surrounding the sensor form a subset of M −m 1, denoted as

S −m 1. Given a 6‐DOF sensor pose, θ̂m and t̂m, there is a corresponding

S −m 1 which moves with the sensor on the map. When the sensor

approaches the boundary of the map, as an example in Figure 10a,

voxels on the opposite side of the boundary are moved over to

extend the map boundary. Points in moved voxels are cleared

resulting in truncation of the map.

As illustrated in Figure 10b, each voxel  S −j m 1 is formed by a set

of voxels that are a magnitude smaller, denoted as S −m
j

1. Voxels in

S −m
j

1 only last for one scan. Before matching scans, we project points in

Em and Hm onto the map using the best guess of motion and fill them

into {S −m
j

1},  S −j m 1. Voxels occupied by points from Em and Hm are

labeled in green. Then, map points in green voxels are extracted to form

Q −m 1 and stored in 3D K‐D trees for scan matching. An example of

Q −m 1 is the colored points in Figure 9b. Upon completion of scan

matching, the scan is merged into the green voxels with the map. After

that, the map points are downsized to maintain a constant density.

One question as for the algorithm implementation is why using

two levels of voxels as described above. The explanation is that we

useM −m 1 to keep the map and {S −m
j

1},  S −j m 1, to retrieve the map

around the sensor for scan matching. The map is truncated only when

the sensor approaches the map boundary. In other words, if the

sensor navigates inside the map, no truncation is needed. Voxels in

M −m 1 are stationary which store points on the map until the map is

truncated in the associated voxels. Voxels in {S −m
j

1},  S −j m 1, are

momentary and to retrieve the map for an instant scan. Another

consideration is that using a single level of voxels in the size of

{S −m
j

1},  S −j m 1, to keep the entire map is practically unfeasible due

to computational limits. Table 1 compares CPU processing time using

different voxel and K‐D tree configurations. The time is averaged

from multiple datasets collected from different types of environ-

ments covering confined and open, structured and vegetated areas.

We see that using only one level of voxels, M −m 1, results in about

twice of processing time for K‐D tree building and querying. This is

because the second level of voxels, {S −m
j

1},  S −j m 1, help retrieve

the map precisely. Without these voxel, more points are contained in

Q −m 1 and built into the K‐D trees. Also, we see that using K‐D trees

for each voxel helps reduce processing time sightly in comparison to

using K‐D trees for all voxels in M −m 1.

6.4 | Parallel processing

The scan matching is time‐consuming and takes major computation in

the pipeline. This involves building K‐D trees, repetitively querying

geometric feature points, and matrix manipulations for nonlinear

optimization. Without taking advantage from a powerful graphics

processing unit (GPU), the paper employs a CPU‐based multithread

implementation warranting the desired frequency. Figure 11a

illustrates the case where two scans are matched in parallel. Upon

receiving of a scan, a manager program arranges it to match with the

latest map available. In a clustered environment with plenty of

structures, matching is slow and may not complete before arrival of

the next scan. Two matcher programs are called alternatively. On

each matcher, P P …−, ,m m 1 , are matched with Q Q …− −, ,m m2 3 , respec-

tively, giving twice amount of time for processing. On the other hand,

in a clean environment with few structures, computation is light. Only

the first matcher is called as in Figure 11b, and P P …−, ,m m 1 , are

matched with Q Q …− −, ,m m1 2 , respectively. The implementation is

configured to use maximally four threads; however it is uncommon

that more than two threads are needed.

An alternative way is to process a single scan on multiple CPU

threads in parallel. However, this will unavoidably cause efficiency

loss. Lu and Hart’s research (Lu & Hart, 2014) indicates that

constructing K‐D trees using four threads with low‐dimensional data

results in 87.5% of the original efficiency. Further, our multithread

implementation is dynamically configured to arrange all processing

on the minimum number of threads. This ensures low‐latency ego‐
motion estimation as it leaves room on other threads for real‐time

processing of the IMU prediction and visual–inertial odometry.

7 | TRANSFORM INTEGRATION

The final motion estimation is integration of outputs from the three

modules in Figure 2c. As illustrated in Figure 12, the 5‐Hz scan

matching output (blue section) fundamentally warrants accuracy. The

50‐Hz visual–inertial odometry output (green section) and the

200‐Hz IMU prediction (orange section) are integrated to the front

for high‐frequency motion estimates.

TABLE 1 Comparsion of average CPU processing time on K‐D tree operation

One‐level voxels Two‐level voxels

Task K‐D trees for all voxels K‐D trees for each voxel K‐D trees for all voxels K‐D trees for each voxel

Build (times per K‐D tree; ms) 54 47 24 21

Query (times per point; ns) 4.2 4.1 2.4 2.3
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8 | ON ROBUSTNESS

The robustness of the pipeline is determined by its ability to handle

sensor degradation. We assume the IMU is always reliable functioning as

the backbone in the pipeline. Camera is sensitive to dramatic lighting

changes. It also fails in a dark or texture‐less environment or when

significant motion blur is present causing visual features lose tracking.

Laser scanner cannot handle structure‐less environments, for example, a

scene that is dominant by a plane. Further, the same degradation can be

caused by sparsity of the data due to aggressive motion.

