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Abstract— Visual odometry can be augmented by depth in-
formation such as provided by RGB-D cameras, or from lidars
associated with cameras. However, such depth information can
be limited by the sensors, leaving large areas in the visual
images where depth is unavailable. Here, we propose a method
to utilize the depth, even if sparsely available, in recovery
of camera motion. In addition, the method utilizes depth by
triangulation from the previously estimated motion, and salient
visual features for which depth is unavailable. The core of
our method is a bundle adjustment that refines the motion
estimates in parallel by processing a sequence of images, in
a batch optimization. We have evaluated our method in three
sensor setups, one using an RGB-D camera, and two using
combinations of a camera and a 3D lidar. Our method is rated
#2 on the KITTI odometry benchmark irrespective of sensing
modality, and is rated #1 among visual odometry methods.

I. INTRODUCTION

Visual odometry is the process of egomotion estimation
given a sequence of camera imagery. Typically, monocular
imagery is insufficient to compute the egomotion because
motion along the camera optical axis can cause little motion
of visual features and therefore the estimation problem can
be degenerate. With a single camera [1]–[4], if assuming un-
constrained motion, rotation can be recovered but translation
is up to scale. This situation can be mitigated by using extra
information such as knowledge of a non-holonomic motion
constraint [5], or measurements from an IMU integrated with
the visual odometry [6]. However, the results are dependent
on the quality of the extra information involved.

It is possible to obtain scale by using multiple cameras
simultaneously [7], [8]. However, this comes at its own cost–
reduced effective field of view and a limitation on the range
that can be accurately recovered from the multiple cameras.
If a small baseline is used, depth is uncertain for features
far away from the camera. But, if the cameras are separated
significantly, inter-camera calibration becomes difficult and
accuracy can be hard to ensure. When used in scenes where
a large difference exists between near and far objects, depth
can only be obtained in certain parts of the images.

This paper proposes a method that can effectively utilize
depth information along with the imagery, even the depth is
only sparsely provided. The method maintains and registers
a depth map using the estimated motion of the camera.
Visual features are associated with depth from the depth map,
or by triangulation using the previously estimated motion.
Salient visual features for which depth is unavailable are also
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Fig. 1. (a) Features tracked at an image frame. The green dots represent
features whose depth comes from the depth map, the blue dots represent
features whose depth is determined by triangulation using the previously
estimated motion of the camera, and the red dots represent features without
depth. The proposed method uses all three types of features in determining
motion. (b) A depth image from an RGB-D camera corresponding to (a),
where depth information is only available in the vicinity of the camera. The
gray and white pixels represent close and far objects with respect to the
camera, and the black pixels are areas that depth is unavailable.

used, which themselves provide constraints in solving the
problem. Further, the method contains a bundle adjustment
which refines the motion estimates in parallel by processing
a sequence of images, in a batch optimization.

The proposed method is not limited to RGB-D cameras.
It can be adapted to various types of cameras as long as
depth information can be acquired and associated. We have
collected experimental data using an RGB-D camera and a
custom-built sensor consisting a camera and 3D lidar (a 2-
axis laser scanner). We have also evaluated the method using
the well-known KITTI benchmark datasets [9], [10], which
contain carefully registered data from a number of sensors.
The method reported here uses images from a single camera
in a stereo pair and laser scans from a high rate lidar. The
results are ranked by the benchmark server.

The rest of this paper is organized as follows. In section II,
we discuss related work. In section III, we state the problem.
The sensor hardware and software system are described in
Section IV. The frame to frame motion estimation and bundle
adjustment are discussed in Sections V and VI. Experimental
results are in Section VII and conclusion in Section VIII.

II. RELATED WORK

Vision based methods are now common for motion es-
timation [11], [12]. To solve 6DOF camera motion, stereo
vision systems are often used [13], [14]. The methods track
and match visual features between image frames. Depth
information of the features are retrieved by triangular geom-
etry established from the two image views with the camera
baseline as a reference. Among this area, Paz et al. [15]
estimate the motion of stereo hand-hold cameras. The depth
is recovered for features close to the cameras, which help
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solve scale of the translation estimation. Konolige, at al.’s
stereo visual odometry recovers the motion from bundle
adjustment [8]. The method is integrated with an IMU and
capable for long distance off-road navigation.

