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The requirement to operate aircraft in GPS-denied environments can be met by using visual odometry. Aiming
at a full-scale aircraft equipped with a high-accuracy inertial navigation system (INS), the proposed method
combines vision and the INS for odometry estimation. With such an INS, the aircraft orientation is accurate with
low drift, but it contains high-frequency noise that can affect the vehicle motion estimation, causing position
estimation to drift. Our method takes the INS orientation as input and estimates translation. During motion
estimation, the method virtually rotates the camera by reparametrizing features with their depth direction
perpendicular to the ground. This partially eliminates error accumulation in motion estimation caused by the
INS high-frequency noise, resulting in a slow drift. We experiment on two hardware configurations in the
acquisition of depth for the visual features: 1) the height of the aircraft above the ground is measured by
an altimeter assuming that the imaged ground is a local planar patch, and 2) the depth map of the ground is
registered with a two-dimensional laser in a push-broom configuration. The method is tested with data collected
from a full-scale helicopter. The accumulative flying distance for the overall tests is approximately 78 km. We
observe slightly better accuracy with the push-broom laser than the altimeter. C© 2015 Wiley Periodicals, Inc.

1. INTRODUCTION

This paper addresses the problem of vision-based mo-
tion estimation for an aerial vehicle. Typically, vision-based
methods are useful in the case in which GPS is unavailable
or insufficiently accurate. On aerial vehicles, continuously
accurate GPS positioning can be hard to insure, especially
when the vehicle flies at a high velocity. Herein we present a
method that combines vision and an inertial navigation sys-
tem (INS). The method is designed for a full-scale aircraft
equipped a high-accuracy INS. For such an INS, the roll
and pitch angles are measured by integration of gyro and
accelerometer readings. The drift in these angles is corrected
by the gravity vector. The yaw angle is from integration of
gyro measurements only and is subject to drift. However,
the drift is only at a small rate (< 0.02◦/km) and is much
lower than what can be estimated by most vision systems.
With this INS, we consider the orientation to be reliable.
However, the translation from integration of the accelerom-
eter readings is less accurate (≈ 2% of distance traveled).
Our goal, therefore, is to improve/estimate translation with
a vision system given that a high-accuracy INS is available.
The method directly takes orientation from the INS as input.

Even with a high-accuracy INS, high-frequency noise is
still present due to such factors as time synchronization im-
precision and nonrigidity of the mounting hardware. The
noise is further exaggerated by high-frequency vibration
of the aircraft engine and rotors (we observe 1◦–2◦ high-
frequency noise in INS orientation). The noise can affect

motion estimation causing errors to accumulate and become
drift over time. To deal with the noise in the INS orienta-
tion, we propose to reparametrize features with their depth
direction perpendicular to the ground. This is equivalent
to rotating the camera virtually to be perpendicular to the
ground, as shown in Figure 2. By doing this, we can par-
tially eliminate the accumulation of the translation estima-
tion error—the accumulated translation error introduced by
roll and pitch angle noise from the INS partially cancels it-
self overtime, especially when the vehicle flies at a constant
altitude. Our analysis also shows that it is hard to prevent
propagation of the yaw angle noise from the INS and the al-
timeter noise in motion estimation, but we can only reduce
the noise amount from the error sources.

Common methods of visual odometry applications
employ two cameras forming a stereo pair (Cheng, Mai-
mone, & Matthies, 2005; Maimone, Cheng, & Matthies, 2007;
Nister, Naroditsky, & Bergen, 2006). Stereo cameras fixed
on the aircraft can be used to recover full six-degrees-of-
freedom (6-DOF) motion, but this requires the baseline be-
tween the cameras to be at least a nontrivial fraction of the
vehicle altitude above the ground. That is, if a small baseline
is used, the cameras reduce to a monocular camera when
the vehicle flies at a high altitude. If the cameras are sep-
arated significantly, camera calibration becomes hard and
accuracy cannot be insured.

In this study, a monocular camera was used looking
downward toward the ground. The depth of the image
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(a) (b)

Figure 1. Two sensor configurations involved in this study. In (a), an altimeter measures the distance of the vehicle above the
ground assuming that the ground is a locally flat patch with two rotation DOFs. In (b), a 2D laser in a push-broom configuration
registers a depth map of the ground using estimated motion of the visual odometry.

(a) (b)

Figure 2. Illustration of feature reparametrization. Part (a) shows the real orientation of the camera. During motion estimation,
features are reparametrized with their depth direction perpendicular to the ground. This is equivalent to rotating the camera to a
virtual point perpendicular to the ground, as in (b). We will show that using features associated with the virtual camera for motion
estimation can decelerate the accumulation of the position error.

features is obtained by additional sensors in two hardware
configurations: 1) [Figure 1(a)] an altimeter measures the
distance of the vehicle above the ground assuming that the
ground is a locally flat patch with two rotation DOFs (roll
and pitch), and 2) [Figure 1(b)] a two-dimensional (2D) laser
in a push-broom configuration registers a depth map using
the estimated motion of the visual odometry. In the altimeter
configuration, the method models the imaged ground to be
a local planar patch, and concurrently estimates translation
and inclination angles of the ground patch. Even though the
imaged ground is not exactly planar, for example due to veg-
etation and hilly terrain, the method eliminates outlier fea-
tures with large tracking errors during motion estimating,
mostly those on top of trees or hills, keeping the assumption
valid in practice. In the push-broom laser configuration, the
method uses the registered depth map to associate depth
information to image features in order to solve for motion.
Our experiments show that the push-broom laser configu-
ration conducts slightly better accuracy than the altimeter
configuration due to more accurate depth information.