The method that we use to deal with these failures is originally

proposed in Zhang, Kaess, and Singh (2016). Both the visual–inertial

odometry and the scan matching modules formulate and solve

optimization problems as (2). When a failure happens, it corresponds

to a degraded optimization problem, that is, some directions of the state

space are loosely constrained and noises are dominated in determining

the solution in these directions. Let J be the Jacobian matrix associated

with the current pose in (2), our method starts with computing

eigenvalues, denoted as λ λ λ…, , ,1 2 6, and eigenvectors, denoted as

…v v v, , ,1 2 6, of J JT . Here, six eigenvalues–eigenvectors are present

because the state space contains 6‐DOF motion of the sensor. Without

loosing generality, …v v v, , ,1 2 6 are sorted in decreasing order. Each

eigenvalue describes how well the solution is conditioned in the

direction of its corresponding eigenvector. By comparing the eigenva-

lues to a threshold determined in a single degradation test as conducted

in Zhang et al. (2016), we can separate well‐conditioned directions from

degraded directions in the state space. Let = …h h, 0, 1, , 6, be the

number of well‐conditioned directions. Here. we define two matrices,

̄= … = … …v v v vV V[ , , ] , [ , , , 0, , 0] .T
h

T
1 6 1 (19)

When solving an optimization problem, the nonlinear iteration

starts with an initial guess. With the sequential pipeline in Figure 2c,

the IMU prediction provides the initial guess for the visual–inertial

odometry, whose output is taken as the initial guess for the scan

matching. For the last two modules, let x be a solution and Δx be

an update of x in a nonlinear iteration. Given the Newton

gradient‐descent method (Nocedal & Wright, 2006) used by the

paper, Δx is calculated as,

Δ = − −x b(J J) J .T T1 (20)

Here, b is a matrix containing residuals of the linearized problem.

During the optimization process, instead of updating x in all

directions, we only update x in well‐conditioned directions, keeping

the initial guess in degraded directions instead,

← ̄+ Δ−x x xV V .1 (21)

Let us further explain the intuition behind (21). The pipeline solves

for motion in a coarse‐to‐fine order, starting with the IMU prediction, and

the following two modules further solve or refine the motion as much as

possible, fully (in 6‐DOF) if the problem is well‐conditioned, and partially

(in zero to 5‐DOF) otherwise. If the problem is completely degraded, ̄V

becomes a zero matrix and the previous module’s output is kept.

Recap 1 Let us recap on the pose constraints described in (17)

and (18). In fact, the two equations are linearly combined in the

scan matching problem. Let us use VV and ̄VV to denote the

matrices defined in (19) containing eigenvectors from the visual–

inertial odometry module, ̄VV represents well‐conditioned

directions in the subsystem, and ̄−V VV V represents degraded

directions. The combined constraints are as follows:

⎡
⎣

⎤
⎦

⎡
⎣

⎤
⎦

̄
̄
θ θ

θ θ θ

Σ − − + Σ′

− ′ − ′ − =

− −( ) ( )

( ) )

t t

t t

V V V

V V 0

ˆ , ˆ

( ) ( ˆ ) , ˆ ( .

m V V m m
T

m m
T

T

m V

V V m m
T

m m m
T

T

1 1

(22)

In a normal case where the camera is functional, ̄ =V VV V and

(22) is composed of pose constraints from the visual–inertial

odometry as (17). On the other hand, if the camera is completely

degraded, ̄VV is a zero matrix and (22) is composed of pose

constraints from the IMU prediction as (18).

(a) (b)

F IGURE 11 Illustration of multithread scan matching. A manager program calls multiple matcher programs running on separate CPU
threads and matches scans to the latest map available. (a) It shows a two‐thread case. ScansP P …−, ,m m 1 , are matched with map Q Q …− −, ,m m2 3 ,
on each matcher, giving twice amount of time for processing. In comparison, (b) shows a one‐thread case, whereP P …−, ,m m 1 , are matched with
Q Q …− −, ,m m1 2 . The implementation is dynamically configurable using up to four threads [Color figure can be viewed at wileyonlinelibrary.com]

F IGURE 12 Illustration of transform integration. The final motion

estimation is integration of the 5‐Hz scan matching output (blue), the
50‐Hz visual–inertial odometry output (green), and the 200‐Hz IMU
prediction (orange), at the IMU frequency. The density of the vertical

line segments in each section indicates the motion estimation
frequency from the corresponding module. IMU: inertial measurement
unit [Color figure can be viewed at wileyonlinelibrary.com]
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8.1 | Case study of camera degradation

As shown in Figure 13a, if visual features are insufficiently available for

the visual–inertial odometry, the IMU prediction bypasses the green

block fully or partially, depending on the number of well‐conditioned
directions in the visual–inertial odometry problem, and locally registers

laser points for the scan matching. The bypassing IMU prediction is

subject to drift. The laser feedback compensates for the camera feedback

correcting velocity drift and biases of the IMU, only in directions where

the camera feedback is unavailable. In other words, the camera feedback

has a higher priority, due to the higher frequency making it more suitable.

When sufficient visual features are found, the laser feedback is not used.

8.2 | Case study of laser degradation

As shown in Figure 13b, if environmental structures are insufficient

for the scan matching to refine motion estimates, the visual–inertial

odometry output fully or partially bypasses the blue block to register

laser points on the map. If well‐conditioned directions exist in the

scan matching problem, the laser feedback contains refined motion

estimates in those directions. Otherwise, the laser feedback becomes

empty.

8.3 | Case study of camera and laser degradation

Finally, let us discuss a complex scenario where both the camera and

the laser scanner are degraded. We use the example in Figure 14 to

illustrate this scenario. A vertical bar with six rows represents a

6‐DOF pose where each row is a DOF, corresponding to an

eigenvector in (19). In this example, both the visual–inertial

odometry and the scan matching update 3‐DOF motion, leaving the

motion unchanged in the other 3‐DOF. Starting with the IMU

prediction on the left where all six rows are orange, the visual–

inertial odometry updates in 3‐DOF where the rows change to green,

then the scan matching updates in 3‐DOF further where the rows

turn blue. The camera and the laser feedback contains updates from

each module on the green and the blue rows, respectively (white

means empty). The feedback is combined upon receiving by the IMU

prediction module as the vertical bar on the left. The camera

feedback has a higher priority than the laser feedback (discussed in

Section 8.1). During the combination, the blue rows are only filled in

if the green rows are not present.