The introduction of RGB-D cameras has drawn great
attention in the research of visual odometry [16]–[19]. Such
cameras provide RGB images along with depth information
within the camera range limit. Huang et al. [20] use tracked
visual features with known depth from an RGB-D camera
to compute the motion estimates. The method eliminates
features if the corresponding depth is unavailable from the
depth images. Henry et al. [21] integrate visual features
with the Iterative Closest Point (ICP) method [22]. The
motion estimation employs a joint optimization by minimiz-
ing combined 2D and 3D feature matching errors. Another
popular method is dense tracking [23], [24]. The method
minimizes the photometric error using a dense 3D model of
the environment from the depth images. Overall, the methods
[20], [21], [23], [24] rely on sufficient depth information for
image processing. This can limit their applications especially
if the methods are used in open environments, where depth
information can only be limitedly available.

Few RGB-D visual odometry methods are able to handle
insufficiently provided depth information. In the work of
Hu et al., a heuristic switch is used to choose between an
RGB-D and a monocular visual odometry method [25]. In
contrast to these methods [20], [21], [23]–[25], we propose
a single method to handle sparse depth information, by com-
bining both features with and without depth. The method is
compared to [20], [23] experimentally, and robust estimation
results are shown. Further, since the method maintains and
registers a depth map, it can use depth information from
different types of sensors. The method is currently tested
with depth from RGB-D cameras and lidars, but is supposed
to work with depth from stereo cameras also.

III. NOTATIONS AND TASK DESCRIPTION

The visual odometry problem addressed in this paper is
to estimate the motion of a camera using monocular images
with assistance of depth information. We assume that the
camera is well modeled as a pinhole camera [26], the camera
intrinsic parameters are known from pre-calibration, and the
lens distortion is removed. As a convention in this paper, we
use right superscript k, k ∈ Z+ to indicate image frames.
Define camera coordinate system, {C}, as follows,

• {C} is a 3D coordinate system with its origin at the
camera optical center. The x-axis points to the left, the
y-axis points upward, and the z-axis points forward
coinciding with the camera principal axis.

We want to utilize features with and without depth. Let
I be a set of feature points. For a feature i, i ∈ I, that is
associated with depth, its coordinates in {Ck} are denoted
as Xki , where Xki = [xki , yki , zki ]T . For a feature with
unknown depth, we normalize the coordinates such that its
z-coordinate is one. Let X̄ki be the normalized term of the
feature, X̄ki = [x̄ki , ȳ

k
i , 1]T . Intuitively, we can imagine a

plane that is parallel to the x − y plane of {Ck} and at a
unit length in front of the coordinate origin, and X̄ki is the
point projected onto the plane. With notations defined, our
visual odometry problem can be described as

Problem: Given a sequence of image frames k, k ∈ Z+,
and features, I, compute the motion of the camera between
each two consecutive frames, k and k − 1, using Xki , if the
depth is available, and X̄ki , if the depth is unknown, i ∈ I.

IV. SYSTEM OVERVIEW

A. Sensor Hardware

The proposed method is validated on three different sensor
systems. The first two sensors shown in Fig. 2 are used
to acquire author-collected data, while the third one uses
configuration of the KITTI benchmark datasets. Through
the paper, we will use data from the first two sensors to
illustrate the method. Fig. 2(a) is an Xtion Pro Live RGB-D
camera. The camera is capable of providing RGB and depth
images at 30Hz, with 640×480 resolution and 58◦ horizontal
field of view. Fig. 2(b) shows a custom-built camera and 3D
lidar. The camera can provide RGB images up to 60Hz, with
744 × 480 resolution and 83◦ horizontal field of view. The
3D lidar is based on a Hokuyo UTM-30LX laser scanner,
which has 180◦ field of view with 0.25◦ resolution and 40
lines/sec scan rate. The laser scanner is actuated by a motor
for rotational motion to realize 3D scan.

