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Abstract— Rows of trees such as in orchards, planted in
straight parallel lines can provide navigation cues for au-
tonomous machines that operate in between them. When the
tree canopies are well managed, tree rows appear similar
to corridor walls and a simple 2D sensing scheme suffices.
However, when the tree canopies are three dimensional, or
ground vegetation occludes tree trunks, it is necessary to use
a three dimensional sensing mode. An additional complication
in prolific canopies is that GPS is not reliable and hence is
not suitable to register data from sensors onboard a traversing
vehicle. Here, we present a method to register 3D data from a
lidar sensor onboard a vehicle that must accurately determine
its pose relative to the rows. We first register point cloud into a
common reference frame and then determine the position of tree
rows and trunks in the vicinity to determine the vehicle pose.
Our method is tested online and with data from commercial
orchards. Experimental results show that the accuracy is
sufficient to enable accurate traversal between tree rows even
when tree canopies do not approximate planar walls.

I. INTRODUCTION

Here, we address the problem of guidance for autonomous
row following in environments such as orchards. The trees in
modern orchards are planted in straight and parallel pattern
that form tree rows. Our method automatically detects and
allows a vehicle to drive along the tree rows, enabling the
vehicle to perform tasks such as spraying, mowing, and
transportation. Further, we want the vehicle to be capable of
keeping a constant distance to one side of the trees during
the row following, such that the vehicle can function as a
platform, carrying workers to work on the trees while driving.

When the tree rows are well-structured to form planar
walls, a horizontally placed planar laser scanner can provide
enough information for the row following [1]. However,
when the tree canopies are irregular and high weeds are
present, it is difficult to use the returns from a planar laser to
guide the vehicle while maintaining a fixed offset between
the tree rows. Here, we use a lidar sensor, which consists
of a planar laser driven by a motor for roll rotation, and an
encoder for measuring the rotation angle. The lidar scans
around two orthogonal axes and produces a 3D point cloud.

The lidar point cloud is registered by the vehicle motion
measured by wheel encoders and refined by the Iterative
Closest Point (ICP) method [2]. Then, the point cloud is
fitted into two parallel straight lines based on least square
regression using a RANdom SAmple Consensus (RANSAC)
algorithm [3], which represent the tree rows on both sides of
the vehicle. The straight lines are integrated into an Extended
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Fig. 1. An example of regular tree rows (a) where the tree canopies form
planar ”fruit walls”, and irregular tree rows (b) where the tree canopies are
three dimensional and high weeds are present. (c) and (d) show the point
cloud perceived by a horizontally placed planar laser scanner corresponding
to (a) and (b), in top-down view. In a three dimensional orchard, a planar
laser scanner cannot provide sufficient information to detect the tree rows,
while a 3D lidar becomes necessary.

Kalman Filter (EKF) [4] to reduce the line fitting noise. The
EKF takes the odometry measurements into the prediction
step and the detected tree rows into the update step. To
prevent faulty tree row detection from being integrated in the
EKF, a checking mechanism is implemented that removes the
EKF update step if the straight lines are fitted incorrectly.
Finally, the lateral offsets of the straight lines are refined
using the density information in the lidar point cloud.

To follow the tree rows with a constant offset to one side of
the trees, we also detect the closest tree trunk to the vehicle
on each side. A particle filter [4] based method is proposed,
which uses a number of 500 particles on each side. The
motion model is provided by the odometry measurements,
while the observation model is given by the lidar point cloud.
The particles are resampled by low variance resampling [4].
In the resampling process, the method selects the closest tree
trunk to the vehicle, and draws new particles from those that
are associated with the selected tree trunk.

The rest of this paper is organized as follows. In section II,
we present related work. In section III, we state our problem.
The lidar hardware and the software system are overviewed
in Section IV. The proposed method is presented with details
in Section V. Experimental results are shown in Section VI
and conclusions are made in Section VII.