The contributions of the paper are 1) a method that
improves estimation of translation for a high-accuracy INS,
2) a feature reparametrization technique to partially remove
odometry drift, and 3) experimentation of two hardware
configurations in obtaining depth for image features. The

method is tested with data collected from flying tests with
78 km of travel overall.

The rest of this paper is organized as follows. In
Section 2, we discuss related work. In Section 3, we de-
fine assumptions and coordinate systems. An overview of
the method is presented in Section 4 and solved in Section
5. Analysis of error propagation is given in Section 6. Exper-
imental results are presented in Section 7, and a conclusion
is made in Section 8.

2. RELATED WORK

Vision-based methods are now common for vehicle state
estimation (Amidi, Kanade, & Fujita, 1999; Kelly, Saripalli,
& Kukhatme, 2008; Weiss, Scaramuzza, & Siegwart, 2011).
Typically, the problem solves 6-DOF camera motion in
an arbitrary environment. When stereo cameras are used
(H. Badino & Kanade, 2013; Warren & Upcroft, 2013), the
relative poses of the two cameras function as a constraint
that helps to solve the motion estimation problem, typically
through bundle adjustment (Achtelik, Bachrach, He, 2009;
Howard, 2008). For example, Konolige et al.’s stereo visual
odometry recovers the motion of stereo cameras on a ground
vehicle (Konolige, Agrawal, & Sol, 2011). The method is
integrated with an inertial measurement unit (IMU) that
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handles orientation drift in long-distance navigation. For a
monocular camera (Guizilini & Ramos, 2011; Paz, Pinies,
& Tardos, 2008; Roger-Verdeguer, 2012), if the camera mo-
tion is unconstrained and no prior knowledge is assumed
about the environment, the scale ambiguity is generally un-
solvable (Engel, Sturm, & Cremers, 2013; Forster, Pizzoli,
& Scaramuzza, 2014; Newcombe, Lovegrove, & Davison,
2011). The camera motion can be recovered up to similarity
using the five-point algorithms (Li & Hartley, 2006; Nister,
2004). Further, Klein and Murray develop a visual simulta-
neous localization and mapping (SLAM) method by paral-
lel tracking and mapping of monocular imagery (Klein &
Murray, 2007). The method is improved by Weiss and mod-
ified to be a visual odometry method (Weiss et al., 2013).

When using a monocular camera, if the camera mo-
tion follows certain constraints, the scale ambiguity can
be solved in constrained cases. For example, Scaramuzza
et al.’s visual odometry method uses an omnidirectional
camera mounted on a vehicle that follows a nonholo-
nomic motion constraint (Scaramuzza, 2011). The method
can be used to solve the vehicle motion with a low com-
putation cost, and it shows significantly improved accu-
racy compared to the unconstrained case. Also shown by
Scaramuzza, it is possible to recover the scale ambiguity
with the nonholonomic constraint if the camera is mounted
with an offset to the vehicle rotation center (Scaramuzza,
2009). On the other hand, if depth information for the en-
vironment is available, it can also help to solve the motion
estimation problem. A number of visual odometry methods
are developed using RGB-D cameras (Engelhard, Endres,
Hess, Sturm, & Burgard, 2011; Henry, Krainin, Herbst, Ren,
& Fox, 2012; Huang et al., 2011; Kerl, Sturm, & Cremers,
2013), which can provide visual images and the associated
depth for each pixel. When using imagery with a known
depth, bundle adjustment becomes less necessary because
an important role of bundle adjustment is to recover the
motion of the camera and the depth of the features simulta-
neously.

To solve scale, another option is to attach an IMU to
the camera (Kneip, Chli, & Siegwart, 2011; Martinelli, 2012).
These methods solve for motion with IMU measurements
as the motion prior, where the acceleration readings help
to determine scale. However, if the vehicle travels at a con-
stant velocity, scale starts to drift. This problem is especially
true for full-scale aircrafts, which do not oscillate as often
as micro aerial vehicles. In our system, the height above
the ground is measured by a range sensor, ensuring the
scale is accurate without drift. Most of the methods in this
category use filters to integrate visual odometry with iner-
tial measurements (Hesch, Kottas, Bowman, & Roumeliotis,
2013; Jones & Soatto, 2011; Li & Mourikis, 2013). For exam-
ple, Weiss et al. (2013) construct a visual-internal system
that integrates output from parallel tracking and mapping
(PTAM) visual odometry (Klein & Murray, 2007) with an
IMU. The system also simultaneously estimates the bias of

the IMU and extrinsic parameters between the camera and
the IMU. In essence, these methods use the IMU as the back-
bone, but the accuracy in 6-DOF motion estimation depends
on image features. Our method is designed to work with a
high-accuracy INS and in a different category. We fully trust
the INS orientation and focus only on the translation. Our
effort is devolved to dealing with high-frequency noise in
the INS orientation in order to improve translation accuracy.

When visual odometry is used on an aircraft that flies
at a relatively high altitude, a certain assumption about
the ground, such as an assumption that it is locally flat,
can help to solve the motion. For example, Conte and
Doherty’s visual navigation system considers the ground
to be flat and level (Conte & Doherty, 2009). The vehicle
motion is solved by planar homography between ground
images. The method also uses georeferenced aerial images
to correct for visual odometry drift. Caballero et al.’s vi-
sual odometry also assumes flat ground and uses planar
homography (Caballero, Merino, Ferruz, & Ollero, 2009).
However, the method does not require the ground to be
level, and its orientation is recovered online with respect
to the vehicle. The scale is solved by the vehicle elevation
above the ground measured by a range sensor.