B. Software System Overview

Fig. 3 shows a diagram of the software system. First, visual
features are tracked by the feature tracking block. Depth
images from RGB-D cameras or point clouds from lidars
are registered by the depth map registration block, using the
estimated motion. The block also associates depth for the
visual features. The frame to frame motion estimation block
takes the features as the input, and its output is refined by
the bundle adjustment block using sequences of images. The
bundle adjustment runs at a low frequency (around 0.25-
1.0Hz). The transform integration block combines the high
frequency frame to frame motion with the low frequency
refined motion, and generates integrated motion transforms at
the same frequency as the frame to frame motion transforms.
Section V and VI present each block in detail.

(a) (b)

Fig. 2. Two sensors involved in the evaluation. (a) An Xtion Pro Live
RGB-D camera. The camera is capable of providing 30Hz RGB and depth
images, with 640×480 resolution and 58◦ HFV. (b) A custom-built camera
and 3D lidar. The camera provides up to 60Hz RGB images with 744×480
resolution and 83◦ HFV. The 3D lidar consists of a Hokuyo UTM-30LX
laser scanner rotated by a motor to realize 3D scan. The laser scanner has
180◦ FOV with 0.25◦ resolution and 40 lines/sec scan rate.
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Fig. 3. Block diagram of the visual odometry software system.

V. FRAME TO FRAME MOTION ESTIMATION

A. Mathematical Derivation

We start with mathematical derivation for the frame to
frame motion estimation. The corresponding algorithm is
discussed in the next section. Recall that Xk−1

i and Xki are the
coordinates of a tracked feature in {Ck−1} and {Ck}. Define
R and T as the 3 × 3 rotation matrix and 3 × 1 translation
vector of the camera between the two frames, we model the
camera motion as rigid body transformation,

Xki = RXk−1
i + T. (1)

Next, we will work on features with known depth. Acquir-
ing depth for the features will be discussed in the later part
of this paper. Here, note that we only use depth information
from one of the two frames. We choose frame k − 1 for
simplicity of implementation. This is because the depth maps
are registered in the camera coordinates by the previously
estimated motion. By the time of frame k, the depth map at
frame k−1 is available, and the depth of Xk−1

i is associated.
Recall that X̄ki is the normalized term of Xki , where the z-
coordinate is one, we rewrite (1) as

zki X̄ki = RXk−1
i + T. (2)

Eq. (2) contains three rows. Combining the 1st and 2nd rows
with the 3rd row, respectively, we can eliminate zki . This
gives us two equations as follows,

(R1 − x̄ki R3)Xk−1
i + T1 − x̄ki T3 = 0, (3)

(R2 − ȳki R3)Xk−1
i + T2 − ȳki T3 = 0, (4)

where Rh and Th, h ∈ {1, 2, 3} are the h-th row of R and
T, respectively.

For a feature with unknown depth, we rewrite (1) as the
following. Here, X̄k−1

i is the normalized term of Xk−1
i ,

zki X̄ki = zk−1
i RX̄k−1

i + T. (5)

Eq. (5) also contains three rows. Combining all rows to
eliminate both zki and zk−1

i , we obtain,

[−ȳki T3 +T2, x̄
k
i T3−T1, − x̄ki T2 + ȳki T1]RX̄k−1

i = 0. (6)

So far, we have modeled the frame to frame motion for
features with and without depth separately. Now, we will
solve the motion using both types of features. Define θ as a
3×1 vector, θ = [θx, θy, θz]

T , where θx, θy , and θz are the
rotation angles of the camera around the x-, y-, and z- axes,
between frames k and k − 1. The rotation matrix R can be
expressed by the Rodrigues formula [27],

R = eθ̂ = I +
θ̂

||θ||
sin ||θ||+ θ̂2

||θ||2
(1− cos ||θ||), (7)

where θ̂ is the skew symmetric matrix of θ.
Substituting (7) into (3)-(4), we can derive two equations

for a feature with depth, and substituting (7) into (6), we can
derive one equation for a feature with unknown depth. Each
equation is a function of θ and T. Suppose we have a total of
m and n features with known and unknown depth. Stacking
the equations, we obtain a nonlinear function,

f([T; θ]) = ε, (8)

where f has 2m+n rows, ε is a (2m+n)×1 vector containing
the residuals, and [T; θ] is the vertical joining of the vectors.
Compute the Jacobian matrix of f with respect to [T; θ],
denoted as J, where J = ∂f/∂[T; θ]. (8) can be solved by
the Levenberg-Marquardt (LM) method [26],

[T; θ]T ← [T; θ]T − (JT J + λdiag(JTJ))−1JTε. (9)

Here, λ is a scale factor determined by the LM method.