In reality, however, the visual–inertial odometry and the scan

matching execute at different frequencies and have each own

degraded directions. We take the poses from the scan matching

output and use IMU messages to interpolate in between the poses.

This way, we create an incremental motion that is time aligned with

the visual–inertial odometry output. Let θ −c
c

1 and −tc
c

1 be the 6‐DOF

motion estimated by the visual–inertial odometry between frames

−c 1 and c, where  soθ − (3)c
c

1 and  −tc
c

1
3. Let θ′ −c

c
1 and ′ −t c

c
1 be

the corresponding terms estimated by the scan matching after time

interpolation. Consider VV and ̄VV to be the matrices defined in (19)

containing eigenvectors from the visual–inertial odometry module,

̄VV represents well‐conditioned directions, and ̄−V VV V represents

degraded directions. Let VS and ̄VS be the same matrices from the

scan matching module. The following equation calculates the

combined feedback, fC ,

̄= + −−f f fV V V( ) ,C V V V V S
1 (23)

where fV and fS represent the camera and the laser feedback,

⎡
⎣

⎤
⎦̄ θ= −

− −( ) ( )f tV V , ,V V V c
c T

c
c T

T
1

1 1 (24)

⎡
⎣

⎤
⎦̄ θ= ′ ′−

− −( ) ( )f tV V , .S S S c
c T

c
c T

T
1

1 1 (25)

Note that fC only contains solved motion in a subspace of the state

space. We take the motion from the IMU prediction, namely θ −ĉ
c

1 and

−t̂c
c

1, and project it to the nullspace of fC ,

⎡
⎣

⎤
⎦̄ ̄ θ= − −− −

− −( ) ( )f tV V V V V V( ) ( ) ˆ , ˆ .I V V V S S S c
c T

c
c T

T
1 1

1 1 (26)

F IGURE 13 Case study of camera and laser degradation. (a) If
visual features are insufficient for the visual–inertial odometry, the IMU
prediction (partially) bypasses the green block to register laser points

locally. Correction of velocity drift and biases of the IMU is made with
the laser feedback. (b) If environmental structures are insufficient for
the scan matching, the visual–inertial odometry output (partially)

bypasses the blue block to register laser points on the map. Here, the
dashed line segments indicate “bypass.” IMU: inertial measurement unit
[Color figure can be viewed at wileyonlinelibrary.com]

IMU

Camera

Laser

EmptyIMU
Predic�on

Visual-iner�al 
Odometry

Scan Matching 
Refinement

Laser feedbackCamera feedbackCombined 
feedback

F IGURE 14 An example where both the camera and the laser
scanner are degraded. A vertical bar represents a 6‐DOF pose and
each row is a DOF. Starting with the IMU prediction on the left where

all six rows are orange, the visual–inertial odometry updates in 3‐DOF
where the rows become green, then the scan matching updates in
another 3‐DOF where the rows turn blue. The camera and the laser

feedback is combined as the vertical bar on the left. The camera
feedback has a higher priority: Blue rows from the laser feedback are
only filled in if green rows from the camera feedback are not present.
DOF: degree of freedom; IMU: inertial measurement unit [Color figure

can be viewed at wileyonlinelibrary.com]

1252 | ZHANG AND SINGH



Next, we use θ ̃ ω− b t( ( ))c
c

1 and ̃ ω−t b bt t( ( ), ( ))ac
c

1 to denote the IMU‐
predicted motion formulated as functions of ωb t( ) and b t( ))a , through

integration of (3) and (4). The orientation θ ̃ ω− b t( ( ))c
c

1 is only relevant

to ωb t( ), but the translation ̃ ω−t b bt t( ( ), ( ))ac
c

1 is dependent on both

ωb t( ) and b t( ))a . The biases can be calculated by solving the following

equation,

⎡
⎣

⎤
⎦

θ ̃ ̃ = +ω ω− −( ) ( )b t b b f ft t t( ( )) , ( ( ), ( )) .ac
c T

c
c T

T

C I1 1 (27)

When the pipeline functions normally, fC spans the state space, and

̄−V VV V and ̄−V VS S in (26) are zero matrices. Correspondingly, ωb t( )

and b t( )a are calculated from fC . In a degraded case, the IMU‐predicted
motion,θ −ĉ

c
1 and −t̂c

c
1, is used in directions where the motion is unsolvable

(e.g., white row of the combined feedback in Figure 14). The result is that

the previously calculated biases are kept in these directions.

9 | LOCALIZATION ON EXISTING MAPS

When a map is available, our data processing pipeline can be

extended to utilize the map for localization. This uses a scan matching

method similar to Section 6. The method extracts and matches two

types of geometric features, on edges and local planar surfaces. The

feature points from the map are precomputed and stored in voxels.

By matching feature points from scans to the map, the localization

solves an optimization problem minimizing the overall distances

between the feature points and their correspondences.

In comparison to Section 6, the difference is that the localization

does not match individual scans but stacks a number of scans for

batch processing. Scans are stacked only when the sensor suite is

moving, to prevent redundant data being collected from the same

location. Thanks to the high‐accuracy ego‐motion estimation, scans

are precisely registered in a local coordinate frame where drift is

negligible over seconds of time. Figure 15a shows a single scan

utilized in Section 6 for scan matching at 5 Hz, and Figure 15b

presents stacked scans over 2 s and matched in the localization at

0.5 Hz. One can see the stacked scans contain more detailed

structural information. Further, execution at a low frequency keeps

the CPU usage to be minimal (about 10% of a CPU thread) for

onboard processing.