Our method with the altimeter configuration
[Figure 1(a)] is similar to the method of Caballero et al.
(2009) in the sense that both assume the imaged ground is
locally flat but not necessarily level. The difference is that
our method does not rely on planar homography. The ori-
entation from the INS is directly used in solving for transla-
tion in a tightly coupled fashion. The result is that it solves
a problem with a lower DOF. Further, our method with the
push-broom laser configuration [Figure 1(b)] is similar to
the method of Huang et al. (2011) in that both methods uti-
lize features associated with depth, without using bundle
adjustment. However, since the 2D laser does not provide
depth for each image pixel, our method registers a depth
map from which a depth is acquired for the image features.
This paper is an extended version of our conference paper
(Zhang & Singh, 2014). It extends the method from using
an altimeter to a push-broom laser with more experiments
conducted.

3. ASSUMPTIONS AND COORDINATE SYSTEMS

The visual odometry problem addressed in this paper is to
estimate the motion of an aerial vehicle using monocular
vision, an INS, and an altimeter or a push-broom laser. We
assume that the camera is well-modeled as a pinhole camera
(Hartley & Zisserman, 2004). The camera’s intrinsic param-
eters are known from precalibration, and the lens distortion
is removed. We also assume that a high-accuracy INS is
available on the aircraft, which is calibrated and whose ex-
trinsic parameters with respect to the camera are known.
The vision system has to work when the aircraft altitude
above the ground is over certain level such that image
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Figure 3. Coordinate systems and ground model. {Ck} is the
camera coordinate system at frame k. {P k} is a coordinate sys-
tem with its x-y plane parallel to the ground patch. A is the
intersection of the z-axis of {Ck} with the ground. In the altime-
ter configuration [Figure 1(a)], the distance from A to the origin
of {Ck}, hk , is measured by an altimeter, and the ground patch
is modeled with roll and pitch DOF around A.

features can reliably track. Toward that end, we assume
that a GPS single is available upon taking off. The GPS sin-
gle helps initialize the INS in yaw orientation and guides
the aircraft to fly above a certain altitude before the pro-
posed method takes over. As a convention in this paper,
we use left uppercase superscription to indicate coordinate
systems, and right superscription k, k ∈ Z+ to indicate im-
age frames. We use I to denote the set of feature points. We
define two coordinate systems.

� The image coordinate system {I } is a 2D coordinate sys-
tem with its origin at the left upper corner of the image.
The u- and v-axes in {I } are pointing to the right and
downward directions of the image. A point i, i ∈ I, in
{I k} is denoted as I xk

i .
� The camera coordinate system {C} is a 3D coordinate sys-

tem. As shown in Fig. 3, the origin of {C} is at the camera
optical center with the z-axis coinciding with the cam-
era principal axis. The x-y plane is parallel to the camera
image sensor with the x-axis pointing to the forward di-
rection of the vehicle. A point i, i ∈ I, in {Ck} is denoted
as C Xk

i .

To work with the altimeter configuration [Figure 1(a)],
we model the imaged ground as a locally flat patch, as

shown in Figure 3. Let A be the intersection of the z-axis of
{Ck} with the ground patch. The distance between A and
the origin of {Ck} is measured by an altimeter, denoted as
hk . The ground patch is modeled to have a roll and pitch
DOF around A. Here, we define another coordinate system.

� Parallel to the ground coordinate system {P } is a 3D coor-
dinate system. The origin of {P } coincides with the origin
of {C}, and the x-y plane is parallel to the ground with
the x-axis pointing to the forward direction of the vehi-
cle. The z-axis points perpendicularly to the ground. A
point i, i ∈ I, in {P k} is denoted as P Xk

i .

4. SOFTWARE SYSTEM DIAGRAM

The system diagram of the visual odometry software is
shown in Figure 4. The system takes camera images and ori-
entation from the INS as input, and it computes the trans-
lation. The method has the option of using the absolute
altitude measured by an altimeter or the depth map pro-
vided by a 2D laser. In the first case, the method assumes
the imaged ground to be a local planar patch. It estimates
the inclination of the planar patch online in order to recover
the translation. In the second case, the method uses the es-
timated motion to register the laser points on a depth map,
from which it associates depth information to the tracked
visual features to estimate motion.

5. VISUAL ODOMETRY METHOD

5.1 Method Intuition

Figure 5 presents the key idea of the visual odometry
method. We use two parallel coordinate systems at frames
k − 1 and k, respectively. Let {V k−1} be a coordinate system
with its origin coinciding with the origin of {Ck−1}, and let
{V k} be a coordinate system with its origin coinciding with
that of {Ck}. Initially, {V k−1} and {V k} are rotated to the hori-
zontal orientation as shown in Figure 5(a), using orientation
from the INS. Then, through motion estimation, {V k−1} and
{V k} are rotated to be parallel to {P k}, the coordinate system
parallel to the ground at frame k, as shown in Figure 5(b).
During motion estimation, {V k−1} and {V k} are kept paral-
lel, and the features at both frames are projected into {V k−1}
and {V k}. The projected features are used to compute the
vehicle frame-to-frame motion.