B. Motion Estimation Algorithm

The frame to frame motion estimation algorithm is p-
resented in Algorithm 1. As we have discussed that the
proposed method only uses depth information associated at
frame k − 1, all features taken as the input at frame k are

Algorithm 1: Frame to Frame Motion Estimation

1 input : X̄k
i , Xk−1

i or X̄k−1
i , i ∈ I

2 output : θ, T
3 begin
4 θ,T← 0;
5 for a number of iterations do
6 for each i ∈ I do
7 if i is depth associated then
8 Derive (3)-(4) using X̄k

i and Xk−1
i , substitute

(7) into (3)-(4) to obtain two equations, stack
the equations into (8);

9 end
10 else
11 Derive (6) using X̄k

i and X̄k−1
i , substitute (7)

into (6) to obtain one equation, stack the
equation into (8);

12 end
13 Compute a bisquare weight for each feature

based on the residuals in (3)-(4) or (6);
14 Update θ, T for one iteration based on (9);
15 end
16 if the nonlinear optimization converges then
17 Break;
18 end
19 end
20 Return θ, T;
21 end
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without depth, as X̄ki . Features at frame k − 1 are separated
into Xk−1

i and X̄k−1
i for those with and without depth. On

line 8, a feature with depth contributes two equations to
the nonlinear function (8), and on line 11, a feature with
unknown depth contributes one equation.

The terms θ and T are initialized to zero on line 4. The
algorithm is adapted to a robust fitting framework [28]. On
line 13, the algorithm assigns a bisquare weight for each fea-
ture, based on their residuals in (3)-(4) and (6), respectively.
Features that have larger residuals are assigned with smaller
weights, and features with residuals larger than a threshold
are considered as outliers and assigned with zero weights.
On line 14, θ and T are updated for one iteration. The
nonlinear optimization terminates if convergence is found, or
the maximum iteration number is met. Finally, the algorithm
returns the motion estimation θ and T.

C. Feature Depth Association

In this section, we discuss how to associate depth to the
visual features. A depth map is registered by the estimated
motion of the camera. The depth map is projected to the
last image frame whose transform to the previous frame is
established. Here, we use frame k − 1 to keep the same
convention with the previous sections.

New points are added to the depth map upon receiving
from depth images or point clouds. Only points in front of
the camera are kept, and points that are received a certain
time ago are forgotten. Then, the depth map is downsized to
maintain a constant point density. We want to keep an even

(a)

(b)

Fig. 4. (a) An example of the depth map with point clouds perceived by
the lidar in Fig. 2(b). The points are color coded by elevation. The camera
points to a wall during the data collection. (b) Features projected into the
3D environment corresponding to Fig. 1. The depth map (white colored
dots) is from depth images collected by the RGB-D camera in Fig. 2(a),
only available within a limited range. The green colored dots are features
whose depth is provided by the depth map, and the blue colored dots are
from triangulation using the previously estimated motion.

angular interval among the points viewed from the origin of
{Ck−1}, or the optical center of the camera at frame k− 1.
Here, we choose angular interval over Euclidean distance
interval with the consideration that an image pixel represents
an angular interval projected into the 3D environment. We
use the same format for the depth map.

The map points are converted into a spherical coordinate
system coinciding with {Ck−1}. A point is represented by
its radial distance, azimuthal angle, and polar angle. When
downsizing, only the two angular coordinates are considered,
and the points are evenly distributed with respect to the
angular coordinates. This results in a denser point distribution
that is closer to the camera, and vice versa. An example of
a registered depth map is shown in Fig. 4(a), color coded
by elevation. The point clouds are collected by the lidar in
Fig. 2(b), while the camera points to a wall.