II. RELATED WORK

Autonomous row following has become a popular research
area [5]. The task involves detecting a pathway for a vehicle
to follow, using environmental sensors such as cameras or
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laser scanners. Most of the work focuses on road lane detec-
tion and following [6]. On a structured road, the road surface
is often homogeneously colored and landmarks such as traffic
lines are detectable to cameras [5]. The 3D structure on road
boarders can also provide information for laser scanners to
detect the road [7]. For example, Tsogas et al.’s method
detect the road boundaries by fusing data from a camera and
a laser scanner with a prior map [8]. On an unstructured
road, dominant orientations and vehicle wheel tracks are
often used to recognize the road [6]. The color difference
between road surface and boarder areas, if available, can also
be used [9]. Compared to [6], [9], our problem is different
in that robust color pattern invariant to lighting, tree type,
and season changes is unavailable for identifying the trees.
However, the 3D structure formed by the tree rows provides
a corridor environment, making lidar suitable for the task.

Autonomous row following is also available for agri-
cultural applications [10], [11]. For example, Astrand and
Baerveldt adopt a monocular camera and detect the crops
planted in straight rows using Hough transform [12]. Also
using Hough transform, Satow et al.’s method detects the
crop rows from 3D point cloud perceived by a laser scanner
through a rotating mirror [13]. Biber et al.’s navigation
system performs row following using data from a lidar, an
RTK GPS, an inertial sensor, and odometry [14]. In literature
[10]–[14], the methods only deal with low crops. Comparing
these methods to our problem, the 3D structure formed by the
tall trees makes the task more complicated and challenging.

Few methods focus on the row following problem between
tall trees in an orchard. In [15], the vehicle follows the tree
rows by driving along a planed path using reading from
an RTK GPS. A 3D laser scanner provides a point cloud
from the tree rows for obstacle detection and avoidance. In
[1], [16], a fixed planar laser scanner is used in front of
the vehicle for tree row detection. Consider that the point
returns from a fixed laser scanner cannot represent the 3D
environment, the methods can fail if the tree rows are ill-
structured. Our proposed method detects the tree rows from
3D point cloud perceived by a lidar sensor. Further, our
method also detects the tree trunk that is the closest to the
vehicle on each side, which provides more information to
assist the vehicle navigation between the tree rows.

III. PROBLEM STATEMENT

From a robotics perspective, the problem addressed in this
paper is to detect the tree rows and trunks in an orchard
using a 3D lidar; and to use that information to guide an
autonomous vehicle to follow the rows. Toward this end we
make the following assumptions:

 

Fig. 2. Vehicle coordinate system {V }.

 

Fig. 3. Problem statement. Ll and Lr are two parallel straight lines
representing the tree rows, and Xl and Xr are two points representing the
centers of the closest tree trunks on both sides of the vehicle. Our task
consists in detecting Ll, Lr , Xl, and Xr from the lidar point cloud.

1) The ground is relatively flat within a short range. This
allows us to register the lidar point cloud using the
vehicle odometry, which measures planar motion.

2) The extrinsic parameters of the lidar are known from
a calibration process.

As a convention in this paper, we use a right subscript
k, k ∈ Z+ to indicate each lidar frame. We define {V },
the vehicle coordinate system, as follows: the origin of {V }
is at the center of the lidar; the y-axis is parallel to the
vehicle axles and points toward the left side; the x-axis points
forward; and the z-axis points upward. A point in {V } at
frame k is denoted as Xk = [xk, yk, zk]T .

Let Ll and Lr be two horizontal, parallel lines in the
vehicle coordinate system {V } representing the tree rows
on the left and right sides of the vehicle. Also, let Xl and
Xr be the two points in {V } representing the centers of the
tree trunks closest to the vehicle on each side. Let Pk be
the point cloud perceived by the lidar at frame k. Since the
extrinsic parameters of the lidar are known from calibration,
Pk can be projected into the vehicle coordinate system {V }.
Further, let ∆x, ∆y, and ∆θ be the vehicle translation and
heading rotation between frames k−1 and k. The quantities
∆x, ∆y, and ∆θ are measured by the odometry and used to
register the lidar point cloud. With the terms now defined,
the problem statement can be more formally stated as:

Problem 1: Given the point cloud, Pk, k ∈ Z+, and the
vehicle motion, ∆x, ∆y, and ∆θ, compute the tree rows, Ll

and Lr, and tree trunks, Xl and Xr, for each lidar frame k.