INS
roll, pitch

yaw

image
transla�on

yawabsolute Al�meter

Camera
ground inclina�on

Visual 
Odometry

roll, pitch

Depthmap
Registra�on2D Laser

depthmap

al�tude

Figure 4. Visual odometry software system diagram.
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(a)

(b)

Figure 5. Definition of {Vk−1} and {Vk}. Indicated by the green
colored arrows, {Vk−1} (in the right column) and {Vk} (in the left
column) are two parallel coordinate systems at frames k − 1
and k, respectively. {Vk−1} and {Vk} are initialized to align with
the horizontal orientation as illustrated in (a), using orientation
from the INS. Then, through motion estimation, {Vk−1} and {Vk}
are rotated to be parallel to {Pk}, as shown in (b). The figure
only represents a planar case, while {Vk−1} and {Vk} have roll
and pitch DOF with respect to {Ck−1} and {Ck}.

5.2 Mathematical Derivation

In this section, we present the mathematical derivation of
the proposed method. The visual odometry algorithm is
presented in the next section. From a pinhole camera model,
we have the following relationship between {I l} and {Cl},
l ∈ {k − 1, k}:

αI X l
i = KC X l

i , (1)

where α is a scale factor, and K is the camera’s intrinsic
matrix, which is known from precalibration (Hartley & Zis-
serman, 2004).

Let C
V θ l and C

V ψl , l ∈ {k − 1, k}, be the roll and pitch
angles from {V l} to {Cl}. The relationship between {Cl} and
{V l} is expressed as

C X l
i = Rx(CV θ l)Ry(CV ψl)V X l

i , (2)

where Rx(·) and Ry(·) are rotation matrices around the x-
and y-axes, respectively.

Let V X̃
l

i , l ∈ {k − 1, k}, be the normalized term of V X l
i ,

such that
V X̃

l

i = V X
l

i/
V zl

i , (3)

where V zl
i is the third entry of V X l

i .
V X̃

l

i can be computed
by substituting Eq. (2) into Eq. (1) and scaling V X l

i such that
the third entry becomes 1.

Let �k
x , �k

y , and �k
z be the vehicle translation in the x-,

y- and z-directions between frames k − 1 and k, and let �k
φ

be the corresponding yaw rotation between the two frames.
From the vehicle motion, we can establish a relationship
between {V k−1} and {V k},

V Xk
i = Rz(�k

φ)(V Xk−1
i − [

�k
x, �k

y, �k
z

]T ), (4)

where Rz(·) is the rotation matrix around the z-axis.
Substituting Eq. (3) into Eq. (4) for both frames k − 1

and k, and since �k
φ is a small angle in practice, we perform

linearization to obtain the following equations:

sV x̃k−1
i = V x̃k

i − V ỹk
i �

k
φ + �k

x/
V zk

i , (5)

sV ỹk−1
i = V ỹk

i + V x̃k
i �

k
φ + �k

y/
V zk

i , (6)

s = 1 − �k
z/

V zk
i , (7)

where V x̃l
i and V ỹl

i , l ∈ {k − 1, k}, are the first and second
entries of V X̃

l

i , respectively, V zk
i is the third entry of V Xk

i , and
s is a scale factor. Combining Eqs. (5) and (6) to eliminate s,
we have

V ỹk−1
i

V zk
i

�k
x +

V x̃k−1
i

V zk
i

�k
y − (V x̃k−1

i
V x̃k

i + V ỹk−1
i

V ỹk
i )�k

φ

+ V x̃k−1
i

V ỹk
i + V ỹk−1

i
V x̃k

i = 0. (8)

In the push-broom laser configuration, the depth of the
feature point V zk

i can be associated from the depth map.
Equation (8) contains three unknowns, �k

x , �k
y , �k

φ , as a lin-
ear function. In the altimeter configuration, the depth is
obtained from the locally planar ground assumption, dis-
cussed as follows.

Recall that hk is the distance from the vehicle to the
ground patch, and the ground patch has a roll and pitch
DOF around point A in Figure 3. Let V

P θk and V
P ψk be the

roll and pitch angles from {P k} to {V k}. The depth V zk
i can

be computed from a simple geometry relationship. This is a
linear approximation, but it works well in practice.

V zk
i = hk[1 − (V x̃k

i − C
V ψk)VP ψk − (V ỹk

i − C
V θk)VP θk]. (9)

Combining Eqs. (8) and (9), we have

a�k
x + b�k

y

c + dV
P ψk + eV

P θk
+ f �k

ψ + g = 0, (10)

where

a = V ỹk−1
i , b = −V x̃k−1

i , c = hk, d = −hk(V x̃k
i − C

V ψk), (11)

e = −hk(ỹV
(k,i) − C

V θk), f = −V x̃k
i

V
x̃k−1

i − V ỹk
i

V
ỹk−1

i , (12)

g = V x̃k
i

V
ỹk−1

i − V ỹk
i

V
x̃k−1

i . (13)

In Eq. (10), we have a total of five unknowns: �k
x , �k

y ,
�k

φ , V
P θk , V

P ψk . The function can be solved using five or more
feature points with a nonlinear method. However, in certain
cases, we can consider V

P θk and V
P ψk as known variables such

that Eq. (10) can be solved linearly with three or more feature
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points. Next, we will give a linear and a nonlinear method
to solve the function. Both methods will be useful for the
visual odometry algorithm in the next section.