10 | EXPERIMENTS

10.1 | Tests with single‐axis scanners

Our odometry and mapping method is first validated on two sensor

suites. In Figure 16a, a Velodyne HDL‐32E laser scanner is attached

to a UI‐1220SE monochrome camera and an Xsens MTi‐30 IMU. The

laser scanner has °360 horizontal field of view (FOV), °40 vertical

FOV, and receives 0.7 million points per second at 5 Hz spinning rate.

The camera is configured at the resolution of ×752 480 pixels, °76

horizontal FOV, and 50Hz frame rate. The IMU frequency is set at

200Hz. In Figure 16b, a Velodyne VLP‐16 laser scanner is attached

to the same camera and IMU. This laser scanner has °360 horizontal

F IGURE 15 (a) Scans involved in Section 6 for ego‐motion estimation, and (b) in localization on an existing map. In Section 6, each individual
scan is matched at 5 Hz. While in localization, a number of locally registered scans are stacked and matched at 0.5 Hz [Color figure can be
viewed at wileyonlinelibrary.com]

F IGURE 16 Sensor suites and vehicles used in experiments. (a) It is a Velodyne HDL‐32E laser scanner attached with a uEye UI‐1220SE
monochrome camera and an Xsens MTi‐30 IMU. (b) It is a Velodyne VLP‐16 laser scanner attached with the same camera and IMU. (c) It is a

passenger vehicle for street driving. (d) It is a utility vehicle for off‐road driving. Each sensor suite in (a) and (b) is attached to both vehicles in (c)
and (d) for experiment validation. IMU: inertial measurement unit [Color figure can be viewed at wileyonlinelibrary.com]
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FOV, °30 vertical FOV, and receives 0.3 million points per second at

5 Hz spinning rate. Both sensor suites are attached to the vehicles in

Figure 16c,d for data collection, which are driven on streets and in

off‐road terrains, respectively.

For both sensor suites, we track maximally 300 Harris corners

using the Kanade–Lucas–Tomasi method (Lucas & Kanade, 1981). To

evenly distribute the visual features, an image is separated into ×5 6

identical subregions, and each subregion provides up to 10 features.

When a feature loses tracking, a new feature is generated to

maintain the feature number in each subregion.

The software runs on a laptop computer with a 2.6‐GHz i7 quad‐
core processor (two threads on each core and eight threads overall)

and an integrated GPU, in a Linux system running robot operating

system (Quigley et al., 2009). We implement two versions of the

software with visual feature tracking running on GPU and CPU,

respectively. The processing time is shown in Table 2. The time used

by the visual–inertial odometry (middle module in Figure 2c) does not

vary much w.r.t. the environment or sensor configuration. For the

GPU version, it consumes about 25% of a CPU thread executing at

50 Hz. For the CPU version, it takes about 75% of a thread. The

sensor suite in Figure 16a results in slightly more processing time

than the one in Figure 16b. This is because the scanner receives more

points and the program needs more time to maintain the depthmap

and associate depth to the visual features.

The scan matching (rightmost module in Figure 2c) consumes

more processing time which also varies w.r.t. the environment and

sensor configuration. With the sensor suite in Figure 16a, the scan

matching takes about 75% of a thread executing at 5 Hz if operated

in structured environments. In vegetated environments, however,

more points are registered on the map and the program typically

consumes about 135% of a thread (running on multiple threads).

With the sensor suite in Figure 16b, the scanner receives less number

of points. The scan matching uses about 50–95% of a thread

depending on the environment. The time used by the IMU prediction

(leftmost module in Figure 2c) is neglectable compared to the other

two modules.

10.1.1 | Accuracy tests

We first conduct tests to evaluate accuracy of the proposed method.

In these tests, the sensor suite in Figure 16a is used. We first mount

the sensors on the vehicle in Figure 16d driving around the university

campus. After 2.7 km of driving within 16min, a campus map is built

(shown in Figure 17a). The average speed over the test is 2.8 m/s. In

addition to the overall map, we present three close views on the right

for readers to inspect the local registration accuracy. The corre-

sponding locations are labeled with numbers 1–3 on the map.

To evaluate motion estimation drift over the test, we align the

estimated trajectory and registered laser points on a satellite image

in Figure 17b. Here, laser points on the ground are manually

removed. By matching the trajectory with streets on the satellite

TABLE 2 Average CPU processing time using the sensor suites in Figure 16a,b

Visual–inertial odometry (time per image frame)

Environment Senor suite GPU tracking (ms) CPU tracking (ms) Scan matching (time per laser scan; ms)

Structured Figure 16a 4.8 14.3 148

Figure 16b 4.2 12.9 103

Vegetated Figure 16a 5.5 15.2 267

Figure 16b 5.1 14.7 191

Note. CPU: central processing unit; GPU: graphics processing unit.

F IGURE 17 Accuracy Test 1. The sensor suite in Figure 16a is
mounted on the vehicle in Figure 16d to map the university campus.

The overall path is 2.7 km in length, finished in 16min with an average
driving speed of 2.8m/s. (a) It shows the map built and three close
views labeled with numbers 1–3. The corresponding locations on the
map are marked with the same numbers. (b) It shows the vehicle

trajectory (red) and registered laser points (blue) overlayed on a
satellite image. Laser points on the ground are manually removed. The
relative position drift at the end is < 0.09% of the distance traveled

[Color figure can be viewed at wileyonlinelibrary.com]
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image, we are able to determine an upper bound of the horizontal

error to be < 1.0 m. By comparing buildings on the same floor, we

further determine the vertical error to be < 2.0 m. This gives an

overall relative position drift at the end to be< 0.09% of the distance

traveled. We are aware that precision cannot be guaranteed for the

measurements; hence, we only calculate an upper bound of the

position drift.