IV. SYSTEM OVERVIEW

A. Lidar Hardware

The lidar used in this study is a custom-built unit based
on the Hokuyo laser scanner connected to a motor. The laser

 

Fig. 4. The 3D lidar used in this study consists of a Hokuyo laser scanner
driven by a motor for rotational movement, and an encoder that measures
the rotation angle. The laser scanner has a field of view of 180◦ with a
resolution of 0.25◦. The frame rate is 40Hz. The motor is controlled to rotate
from −55◦ to 55◦ with the horizontal position as zero. A microcontroller
controls the motor and synchronizes the laser scanner and encoder data.
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Fig. 5. Block diagram of the lidar software system.

scanner has a field of view of 180◦ with 0.25◦ resolution
and 40Hz frame rate. An embedded microcontroller controls
the rotation of the motor at a rotation speed of 100◦/s and
measures the rotation angle through an optical quadrature
encoder with a resolution of 0.25◦. The microcontroller also
manages the time synchronization between the laser scanner
and the encoder. The laser scanner provides a synchroniza-
tion pulse that indicates the start of each scanning cycle. The
synchronization pulse triggers the microcontroller to report
the encoder reading. Through a serial cable, the data is sent
to a computer, where the laser points are projected into 3D
space. When projecting the laser points, the rotation angle
of the laser scanner is found by linearly interpolating the
encoder reading within the laser scanning cycles.

B. Software System Overview

Fig. 5 shows a diagram of the software system. The point
cloud is registered via the odometry measurements, ∆x, ∆y,
and ∆θ, and refined by the ICP method [2]. A RANSAC
algorithm [3] is then used to fit the registered point cloud into
two straight lines, representing the tree rows on both sides of
the vehicle. The detected tree rows are filtered by an EKF [4]
using the odometry measurements, and the lateral offsets of
the tree rows are refined to compute the outputs, Ll and Lr.
To detect the tree trunks, Xl and Xr, we use a particle filter-
based [4] method that takes as inputs the registered point
cloud, the detected tree rows, Ll and Lr, and the odometry
measurements, ∆x, ∆y, and ∆θ. Section V presents each
block in the software diagram in detail.

V. TREE ROW AND TRUNK DETECTION

This section describes the main contribution of this paper,
namely, a methodology to extract tree row and trunk infor-
mation from a 3D lidar point cloud that can be used by an
autonomous vehicle to follow the row between the trees–
either keeping a constant distance from the centerline, or a
constant distance to one side of the trees.

A. Point Cloud Registration

The point cloud perceived in a single lidar frame, Pk,
contains points located on a 2D slice of the environment. The
first step in creating a 3D representation is to register each
point cloud with the odometry measurements and combine
it with previous ones. Let Qk be the registered point cloud
at frame k. Using the vehicle motion measured by the
odometry, ∆x, ∆y, and ∆θ, a point Xk−1, Xk−1 ∈ Qk−1,
is projected onto frame k as:

X′k = Rz(∆θ)Xk−1 − [∆x, ∆y, 0]
T
, (1)

where Rz(·) is the rotation matrix around the z-axis. To
reduce the effect of wheel slip, which causes inaccuracy in
odometry measurements, the ICP method is used to refine
∆x, ∆y, and ∆θ. This method finds the closest point in {X′k}
to match each point in the current lidar data, Pk, and uses the
matched points to recompute ∆x, ∆y, and ∆θ, iteratively.
Then, Qk is calculated as the combination of the current
lidar data, Pk, and the points projected from Qk−1,

Qk = Pk

⋃
{X′k}. (2)

We use a decay time to ”forget” points that are too distant
in the past–in our case, each point is kept for five seconds.
The next step is to use Qk to detect the tree rows.

B. Line Fitting for Tree Row Detection

The information about the 3D point cloud at frame k, Qk,
is processed by a RANSAC algorithm to yield the supporting
lines of the tree rows. Recall that Ll and Lr are two parallel
lines representing the tree rows on the left and right sides of
the vehicle. Let they be represented as:

Ll : y = ax+ bl, (3)
Lr : y = ax+ br, (4)

where a, bl, and br are the line coefficients.
To determine these coefficients, we use a procedure similar

to least square line regression, except that in this case we
need to fit two parallel lines simultaneously. Let Lk and Rk

be two subsets ofQk on the left and right sides of the vehicle,
respectively. We use the points in Lk and Rk to fit the lines.
Define a regret as the sum of the squared offset form each
point in Lk and Rk to its corresponding lines,