5.2.1 Linear Method

Consider �k
x , �k

y , �k
φ as the unknowns. For m, m ≥ 3, feature

points, stack Eq. (10) for each feature. This gives us a linear
function in the form of

AXL = b, (14)

where A is an m × 3 matrix, b is an m × 1 vector, and XL

contains the unknowns, XL = [�k
x, �k

y, �k
φ]T . Solving Eq.

(14) with the singular value decomposition method (Hartley
& Zisserman, 2004), we can recover XL.

5.2.2 Nonlinear Method

For m, m ≥ 5, feature points, stack Eq. (10) for each feature
and reorganize the function into the following form:

f (XN ) = b, (15)

where f is a nonlinear function with five inputs and m out-
puts. b is a, m × 1 vector, and XN contains the unknowns,
XN = [�k

x, �k
y, �k

φ, V
P θk, V

P ψk]T . Compute the Jacobian ma-
trix of f with respect to XN , denoted as J, where J = ∂f/∂ XN .
Equation (15) can be solved through nonlinear iterations
using the Levenberg-Marquardt method (Hartley & Zisser-
man, 2004),

XN ← XN + [JT J + λ diag(JTJ)]−1JT[b − f (XN)], (16)

where λ is a scale factor determined by the Levenberg-
Marquardt method.

Algorithm

5.3 Algorithm

Algorithm 1 presents the visual odometry algorithm for the
altimeter configuration. The algorithm first initializes using
readings from the INS. Let θk−1

INS and ψk−1
INS be the roll and pitch

angles of the vehicle at frame k − 1, measured by the INS,
and let θk

INS and ψk
INS be the corresponding angles at frame

k. We rotate {V k−1} and {V k} to be horizontal using the INS
orientation, and we project the feature points from {Ck−1}
and {Ck} to {V k−1} and {V k}, respectively. From now, {V k−1}
and {V k} become parallel coordinate systems. Then, we set
V
P θl,

V
P ψl ← 0 and compute �k

x , �k
y , �k

φ linearly. The result
is used as initialization for the nonlinear optimization that
solves the problem iteratively. At each iteration, the five
unknowns �k

x , �k
y , �k

φ , C
V ψk , C

V θk are updated, then {V k−1}
and {V k} are rotated to the newly updated orientation and
the features are projected into {V k−1} and {V k}. The iterations
finish if convergence is found or the maximum iteration
number is met.

The algorithm is adapted to a robust fitting (Andersen,
2008) framework to ensure robustness against large feature
tracking errors. The algorithm assigns a weight for each
feature based on the image reprojection error (IRE). Fea-
tures with larger IREs are assigned with smaller weights,
while features with IREs larger than a threshold are con-
sidered as outliers and assigned with zero weights. Note
that the robust fitting only solves the x- and y-translation
of the vehicle, �k

x , �k
y . To obtain the z-translation, �k

z , we
use Eq. (7) with the selected inlier features. �k

z is computed
as a weighted average of the inlier features using the same
weights generated by the robust fitting.

The visual odometry algorithm for the push-broom
laser configuration is a simpler version of Algorithm 1. The
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depth map is fitted into a plane, which gives us the incli-
nation of the ground. Instead of rotating {V k−1} and {V k}
gradually during the robust fitting, we only reparametrize
the features once, and {V k−1} and {V k} are perpendicular
to the ground. The nonlinear optimization is unnecessary.
Only a linear method is needed to solve �k

x , �k
y , �k

φ by stack-
ing Eq. (8). We use the same robust fitting as in Algorithm 1
to assign weights to the features.

6. ANALYSIS OF ERROR PROPAGATION

Here we show how the errors are propagated onto the ve-
hicle motion estimation. We care about how the errors ac-
cumulate in the horizontal orientation because vertical ori-
entation drift can be largely corrected by readings of the
altimeter or the push-broom laser. We will derive the upper
bound of the accumulated position drift using the altime-
ter configuration as an example. Error propagation for the
push-broom laser configuration can be analyzed similarly.

We start with the INS roll and pitch angles. Recall that
θ l

INS and ψl
INS, l ∈ {k − 1, k}, are the roll and pitch inclina-

tion angles of the vehicle measured by the INS at frame
l. Let us define θ̂ l

INS and ψ̂ l
INS as their measurement values

containing errors. Letting el
θ and el

ψ be the corresponding
errors, we have el

θ = θ̂ l
INS − θ l

INS and el
ψ = ψ̂ l

INS − ψl
INS. By

examining each step in Algorithm 1, we find that el
θ and el

ψ

are introduced into the algorithm at the initialization step.
With the INS measurements, the coordinate systems {V k−1}
and {V k} are intended to be rotated to the horizontal orien-
tation. However, because of el

ψ and el
θ , {V k−1} and {V k} are

not exactly aligned with the horizontal orientation. The roll
and pitch differences between {V k−1} and {V k} are ek−1

θ − ek
θ

and ek−1
ψ − ek

ψ , respectively. The angular differences are kept
through the algorithm since the two coordinate systems are
rotated simultaneously by the same angle. Here, note that
in the altimeter configuration, the coordinate systems are
rotated gradually through nonlinear iterations, while in the
push-broom laser configuration they are rotated only once.
However, the same rotation is always applied to both coor-
dinate systems. In the end, {V k} is rotated to be parallel to
{P k}, or the ground patch at frame k, and {V k−1} keeps an
angular error to {P k}. Letting C

V θ̂ k−1 and C
V ψ̂k−1 be the mea-

surement values of the roll and pitch angles from {V k−1} to
{Ck−1}, C

V θk−1 and C
V ψk−1, we can compute

C
V θ̂ k−1 = C

V θk−1 + ek−1
θ − ek

θ ,
C
V ψ̂k−1 = C

V ψk−1 + ek−1
ψ − ek

ψ . (17)

The errors in C
V θ̂ k−1 and C

V ψ̂k−1 propagate through
Eq. (2). With the errors introduced, we rewrite the
equation as follows:

C Xk−1
i = Rx(CV θk−1 + ek−1

θ − ek
θ )Ry(CV ψk−1 + ek−1

ψ − ek
ψ )V Xk−1

i .