Further, we conduct a more comprehensive test with the same

sensors mounted on the vehicle in Figure 16c. The vehicle is driven

on structured roads for 9.3 km of travel. As shown in Figure 18, the

path goes through vegetated environments, bridges, hilly terrains,

and streets with heavy traffic, and finally returns to the starting

position. The elevation changes over 70m along the path. Except

waiting for traffic lights, the vehicle speed is between 9 and 18m/s

during the test. On the left side of Figure 18, we show the complete

map color coded by elevation. On the right, we present a few close

views with corresponding locations labeled with numbers 1–5 on the

map. In particular, close view 1 shows the starting and the ending

positions. Carefully examining the figure, we see that a building is

registered into two. This is because of motion estimation drift over

the path, while one is registered when the vehicle leaves from the

start and the other when the vehicle returns at the end. We measure

the gap to be < 20 m, which results in a relative position error at the

end to be < 0.22% of the distance traveled. We show more details in

close views 2–5 with corresponding images logged by the camera.

Additionally, we examine how each module in the pipeline

contributes to the overall accuracy. As shown in Figure 19, we first

plot output of the visual–inertial odometry as the green dash–dot

curve. This uses the left two modules in Figure 2c. Next, we directly

forward the IMU prediction to the scan matching module, bypassing

the visual–inertial odometry. This configuration uses the leftmost

and the rightmost modules in Figure 2c. The result is drawn as the

F IGURE 18 Accuracy Test 2. The sensor suite in Figure 16a is mounted on the vehicle in Figure 16c for 9.3 km of street driving. The path

goes through vegetated environments, bridges, hilly terrains, and roads with heavy traffic. The elevation changes over 70m. Except waiting
for traffic lights, the vehicle is driven at 9–18m/s. On the left, we show the complete map color coded by elevation. On the right, we show a few
close views with locations labeled with numbers 1–5 on the map. In close view 1, we present the starting and the ending positions. Because of

drift, a building is registered into two, one during the vehicle leaves from the start and the other during the vehicle returns at the end.
We manually measure the gap to be < 20 m, resulting in a relative position error at the end to be < 0.22% of the distance traveled. Close views
2–5 show more details with corresponding images logged by the camera [Color figure can be viewed at wileyonlinelibrary.com]

F IGURE 19 Estimated trajectories in Accuracy Test 2. The
trajectories start with the black dot. We compare four configurations in
the test. The green dash‐dot curve is from the visual–inertial odometry

module (using the left two modules in Figure 2c). The blue dash curve is
from the scan matching module with the IMU prediction directly taken
as input (leftmost and rightmost modules in Figure 2c). The black dot

curve has the pipeline reconfigured to solve one large optimization
problem incorporating all constraints, as in Figure 2b. The red solid curve
is from the proposed data processing pipeline. IMU: inertial
measurement unit [Color figure can be viewed at wileyonlinelibrary.com]

TABLE 3 Comparsion of relative position errors as percentages of
the distance traveled in Accuracy Test 2

Configuration 1× speed (%) 2× speed (%)

Visual–inertial odometry 0.93 1.47

IMU + scan matching 0.51 0.89

One‐step optimization 0.48 1.02

Complete pipeline 0.22 0.26

Note. The errors at 1× speed correspond to the trajectories in Figure 19.

IMU: inertial measurement uni.
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blue dash curve. Finally, we plot output of the complete pipeline as

the red solid curve, with the least amount of drift. The position errors

of the first two configurations are about four and two times larger.

We can consider the green dash‐dot curve and the blue dash curve

as the expected performance when encountering individual sensor

degradation: If scan matching is degraded, the pipeline reduces to a

mode indicated by the green dash–dot curve; if vision is degraded, the

pipeline reduces to that indicated by the blue dash curve. Further, we

reconfigure the pipeline to incorporate all constraints in one large

optimization problem as in Figure 2b. It takes the IMU prediction as the

initial guess and runs at the laser scanning frequency (5Hz). The method

produces a trajectory as the black dot curve. The resulting accuracy is

only little better in comparison to the blue dash curve which uses the

IMU directly coupled with the laser scanner, passing the visual–inertial

odometry. The result indicates that the high‐frequency advantage of the
camera is unexplored if solving the problem with all constraints stacked

together.

TABLE 4 Further comparsion of relative position errors in
Accuracy Test 2, with two existing methods, LOAM (Zhang & Singh,

2014) and V‐LOAM (Zhang & Singh, 2015)

Method LOAM V‐LOAM Complete pipeline

Accuracy 0.39% 0.33% 0.22%

F IGURE 20 Robustness Test 1. The sensor suite in Figure 16b is attached to the vehicle in Figure 16d driven from indoor to outdoor. The test
is conducted at night. Frequently, the camera cannot capture enough visual features and the visual–inertial odometry module is bypassed. In (a),

we show the estimated trajectory overlayed on the map built. The red segments indicate vision is functional and the black segments indicate
degradation. Also, we show three images logged by the camera from locations 1–3 labeled on the map. Location 1 is indoor and locations 2–3 are
outdoor. In (b), we show pose corrections applied by the scan matching to refine motion estimates. On the bottom row, the camera status being

one indicates functioning. When the camera status is zero, corrections on the top six rows become larger because the IMU prediction produces
more drift than the visual–inertial odometry. IMU: inertial measurement unit [Color figure can be viewed at wileyonlinelibrary.com]