To associate depth to the visual features, we store the
depth map in a 2D KD-tree [29] based on the two angular
coordinates. For each feature i, i ∈ I, we find three points
from the KD-tree that are the closest to the feature. The three
points form a local planar patch in the 3D environment, and
the 3D coordinates of the feature are found by projecting
onto the planar patch. Denote X̂

k−1

j , j ∈ {1, 2, 3} as the
Euclidean coordinates of the three points in {Ck−1}, and
recall that Xk−1

i is the coordinates of feature i in {Ck−1}.
The depth is computed by solving a function,

(Xk−1
i −X̂

k−1

1 )((X̂
k−1

1 −X̂
k−1

2 )×(X̂
k−1

1 −X̂
k−1

3 )) = 0. (10)

Further, if the depth is unavailable from the depth map for
some features but they are tracked for longer than a certain
distance in the Euclidean space, we triangulate the features
using the first and the last frames in the image sequences
where the features are tracked. Fig. 4(b) gives an example of
depth associated features, corresponding to Fig. 1. The white
colored dots are points on the depth map, only available
within a limited range. The green colored dots represent
features whose depth are provided by the depth map, and
the blue colored dots are from triangulation.

VI. BUNDLE ADJUSTMENT

The camera frame to frame motion estimated in the pre-
vious section is refined by a bundle adjustment, which takes
a sequence of images and performs a batch optimization.
As a trade-off between accuracy and processing time, we
choose one image out of every five images as the bundle
adjustment input. The image sequence contains a number of
eight images (taken from 40 original images). This allows the
batch optimization to finish before the next image sequence
is accumulated and ready for processing. The bundle adjust-
ment uses the open source library iSAM [30]. We choose
iSAM over other libraries because it supports user-defined
camera models, and can conveniently handle both features
with and without available depth.

Here, we define another representation of the features,
X̃
k

i = [x̄ki , ȳ
k
i , z

k
i ]T , where the x- and y- entries contain the

normalized coordinates, and the z-entry contains the depth.
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Fig. 5. Illustration of transform integration. The curves represent trans-
forms. The green colored segment is refined by the bundle adjustment and
become the blue colored segment, published at a low frequency. The orange
colored segments represent frame to frame motion transforms, generated at
a high frequency. The transform integration step takes the orange segment
from the green segment and connects it to the blue segment. This results in
integrated motion transforms published at the high frequency.

For features without depth, zki is set at a default value. Let
J be the set of image frames in the sequence, and let l
be the first frame in the set. Upon initialization, all features
appear in the sequence are projected into {Cl}, denoted as
X̃
l

i, i ∈ I. Define T jl as the transform projecting X̃
l

i from
{Cl} to {Cj}, where j is a different frame in the sequence,
j ∈ J \{l}. The bundle adjustment minimizes the following
function by adjusting the motion transform between each two
consecutive frames and the coordinates of X̃

l

i,

min
∑
i,j

(T jl (X̃
l

i)− X̃
j

i )
TΩji (T

j
l (X̃

l

i)− X̃
j

i ),

i ∈ I, j ∈ J \ {l}. (11)

Here, X̃
j

i represents the observation of feature i at frame j,
and Ωji is its information matrix. The first two entries on
the diagonal of Ωji are given constant values. If the depth is
from the depth map, the 3rd entry is at a larger value, and
if the depth is from triangulation, the value is smaller and
is inversely proportional to the square of the depth. A zero
value is used for features with unknown depth.

The bundle adjustment publishes refined motion trans-
forms at a low frequency. With the camera frame rate
between 10-40Hz, the bundle adjustment runs at 0.25-1.0Hz.
As illustrated in Fig. 5, a transform integration step takes
the bundle adjustment output and combines it with the high
frequency frame to frame motion estimates. The result is
integrated motion transforms published at the high frequency
as the frame to frame motion transforms.

VII. EXPERIMENTS

The visual odometry is tested with author-collected data
and the KITTI benchmark datasets. It tracks Harris corners
[26] by the Kanade Lucas Tomasi (KLT) method [31]. The
program is implemented in C++ language, on robot operating
system (ROS) [32] in Linux. The algorithms run on a laptop
computer with 2.5GHz cores and 6GB memory, using around
three cores for computation. The feature tracking and bundle
adjustment (Section VI) take one core each, and the frame
to frame motion estimation (Section V) and depth map
registration together consume another core. Our software
code and datasets are publicly available1, in two different
versions based on the two sensors in Fig. 2.