(18)

Correspondingly, we derive Eq. (10) again containing the
errors,

a

(
�k

x

c + dV
P ψk + eV

P θk
+ ek−1

ψ − ek
ψ

)

+ b

(
�k

y

c + dV
P ψk + eV

P θk
+ ek−1

θ − ek
θ

)

+ f �k
φ + g = 0, (19)

where a, b, c, d , e, f , and g are defined in Eqs. (11)–(13).
Now, we compare Eq. (19) with Eq. (10). Note that after

convergence of the nonlinear optimization in Algorithm 1,
we have V

P ψk, tPV
k → 0. In this condition, if we define �̂k

x =
�k

x + (ek−1
ψ − ek

ψ )hk and �̂k
y = �k

y + (ek−1
θ − ek

θ )hk , and if we
substitute the terms into Eq. (19), it becomes essentially the
same as Eq. (10) except that �k

x and �k
y are replaced by �̂k

x

and �̂k
y . Examining the expressions of �̂k

x and �̂k
y , we find

that the terms are invariant with respect to different features.
This indicates that if we use �̂k

x and �̂k
y as the measurement

values of �k
x and �k

y for the case containing errors, Eq. (15)
is satisfied for each of its m rows. Defining ek

x and ek
y as the

estimation errors corresponding to �k
x and �k

y , we have

ek
x = �̂k

x − �k
x = (ek−1

ψ − ek
ψ )hk, ek

y = �̂k
y − �k

y

= (ek−1
θ − ek

θ )hk. (20)

We want to analyze how the errors accumulate over
time. Let us define ex and ey as the accumulated errors of
ek
x and ek

y , respectively, from frames 1 to n, n ∈ Z
+,

ex =
n∑

k=1

ek
x, ey =

n∑
k=1

ek
y . (21)

We want to find the upper bounds of |ex | and |ey |. Let
us define Eθ and Eψ as the upper bounds of the roll and
pitch errors from the INS, where |ek

θ | ≤ Eθ and |ek
ψ | ≤ Eψ ,

k ∈ {1, 2, . . . , n}. Substituting Eq. (20) into Eq. (21), we can
derive

ex =
n∑

k=2

(ek−1
ψ − ek

ψ )hk =
n∑

k=2

(ek−1
ψ − ek

ψ )h(2)

+
n∑

k=3

(ek−1
ψ − ek

ψ )(hk − h(2))

=
n∑

k=2

(ek−1
ψ − ek

ψ )h(2) +
n∑

j=3

n∑
k=j

(ek−1
ψ − ek

ψ )(hj − hj−1)

= (e1
ψ − en

ψ )h(2) +
n∑

j=3

(ej−1
ψ − en

ψ )(hj − hj−1). (22)

Here, since |ep
j − ep

n | ≤ |ep
j | + |ep

n | ≤ 2Eψ , j ∈ {1, 2, . . . , n},
we can find the upper bound of |ex | as

|ex | ≤ 2Eψ

(
h(2) +

n∑
j=3

|hj − hj−1|
)

. (23)
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Similarly, we can derive the upper bound of |ey | as

|ey | ≤ 2Eθ

(
h(2) +

n∑
j=3

|hj − hj−1|
)

. (24)

Equations (23) and (24) indicate that the accumulated
translation error introduced by the roll and pitch noise from
the INS is only revelent to the altitude change of the vehi-
cle, regardless of the flying distance. In a special case in
which the vehicle keeps a constant height above the ground
during a flight, |ex | and |ey | are bounded by two constants,
|ex | < 2Eψh and |ey | < 2Eθh, where h is the constant height
of the flight. In another case in which the vehicle takes off
from the ground, hk starts from zero. The upper bounds
of |ex | and |ey | are proportional to the accumulated alti-
tude change during the flight, |ex | < 2Eψ

∑n
j=3 |hj − hj−1|

and |ey | < 2Eθ

∑n
j=3 |hj − hj−1|. For the push-broom laser

configuration, the above procedure can be conducted with
Eq. (8), which draws a similar conclusion.

Further, we find that the upper bound of the position
drift introduced by the yaw angle noise from the INS and
altimeter/push-broom laser noise is proportional to the fly-
ing distance. Without mathematical proof, the conclusion
can be explained intuitively in that if the yaw angle is off
by a constant value, the position estimation will constantly
drift to the left or right side. Similarly, noise in the altime-
ter or push-broom laser readings will result in an under-
or overestimated translation scale. In the next section, we
use a high-quality laser altimeter/2D laser to reduce the
features’ depth error and therefore the translation estima-
tion error.