F IGURE 21 Robustness Test 2. The sensor suite in Figure 16b is attached to the vehicle in Figure 16d driven in an off‐road terrain. In
(a), when the vehicle reaches the rightmost side of the path, only the flat ground is seen, causing the scan matching to partially degrade. The

corresponding trajectory is drawn in black. Here, we determine the scan matching is able to refine 3‐DOF out of the 6‐DOF motion, which are
roll, pitch, and elevation. The other 3‐DOF are unsolvable due to the planar scene, where the pose is directly taken from the visual–inertial
odometry. In addition, we show a laser scan and an image logged from Location 1 labeled on the map. In (b), we show pose corrections applied

by the scan matching. On the last row, the laser status being one indicates functioning. When the laser status is zero, pose corrections in
degraded directions (in the red boxes) become much smaller. DOF: degree of freedom [Color figure can be viewed at wileyonlinelibrary.com]
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We would like to further understand how the modules

incorporate in the pipeline. To this end, we compare accuracy

of the pipeline running at the original 1× speed and an

accelerated 2× speed. When running at 2× speed, we skip every

other data frame for all three sensors, resulting in much more

aggressive motion through the test. The results are listed in

Table 3. At each speed, we evaluate three configurations. As we

can see, when running at 2× speed, the accuracy of the visual–

inertial odometry and the IMU + scan matching configurations

reduce significantly, by 0.54% and 0.38% of the distance traveled

in comparison to the accuracy at 1× speed. However, the

complete pipeline reduces accuracy very little, only by 0.04%.

The results indicate that the camera and the laser scanner

compensate for each other keeping the overall accuracy. This is

especially true when the motion is aggressive.

Finally, we compare the proposed method with two of our

existing methods. LOAM (Zhang & Singh, 2014) is a method that uses

an IMU and a 3D laser scanner for ego‐motion estimation. V‐LOAM

(Zhang & Singh, 2015) uses a camera and a 3D laser scanner instead.

Using data from Accuracy Test 2, the results are shown in Table 4.

Here, we can see that the complete pipeline utilizing all laser, visual,

and inertial data produces the highest accuracy among the three.

10.1.2 | Robustness tests

We further inspect the robustness w.r.t. sensor failures. Specifically,

we carry out test cases to produce vision degradation due to low‐
light and scan matching degradation due to lack of structures. Here, it

is worth to mention that the same mechanism in the pipeline that

ensures the robustness w.r.t. environmental degradation also

warrants the robustness w.r.t. and aggressive motion. This is because

both affect the processing in a similar way. The problem caused by

F IGURE 22 Robustness Test 3. Succeeding test of laser

degradation on a flat airport runway. The airport is about 500m long.
The path starts in blue and ends in red, traversing the runway three
times. The overall length of the trajectory is over 1.6 km. During the

test, the scan matching module is partially bypassed similar to Figure 21
[Color figure can be viewed at wileyonlinelibrary.com]

F IGURE 23 Robustness Test 4. Succeeding test of laser degradation
in a smooth tunnel. The tunnel is 380m in length, with a 45° curve close

to its left end (shown in the photo at the upper‐right corner). Similar to
Figure 21, the scan matching module is partially bypassed while passing
through the tunnel [Color figure can be viewed at wileyonlinelibrary.com]

F IGURE 24 Aggressive Motion Test 1. The sensor suite in Figure 16b is held by a person in one hand who drives the vehicle in Figure 16d
with the other hand. The person oscillates the sensor suite to introduce fast rotation. (a) It shows the estimated trajectory overlayed on
the map built and a photo taken from Location 1 during the test. (b) It shows the estimated orientation. (c) This is the estimated absolute angular

speed. The maximum angular speed exceeds ° s250 / [Color figure can be viewed at wileyonlinelibrary.com]
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environmental degradation is due to the fact that the environment

does not contain sufficient information, resulting in an ill‐conditioned
problem as discussed in Section 8. The problem caused by aggressive

motion is because of sparsity of the data in which insufficient

information is captured from the environment, resulting in the same

ill‐conditioned problem. Both problems are handled using the method

introduced in Section 8.

The experiments use the sensor suite in Figure 16b attached to

the vehicle in Figure 16d. First, we drive the vehicle at night where

vision degrades. When an insufficient number of visual features are

tracked, the visual–inertial odometry module is bypassed, and the

IMU prediction is directly sent to the scan matching module. As

shown in Figure 20a, the red and the black segments on the

trajectory respectively indicate vision is functional and degraded. In

Figure 20b, we show pose corrections applied by the scan matching

for motion estimation refinement. On the bottom row, the camera

status being zero indicates degradation. Correspondingly, pose

F IGURE 25 Aggressive Motion Test 2. The sensor suite in Figure 16b is mounted to the vehicle in Figure 16c. The vehicle is driven along an

“S”‐shaped path. The sensor rotates over °330 within 8 s during the test [Color figure can be viewed at wileyonlinelibrary.com]

F IGURE 26 Aggressive Motion Test 3. The sensor suite in Figure 16(b) is mounted to the vehicle in Figure 16(c), driven at a high speed along the

red path. The overall path is 701m and the maximum linear speed is 33m/s. In (a), the blue points are laser points overlayed on a satellite image.
We show three mapped houses and a corresponding image taken from Location 1 labeled on the satellite image. Meanwhile, the three houses are on the
left side of the image. In (b), we present the estimated linear speed through the test [Color figure can be viewed at wileyonlinelibrary.com]

F IGURE 27 (a) Front and (b) back views of a custom‐built
Contour. The device includes a spinning 2D Hokuyo UTM‐30LX‐EW
laser scanner functioning as a 3D scanner, a wide‐angle camera at

×640 512 pixels for motion estimation, an HD color camera at
×1600 1200 pixels for point cloud colorization, and an Xsens

MTi‐20 IMU. The device is also equipped with an embedded i7
computer for online data processing and a touch‐screen monitor.
IMU: inertial measurement unit [Color figure can be viewed at

wileyonlinelibrary.com]
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corrections on the top six rows become larger because the IMU

prediction is less precise in comparison to the visual–inertial

odometry.

Next, we bring the vehicle to an open area where scan matching

degrades due to the planar environment. As shown in Figure 21a,

when the vehicle research the rightmost side of the path (black

segment), only the flat ground is seen by the laser scanner. The

method determines the scan matching is able to refine 3‐DOF out of

the 6‐DOF motion using the method introduced in Section 8.