R =
∑
i∈Lk

(yik − axik − bl)2 +
∑
i∈Rk

(yik − axik − br)2. (5)

To solve the line fitting problem, we minimize the regret, R,
with respect to the coefficients, a, bl, and br,

{a, bl, br} = arg min
a,bl,br

R. (6)

In (6), the condition for R to be the minimum is that its
partial derivatives with respect to a, bl, and br are equal zero,
∂R/∂a = 0, ∂R/∂bl = 0, and ∂R/∂br = 0. Consequently,
we can derive a linear equation for a, bl, and br as follows,

A[a, bl, br]T = b, (7)
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where

A =

 ∑
i∈Lk

xik, |Lk|, 0∑
i∈Rk

xik, 0, |Rk|∑
i∈Lk

⋃
Rk

(xik)2,
∑

i∈Lk
xik,

∑
i∈Rk

xik

 ,
(8)

b = [
∑
i∈Lk

yik,
∑
i∈Rk

yik,
∑

i∈Lk

⋃
Rk

xiky
i
k]T . (9)

Solving (7), we can compute Ll and Lr. To guarantee that
(7) is mathematically solvable, at least one point has to be
selected on each side of the vehicle, |Lk|, |Rk| ≥ 1, and at
least three points have to be selected on both sides of the
vehicle, |Lk|+ |Rk| ≥ 3.

The line fitting method discussed above is implemented
in a RANSAC algorithm, as shown in Algorithm 1. In each
iteration, we randomly select two sets of points, Lk and
Rk, one on each side of the vehicle, and use Lk and Rk

to compute the tree lines’ coefficients (line 5 in Algorithm
1). Then, the points in Qk are evaluated in terms of the
distance from each point to the lines, and a set of inliers is
selected from Qk on each side (line 6). If the inlier numbers
on both sides are sufficient, the lines are computed again
using the selected inliers (line 8). The algorithm terminates
if the mean squared distance (MSD) from the points to
their corresponding lines is smaller than a threshold, or the
maximum number of iterations is reached. The algorithm
returns Ll and Lr with the minimum MSD found .

C. EKF Filtering for Fitted Lines

The fitted lines from the lidar point cloud contain a
considerable amount of noise. To deal with the noise, an
EKF is used. The filter takes in odometry measurements in
the prediction step, and the fitted lines in the update step. The
covariance matrices for both steps are pre-defined. Since the
two lines, Ll and Lr, are integrated in the same way, in the
following, we only use the left line as an example.

Let Lk|k and Lk|k−1 be two lines representing the EKF
predicted state estimate and updated state estimate corre-
sponding to Ll. Recall that ∆x, ∆y, and ∆θ represent
the vehicle motion measured by the odometry. The EKF
prediction step calculates Lk|k−1 from Lk−1|k−1 using the
odometry measurements,

ak|k−1 = tan(tan−1 ak−1|k−1 −∆θ), (10)

bk|k−1 = bk−1|k−1 + ∆x sin tan−1 ak−1|k−1

−∆y cos tan−1 ak−1|k−1, (11)

where ak−1|k−1, bk−1|k−1 and ak|k−1, bk|k−1 are the line
coefficients of Lk|k−1 and Lk−1|k−1. The EKF update step
calculates Lk|k from Lk|k−1 using the fitted line Ll,

[ak|k, bk|k]T = [ak|k−1, bk|k−1]T

+ K[a− ak|k−1, bl − bk|k−1]T , (12)

where K is the Kalman gain generated by the EKF.
To prevent faulty tree row detection, we monitor the

difference between the predicted state estimate, Lk|k−1, and
the fitted line, Ll. Let Σk|k−1 be the covariance matrix of

Algorithm 1: Line Fitting
1 input : Qk

2 output : Ll and Lr

3 begin
4 for a certain number of iterations do
5 From Qk, randomly select a set of points on the left

side, Lk, and a set of points on the right side, Rk,
where |Lk|, |Rk| ≥ 1 and |Lk|+ |Rk| ≥ 3, compute
Ll and Lr based on (7);