(a) (b)

Figure 6. (a) Helicopter used in the experiments. A downward pointing camera is mounted to the front of the helicopter. (b)
Tracked features. A total of 450 feature points are tracked between image frames. The red dots are outlier features assigned with
zero weights in Algorithm 1. The blue dots are inlier features used in the motion estimation.
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Figure 7. Visual odometry outputs with feature reparametrization (blue) and without feature reparametrization (red) compared
to GPS/INS ground truth (block) for three tests using the altimeter configuration. In each figure, we show a zoomed-in view of the
trajectory ends. The subfigures from left to right correspond to Tests 1–3 in Table I. The average position error of the three tests is
0.57% of the flying distance with the feature reparametrization and 0.76% without the feature reparametrization, calculated using
3D coordinates and errors at the trajectory ends.
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Table I. Configuration and accuracy of the three tests in Figure 7 (from left to right).

Accuracy

Test No. Flying Distance (km) Altitude (m) Flying Speed (m/s) W/O Reparam W/Reparam

1 7.8 ≈300 ≈30 0.50% 0.39%
2 3.7 ≈150 ≈20 0.78% 0.73%
3 4.5 ≈200 ≈20 1.12% 0.78%

7. EXPERIMENTS

We obtain image sequences from a downward pointing
camera mounted to a full-scale helicopter [Figure 6(a)]. The
camera resolution is 612 × 512 pixels with a horizontal field
of view of 75◦. The camera frame rate is set at 14 Hz. The heli-
copter is also equipped with a 2D laser and a high-accuracy
GPS/INS. When testing in the altimeter configuration, the
laser is rotated to point vertically down and used as a laser

altimeter (only one laser beam pointing to the image cen-
ter is used to obtain the absolute altitude). The orientation
from integration of the IMU measurements is used by the
visual odometry. Upon taking off, a GPS signal is avail-
able to the IMU, which initializes the yaw angle. The visual
odometry is configured to start when the helicopter is over
100 m above the ground. At this time, the initialization is
complete and only integration of the IMU measurements is

0 1 2 3 4 5 6 7 8
-20

0

20

40

Flying distance (km)

P
os

iti
on

 e
rro

r (
m

) North
East
Down

(a)

0 1 2 3 4 5 6 7 8
-2

-1

0

1

2

Flying distance (km)

V
el

oc
ity

 e
rro

r (
m

/s
)

North
East
Down

(b)

Figure 8. (a) Accumulated position drift and (b) velocity errors in Test 1 [Figure 7(a)].
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Figure 9. (a) Blue: visual odometry output with artificial add-in noise, with feature reparametrization. The noise is added to the
roll and pitch angles from the INS. Red: visual odometry output without feature reparametrization. Black: GPS/INS ground truth.
(b) Relative errors with respect to different add-in noise. The noise is added to the roll and pitch angles, yaw angle from the INS,
and altimeter reading, respectively. The angle noise follows a σ = 3◦ Gaussian distribution, and the altimeter noise is 3% (σ value)
of the altitude with a Gaussian distribution.
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Figure 10. The depth map corresponding to Figure 6(b). The
colored points are perceived by the push-broom laser and reg-
istered by the visual odometry estimation. The white points are
features projected onto the ground.

used by the visual odometry. During the tests, the position
and orientation coupled with GPS are used as ground truth
for comparison purposes.

The visual odometry program runs on a laptop com-
puter with 2.5 GHz quad cores and 6 Gib memory in Linux,
taking three-quarters of a single core. The feature tracking
takes half of a core, and motion estimation and depth map
registration together take another quarter of a core. The pro-
gram selects a maximum of 450 Harris corners (Hartley &
Zisserman, 2004) using the openCV library, and it tracks
the feature points using the Kanade-Lucas-Tomasi method
(Lucas & Kanade, 1981). To evenly distribute the feature
points in the images, we separate the images into 9 (3 × 3)
identical subregions. Each subregion provides up to 50 fea-
tures. Figure 6 shows an example of the tracked features.
The red dots are outliers assigned with zero weights in Al-
gorithm 1, and the blue dots are inliers used in the motion
estimation.

Figure 7 shows the results of the proposed method
in three flight tests using the altimeter configuration. The
blue curves are visual odometry outputs with feature
reparametrization, the red curves are outputs with fea-
ture reparametrization removed, and the black curves are
ground truth provided by the GPS/INS. More detailed con-
figurations and an accuracy comparison of the three tests
are shown in Table I. Tests 1–3 correspond to the subfigures
in Figure 7 from left to right. Due to the short flying dis-
tance of the three tests, we only use errors at the trajectory
ends to evaluate the accuracy. The average position error
of the three tests is 0.57% of the flying distance with the
feature reparametrization, and 0.76% without the feature
reparametrization. The accuracy is calculated based on 3D
coordinates.

We select Test 1 (the left subfigure in Figure 7) to show
more details. Figure 8 presents position and velocity errors
for Test 1. Figure 8(a) shows the accumulated position drift
through the test. Figure 8(b) shows the absolute velocity
errors. Most of the velocity errors are smaller than 1 m/s,
while the average speed of the helicopter is about 30 m/s.