A. Tests with Author-collected Datasets

We first conduct tests with author-collected datasets using
the two sensors in Fig. 2. The data is collected from four

1wiki.ros.org/demo_rgbd and wiki.ros.org/demo_lidar

types of environments shown in Fig. 6: a conference room,
a large lobby, a clustered road, and a flat lawn. The difficulty
increases over the tests as the environments are opener
and depth information changes from dense to sparse. We
present two images from each dataset, on the 2nd and 4th
rows in Fig. 6. The red colored areas indicate coverage of
depth maps, from the RGB-D camera (right figure) and the
lidar (left figure). Here, note that the depth map registers
depth images from the RGB-D camera or point clouds from
the lidar at multiple frames, and usually contains more
information than that from a single frame. With the RGB-
D camera, the average amount of imaged area covered by
the depth map reduces from 94% to 23% over the tests.
The lidar has a longer detection range and can provide more
depth information in open environments. The depth coverage
changes from 89% to 47% of the images.

The camera frame rate is set at 30Hz for both sensors.
To evenly distribute the features within the images, we
separate an image into 3 × 5 identical subregions. Each
subregion provides maximally 30 features, giving maximally
450 features in total. The method is compared to two popular
RGB-D visual odometry methods. Fovis estimates the motion
of the camera by tracking image features, and depth is
associated to the features from the depth images [20]. DVO
is a dense tracking method that minimizes the photometric
error within the overall images [23]. Both methods use data
from the RGB-D camera. Our method is separated into two
versions, using the two sensors in Fig. 2, respectively. The
resulting trajectories are presented on the 1st and 3rd rows
in Fig. 6, and the accuracy is compared in Table I, using
errors in 3D coordinates. Here, the camera starts and stops
at the same position, and the gap between the two ends
of a trajectory compared to the length of the trajectory is
considered the relative position error.

From these results, we conclude that all four methods
function similarly when depth information is sufficient (in
the room environment), while the relative error of DVO
is slightly lower than the other methods. However, as the
depth information becomes sparser, the performance of Fovis
and DVO reduces significantly. During the last two tests,
Fovis frequently pauses without giving odometry output due
to insufficient number of inlier features. DVO continuously
generates output but drifts heavily. This is because both
methods use only imaged areas where depth is available,
leaving large amount of areas in the visual images being
unused. On the other hand, the two versions of our method

TABLE I
RESULTS USING AUTHOR-COLLECTED DATA. THE ERROR IS MEASURED

AT THE END OF A TRAJECTORY AS A % OF THE DISTANCE TRAVELED

Relative position error
Envir- Dist- Our VO Our VO

onment ance Fovis DVO (RGB-D) (Lidar)
Room 16m 2.72% 1.87% 2.14% 2.06%
Lobby 56m 5.56% 8.36% 1.84% 1.79%
Road 87m 13.04% 13.60% 1.53% 0.79%
Lawn 86m 9.97% 32.07% 3.72% 1.73%
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(a) (b)

(c) (d) (e) (f)

(g) (h)

(i) (j) (k) (l)

Fig. 6. Comparison of four methods using author-collected datasets: Fovis, DVO, and two versions of our method using depth from an RGB-D camera
and a lidar. The environments are selected respectively from a conference room ((a), (c), and (d)), a large lobby ((b), (e), and (f)), a clustered road ((g), (i),
and (j)), and a flat lawn ((h), (k), and (l)). We present two images from each dataset. The red colored areas indicate availability of depth maps, from the
RGB-D camera (right figure) and the lidar (left figure). The depth information is sparser from each test to the next as the environment becomes opener,
resulting in the performance of Fovis and DVO reduces significantly. Our methods relatively keep the accuracy in the tests.

are able to maintain accuracy in the tests, except that the
relative error of the RGB-D camera version is relatively large
in the lawn environment, because the depth is too sparse
during the turning on top of Fig. 6(h).