TABLE 5 Average CPU processing time on Contour in Figure 27

Visual–inertial odometry
(time per image

frame; ms)

Environment GPU tracking CPU tracking

Scan matching
(time per laser

scan; ms)

Structured 6.4 16.7 162

Vegetated 6.9 18.7 343

Note. CPU: central processing unit; GPU: graphics processing unit.

F IGURE 28 (a) A photo and (b)–(g) maps built from a four‐floor residential house using Contour in Figure 27. (b) and (c) are horizontal and
top‐down views of the surrounding. (d–g) These are, respectively, the basement, first floor, second floor, and third floor of the interior. The

device is moved at around 0.5 m/s over the test [Color figure can be viewed at wileyonlinelibrary.com]
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Specifically, roll, pitch, and elevation are well‐conditioned, but yaw,

forward, and left are unsolvable due to the planar scene. The visual–

inertial odometry output is used directly in the degraded directions.

In Figure 21b, we show pose corrections applied by the scan

matching. On the bottom row, the laser status being zero indicates

partial degradation. Correspondingly, corrections in the degraded

directions (labeled in the red boxes) are much smaller because the

corrections are only applied in well‐conditioned directions of the

problem (rightmost module in Figure 2c) as determined by the

method in Section 8.

Further, we show in Figures 22 and 23 succeeding results of laser

degradation. Figure 22 is conducted on a flat airport runway which

measures about 500m in length. The figure shows the registered

map and sensor path starting in blue and ending in red. The overall

length of the trajectory is over 1.6 km. A photo from the test site is

shown at the upper‐left corner. Figure 23 shows a smooth tunnel that

is 380m long. In both tests, the method encounters laser degradation

similar to Figure 21, and corresponding, the scan matching module is

partially bypassed to produce these results.

10.1.3 | Aggressive motion tests

In this section, we evaluate the method performance w.r.t. high‐
speed rotation and translation. As we have discussed, the pipeline

uses the method in Section 8 to hold the robustness w.r.t. aggressive

motion. The tests use the sensor suite in Figure 16b. First, the

sensors are held by a person who drives the vehicle in Figure 16d.

The vehicle carries power supply and a data processing computer.

F IGURE 29 Three maps built by

Contour in Figure 27 with sensor paths
inserted. (a) This is the same area as Figure
28e. (b) and (c) are from a different
building. The device is moved at around

0.5 m/s. Each of the three tests lasts about
2min [Color figure can be viewed at
wileyonlinelibrary.com]

F IGURE 30 Aggressive motion test

with Contour in Figure 27. The device is
hand‐carried and rotated fast inside a
room. (a) It shows the estimated trajectory

overlayed on the map built. (b) It shows the
estimated orientation. (c) This is the
estimated absolute angular speed. The

maximum angular speed is as high as
∕°370 s. During 82 s of the test, the

accumulated rotation reaches ° ×6. 8 103,
leading to an average angular speed of

∕°83 s [Color figure can be viewed at
wileyonlinelibrary.com]
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The person oscillates the sensor suite to introduce fast rotation.

Next, the sensors are mounted to the vehicle in Figure 16c driven

along an “S”‐shaped path. Results of the two tests are in Figures 24

and 25. In Figures 24a and 25a the estimated trajectories are

overlayed on the maps built, with photos showing experiment setups.

In Figures 24b and 25b the estimated orientations are present. In

Figures 24c and 25c the estimated absolute angular speeds are

shown. For the first test, the maximum angular speed exceeds

∕°250 s. For the second test, the accumulative rotation is over °330

in 8 s.

Finally, we mount the sensors on the vehicle in Figure 16c and

drive along a straight path at a high speed. As shown in Figure 26a,

the overall path is 701m in length. The blue points are laser points

registered and overlayed on a satellite image. We see the mapped

trees and houses are well aligned with the satellite image. Through

this comparison, we believe the horizontal position error is < 1.0 m,

resulting in a horizontal position drift to be < 0.15% of the distance

traveled. For the vertical drift, however, we do not have a means to

evaluate. We show three mapped houses in close views on the right

side of Figure 26a, and a corresponding image taken from Location 1

on the satellite image. The houses are on the left side of the image. In

Figure 26b, we plot the linear speed. The maximum speed reaches as

high as 33m/s (119 km/hr or 74mi/hr).

10.2 | Tests with custom‐built Contour

Our odometry and mapping method is further validated on a custom‐
built Contour. As shown in Figure 27, the device includes a 2D

Hokuyo UTM‐30LX‐EW laser scanner acquiring 43.2 thousand points

per second. The laser scanner is attached to a motor‐encoder shaft

spinning at 1 Hz, functioning as a 3D scanner. The device also

includes a wide‐angle camera configured at the resolution of

×640 512 pixels for motion estimation, an HD color camera at

×1600 1200 pixels for point cloud colorization, and an Xsens MTi‐20
IMU. An onboard embedded computer with an 1.8 GHz i7 dual‐core
processor (four threads overall) runs the data processing software

and displays mapping results on a touch‐screen monitor in real time.