To inspect how sensor noise affects the motion estima-
tion, we add artificial noise to the INS and altimeter read-
ings. In Figure 9(a), σ = 3◦, μ = 1◦, nonwhite Gaussian noise
is added to the roll and pitch angles from the INS. The cor-
responding visual odometry output becomes locally noisy
but drifts little in global scale with feature reparametriza-
tion (blue curve). In comparison, the output without feature
reparametrization drifts more (red curve). This confirms the
theory proposed in this paper that the motion estimation
is insensitive to the roll and pitch angle noise. Here, note
that even though we simulate with Gaussian noise, the the-
ory is not limited to a particular noise type. Figure 9(b)
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Figure 11. Vehicle trajectories using the altimeter configuration (a) and the push-broom laser configuration (b). In both subfigures,
the blue curves are the visual odometry outputs, the red curves are from the IMU integration, and the black curves are GPS/INS
ground truth. The helicopter flies on the same route twice with the altimeter and the push-broom laser configurations, respectively.
Each flight is over 30 km in length and lasts for 15 min.
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Figure 12. Parts (a) and (b) are accumulated position drift corresponding to Figures 11(a) and 11(b), respectively. Using the push-
broom laser configuration gives a slightly smaller drift than the altimeter configuration. Parts (c) and (d) show the relative position
errors compared to the flying distance. This is calculated using the metric proposed by the KITTI odometry benchmark (Geiger,
Lenz, & Urtasun, 2012; Geiger, Lenz, Stiller, & Urtasun, 2013) by averaging relative position errors using segmented trajectories at
lengths of 1, 2, . . ., 10 km. Parts (e) and (f) show the INS yaw drift compared to that coupled with GPS. Except for the high-frequency
noise, the yaw angle drifts less than 0.5◦ during the tests. In (g) and (h), we show the absolute altitude of the helicopter. The visual
odometry is started when the helicopter is over 100 m above the ground.

presents a more complete comparison with respect to dif-
ferent add-in noise. With roll and pitch angle noise, we only
prove the upper bound of the position drift in the horizon-
tal direction but not in the vertical direction. The light-blue
bars indicate that position drift accumulates in the verti-
cal direction. A possible solution of fixing the drift is using

the altitude of the vehicle measured by the altimeter or
the push-broom laser. As expected, the position drift from
yaw angle noise accumulates in the horizontal direction
(yellow bars), and the position drift from altimeter noise
accumulates in both the horizontal and vertical directions
(brown bars).
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Further, we conduct long-distance tests to evaluate both
the altimeter and the push-broom laser configurations. Be-
cause we only have one laser scanner on the helicopter,
the same route is followed twice, one with the laser point-
ing vertically down to function as an altimeter, the other
with the laser in a push-broom configuration. Figure 10
shows an example of the depth map. The colored points
are registered laser points where the color codes the eleva-
tion, and the white points are image features projected onto
the depth map. When associating depth to the features, we
represent each point on the depth map using spherical co-
ordinates with a distance and two angles. The points are
stored in a 2D KD-tree (de Berg, van Kreveld, Overmars,
& Schwarzkopf, 2008) using the two angular coordinates.
For each feature point, the three closest points on the depth
map are found, and the depth of the feature is calculated
by projecting a ray through the plane formed by the three
points.

The length of each flight is over 30 km. Figures 11(a)
and 11(b) show the trajectories from the visual odometry
(blue) and the estimation from integration of the IMU mea-
surements (red) compared to the GPS/INS ground truth
(black). We see that the translation drifts when using the
INS only. With orientation from the INS and translation
estimated by the proposed method, the position drift is sig-
nificantly reduced.

We show more details of the test in Figure 12. Here,
the left column corresponds to Figure 11(a) with the al-
timeter configuration, and the right column corresponds to
Figure 11(b) with the push-broom laser configuration. In the
first row, we show the accumulated position errors in three
orthogonal directions. We observe that the position errors
with the push-broom laser configuration [Figure 12(b)] are
slightly smaller than those with the altimeter configuration
[Figure 12(a)]. In the second row, we show the relative po-
sition errors compared to the distance traveled. Here, we
adopt the metric used by the KITTI odometry benchmark
(Geiger et al., 2012, 2013). The accuracy is calculated by
averaging relative position errors using segmented trajec-
tories at lengths of 1, 2, . . ., 10 km. The proposed method
estimates translation more accurately than the IMU integra-
tion. Also, the relative position errors at the trajectory ends
are 0.20% and 0.09% of the distance traveled, respectively,
for Figures 11(a) and 11(b).

In the third row of Figure 12, we show the drift of the
INS yaw angle. The error is calculated by comparison to
the GPS/INS output, where the IMU integration is coupled
with GPS in a filter. During the 15 min duration of each
test, the yaw angle drift is less than 0.5◦ except for the high-
frequency noise. Our hypothesis is that the high-frequency
noise is mostly caused by the vibration of the helicopter.
Further, in the fourth row, we show the absolute altitude of
the helicopter. As mentioned before, the visual odometry
is started when the helicopter’s absolute altitude is over
100 m.

8. CONCLUSION AND FUTURE WORK

When using INS orientation readings in solving a visual
odometry problem, the noise contained in the INS mea-
surements can affect the vehicle motion estimation, caus-
ing position estimates to drift. The proposed method re-
duces the accumulation of the position estimation error by
reparametrizing features with their depth direction perpen-
dicular to the ground. In this way, the position error result-
ing from the INS orientation noise cancels itself partially,
resulting in a slow drift. The method is tested on a full-scale
helicopter for 78 km of overall flying experiments, with two
different laser configurations. The results indicate most rel-
ative position errors to be less than 1% of the distance trav-
eled. Additional work with the proposed method involves
integration of the visual odometry estimation with position
measurements from a GPS, and using the visual odometry
estimation in a closed control loop to guide an autonomous
helicopter.
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