B. Tests with KITTI Datasets

The proposed method is further tested with the KITTI
datasets. The datasets are logged with sensors mounted on
the top of a passenger vehicle, in road driving scenarios. The

vehicle is equipped with color stereo cameras, monochrome
stereo cameras, a 360◦ Velodyne laser scanner, and a high
accuracy GPS/INS for ground truth. Both image and laser
data are logged at 10Hz. The image resolution is around
1230 × 370 pixels, with 81◦ horizontal field of view. Our
method uses the imagery from the left monochrome camera
and the laser data, and tracks maximally 2400 features from
3× 10 identical subregions in the images.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 7. Sample results of the proposed method using the KITTI datasets. The datasets are chosen from three types of environments: urban, country, and
highway from left to right. In (a)-(c), we compare results of the method with and without the bundle adjustment, to the GPS/INS ground truth. The black
colored dots are the starting points. An image is shown from each dataset to illustrate the three environments, in (d)-(f), and the corresponding laser point
cloud in (g)-(i). The points are colored coded by depth, where red color indicates near objects and blue color indicates far objects.

TABLE II
CONFIGURATIONS AND RESULTS OF THE KITTI DATASETS. THE ERROR

IS MEASURED USING SEGMENTS OF A TRAJECTORY AT 100M, 200M, ...,
800M LENGTHES, AS AN AVERAGED % OF THE SEGMENT LENGTHES.

Data Configuration Mean relative
no. Distance Environment position error

0 3714m Urban 1.05%
1 4268m Highway 1.87%
2 5075m Urban + Country 0.93%
3 563m Country 0.99%
4 397m Country 1.23%
5 2223m Urban 1.04%
6 1239m Urban 0.96%
7 695m Urban 1.16%
8 3225m Urban + Country 1.24%
9 1717m Urban + Country 1.17%

10 919m Urban + Country 1.14%

The datasets contain 11 tests with the GPS/INS ground
truth provided. The data covers mainly three types of en-
vironments: “urban” with buildings around, “country” on
small roads with vegetations in the scene, and “highway”
where roads are wide and the surrounding environment is
relatively clean. Fig. 7 presents sample results from the
three environments. On the top row, the results of the
proposed method are compared to the ground truth, with and
without using the bundle adjustment introduced in Section
VI. On the middle and bottom rows, an image and the
corresponding laser point cloud is presented from each of
the three datasets, respectively. The points are color coded

Fig. 8. Comparison of relative position errors in urban, country, and
highway environments, tested with the KITTI datasets. In each environment,
we compare errors with and without the bundle adjustment. The black, blue,
and red colored lines indicate 100%, 75%, and median of the errors.

by depth. The complete test results with the 11 datasets
are listed in Table II. The three tests from left to right in
Fig. 7 are respectively datasets 0, 3, and 1 in the table.
Here, the accuracy is measured by averaging relative position
errors using segments of a trajectory at 100m, 200m, ...,
800m lengthes, based on 3D coordinates. On the KITTI
benchmark2, our accuracy is comparable to state of the art
stereo visual odometry [33], [34], which retrieve depth from
stereo imagery without aid from the laser data.

Further, to inspect the effect of the bundle adjustment, we
compare accuracy of the results in the three environments.

2www.cvlibs.net/datasets/kitti/eval_odometry.php
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The 11 datasets are manually separated into segments and
labeled with an environment type. For each environment,
the visual odometry is tested with and without the bundle
adjustment. Fig. 8 shows the distributions of the relative
errors. Overall, the bundle adjustment helps reduce the mean
errors by 0.3%-0.7%, and seems to be more effective in urban
and country scenes than on highways, partially because the
feature quality is lower in the highway scenes.

VIII. CONCLUSION AND FUTURE WORK

The scenario of insufficiency in depth information is
common for RGB-D cameras and lidars which have limited
ranges. Without sufficient depth, solving the visual odometry
is hard. Our method handles the problem by exploring both
visual features whose depth is available and unknown. The
depth is associated to the features in two ways, from a depth
map and by triangulation using the previously estimated
motion. Further, a bundle adjustment is implemented which
refines the frame to frame motion estimates. The method
is tested with author-collected data using two sensors and
the KITTI benchmark datasets. The results are compared
to popular visual odometry methods, and the accuracy is
comparable to state of the art stereo methods.

Considering future work, the current method uses Harris
corners tracked by the KLT method. We experience difficulty
of reliably tracking features in some indoor environments,
such as a homogenously colored corridor. Improvement of
feature detection and tracking is needed. Further, the method
is currently tested with depth information from RGB-D
cameras and lidars. In the future, we will try to utilize depth
provided by stereo cameras, and possibly extend the scope
of our method to stereo visual odometry.
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