F IGURE 31 Test of localization robustness w.r.t. environmental changes. The test uses the sensor suite in Figure 16b. A map is built by walking
through the forest in the summer, and a localization run is made by walking one more time in the winter. The speed is about 2m/s for both runs. (a) It
shows the overall merged map where green and brown points are from the summer and winter, respectively. The blue trajectory is associated with

the green points and the red trajectory is associated with the brown points. (b) It shows a close view of the merged map, where one can see the
brown points are only on tree branches and the green points are on both tree branches and leaves. (c) and (d) are two photos of the same area in the
forest in the summer and winter. We can see dramatic changes in the environment [Color figure can be viewed at wileyonlinelibrary.com]

F IGURE 32 Drone platform used in air‐ground collaborative
mapping test. This is a DJI S1000 aircraft mounted with a sensor
suite which has the same sensor setup as in Figure 16b [Color figure
can be viewed at wileyonlinelibrary.com]
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We use the same data processing pipeline as in Figure 2c except

that the scan matching module runs at 1 Hz instead of 5 Hz. This is

due to the fact that the 3D scanner on Contour has a lower spinning

rate. We track maximally 300 visual features. The CPU processing

time is shown in Table 5. Note that the embedded computer in

Contour is less powerful than the laptop we test with the Velodyne

scanners. When running feature tracking on GPU, the visual–

inertial odometry consumes about 35% of a CPU thread executing

at 50 Hz. If running feature tracking on CPU, however, the

processing time is about 85% of a thread. The scan matching takes

between 15 and 35% of a thread executing at 1 Hz, depending on

the type of environment.

Figure 28 shows results from a four‐floor residential house. Figure
28a is a photo of the house. Figure 28b,c is maps of surrounding of the

house, in perspective view and top‐down view. Figure 28d–g is,

respectively, the basement, first floor, second floor, and third floor of

the interior. Further, we show three maps in Figure 29 with the sensor

paths inserted. Here, Figure 29a is the same area as Figure 28e.

Figure 29b,c is from a different building. In all tests, the device is moved

at a speed around 0.5m/s, resulting in each of the three maps in

Figure 29 built in about 2min. The exterior map in Figure 28b,c takes

about 6min due to its larger scale and more details to cover. Due to

difficulty to acquire ground truth, meanwhile, we can only let readers

visually inspect quality of the maps.

Finally, we evaluate the performance in aggressive motion.

Contour is hand‐carried by a person who rotates the device fast

inside a room while walking and traversing the room. The results

are shown in Figure 30. In Figure 30a, we present the estimated

trajectory overlayed on the map built. In Figure 30b, we show the

estimated orientation. In Figure 30c, we show the estimated

absolute angular speed. From the results, we can see that the

maximum angular speed is up to ∕°370 s. During 82 s of the test,

the accumulated rotation is about ° ×6. 8 103. This results in an

average angular speed of ∕°83 s over the test.

10.3 | Tests of localization and map merging

We verify localization robustness w.r.t. environmental changes. The

experiment uses the sensor suite in Figure 16b. As shown in

Figure 31, the test is conducted in a forest. A map is built by an

operator holding the sensor suite and walking through the environ-

ment in the summer. The map covers over 300m area. Then, a

F IGURE 33 Air‐ground collaborative mapping test. (a) It shows the ground‐based map and sensor path produced by an operator holding the
sensor suite and walking around a building at 1–2m/s for 914m of travel. The path starts in blue and ends in red. In (b), the same sensor suite is

mounted to the drone in Figure 32 and flown over the building at 2‐3m/s for 269m. The green points are mapped from the air and the colored curve is
the sensor path. (c) and (d) are sensor paths from the ground and air in top‐down and side views, respectively. The paths start from the black dots
[Color figure can be viewed at wileyonlinelibrary.com]
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localization run is made in the winter by waling through the

environment one more time. The walking speed is about 2 m/s for

both runs. Figure 31a shows the overall map merged from the

summer and winter, where green and brown points are from the

summer and winter, respectively. The blue trajectory is associated

with the green points, and the red trajectory is associated with the

brown points. Figure 31b presents a close view of the merged map.

We can see that the brown points are only on tree branches while

the green points are on both tree branches and leaves. From

inspecting the merged map, we estimate the localization error is

<2 cm through the test. By offline reprocessing logged data, we

validate that the method produces the same result by localizing

summer data on a map built in the winter. Figure 31c,d shows two

photos from the same area in the forest as data is logged in the

summer and winter. We can see dramatic environmental changes

between the two runs.

Finally, we conduct a test to validate the localization with the drone

in Figure 32. This is a DJI S1000 aircraft mounted with a sensor suite on

the bottom. The sensor suite has the same setup as in Figure 16b. The

test starts with ground‐based mapping where an operator holds the

sensor suite and walks around a building. The operator walks at 1–2m/s

over 914m of travel, following the colored trajectory. A map is produced

as in Figure 33a which covers surroundings of the building in detail. As

expected, the roof of the building is empty on the map. Second, the

sensor suite is attached to the drone to fly over the building. The flight is

at 2–3m/s for 269m. During the flight, we utilize the ground‐based map

for localization. The localized scans form an aerial map sharing the same

coordinate frame as the ground‐based map, shown as the green points in

Figure 33b. The colored curve is the sensor path in the air. In

Figure 33c,d, we present the sensor paths from the ground and air, in

top‐down and side views. In this test, the localization takes 214ms for

processing on average. Running at 0.5Hz, it consumes 10.7% of a CPU

thread to execute.

11 | CONCLUSION

We present a data processing pipeline for ego‐motion estimation

and mapping. The pipeline couples a 3D laser scanner, a camera,

and an IMU, running three modules sequentially to produce real‐
time ego‐motion estimation. The coarse‐to‐fine data processing

generates high‐rate estimation and registers low‐drift maps over

a long distance of travel. Further, the method is robust to

individual sensor failures. Due to degraded environments or

aggressive motion, if the camera or the laser scanner is not fully

functional, the corresponding module is bypassed and the rest of

the pipeline is staggered to warrant the overall functionality. We

validate the method through a large number of experiments. In

particular, we conduct tests to evaluate the accuracy and

robustness over several kilometers of travel, in complex road

conditions, with dramatic lighting changes and structural degra-

dation, and with high‐rate motion in rotation and translation.

Results indicate that the method can conquer all challenging

scenarios, producing position drift around 0.2% of the distance

traveled and carrying out robustness w.r.t running, jumping

motion, and even driving at highway speed.
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