6 Compute the distance from each point in Qk to Ll

and Lr , select a set of inliers from Qk on the left
and right sides, respectively, replace Lk and Rk with
the selected inlier sets;

7 if |Lk| and |Rk| are both larger than a threshold then
8 Compute ak, bl, and br again using Lk and Rk

based on (7), then, compute the squared distance
(SD) from each point in Lk to Ll, and from each
point in Rk to Lr;

9 if the mean SD is smaller than a threshold then
10 Break;
11 end
12 end
13 end
14 Return Ll and Lr with the minimum mean SD found.
15 end

Lk|k−1, where Σk|k−1 is generated by the EKF. A squared
Mahalanobis distance is defined as an evaluation metric,

d = [a−ak|k−1, bl−bk|k−1]Σ−1
k|k−1[a−ak|k−1, bl−bk|k−1]T .

(13)
If d is larger than a threshold, Ll is considered as faulty, and
the corresponding EKF update step is ignored.

D. Line Lateral Offset Refinement

The next step is to refine the lateral offsets of the fitted
lines using the point density information in the lidar point
cloud, Qk. This step is necessary because, in our experience,
tree trunks and large branches generate denser and stabler
lidar returns than leaves and grass. Using the points from
trunks and large branches of the trees usually produces a
more reliable estimate of the line offset. Similarly to the
previous section, the offset refinement is equally computed
for the left and right sides, therefore here we use the left line
as an example.

With the fitted lines from the previous section, we rotate
the point cloud around the z-axis such that the lines are
parallel to the x-axis in the vehicle coordinate frame {V }, as
shown in Fig. 6(b). Then, we separate the point cloud into a
few horizontal layers, as shown in Fig. 6(a). For the types of
crops in which we operate, we found that five layers spaced
0.5m apart are sufficient to characterize the trees’ profile. Let
j indicate the layers, j ∈ {1, 2, ..., 5}. Recall that bl is the
offset for the left line, Ll. To refine its value, we change bl
within an 1m range above and below its original value. Then,
for each bl, we count the number of points in a rectangular
region around Ll, as illustrated by the gray band in Fig. 6(b).
The number of points on layer j is denoted as n(bl, j).

Fig. 6(a) gives an intuitive illustration of the distribution
of n(bl, j) with respect to bl on each layer j, as the red
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 (a)  (b)

Fig. 6. Line offset refinement. For each height represented by the black
horizontal lines in (a), we count the number of points in a rectangular band
(represented by the gray colored band in (b)) around the fitted line, Ll.
At each height, the number of points with respect to the line offset, dl,
follows a normal distribution as represented by the red curves in (a). This
information is used to refine the line fitting.

colored curves. On the layers containing tree trunks and large
branches, the distribution is more concentrated than in the
other layers. Let pj(bl) be the distribution of n(bl, j) on layer
j; pj(bl) is a function of the line offset, bl. We want to use
the variance of pj(bl), denoted as σ2

j , to evaluate the point
density on a certain layer. To refine the line offset, we first
select the layer where σ2

j is the minimum,

j∗ = arg min
j
σ2
j . (14)

Then, bl is set at the point where pj(bl) is the maximum on
the selected layer,

b∗l = arg max
bl

pj(bl), j = j∗. (15)

After refining bl, the height of Ll is also determined, at the
middle of the selected layer.

E. Tree Trunk Detection

With the tree rows detected, we now find the tree trunks
closest to the vehicle on each side using a particle filter.
Since the tree trunks follow a multimodal distribution, a
particle filter is suitable for solving the problem. The motion
model of the particle filter is provided by the odometry
measurements, and the observation model is given by the
lidar point cloud, Qk. Again, the procedure is identical on
both sides, we explain it using the left side as an example.

Recall that Xl is a point in the vehicle coordinate system
{V } representing the center of the closest tree trunk on the
left side. Let Xp

k be a particle at frame k corresponding to
Xl. The motion model of the particle filter can be expressed
in the same way as (1):

Xp
k = Rz(∆θ)Xp

k−1 − [∆x, ∆y, 0]
T
, (16)

where Rz(·) is the rotation matrix around the z-axis.
For the observation model, let us assume that the lidar

points returned from a tree trunk follow a 3D Gaussian
distribution. In the vehicle coordinate frame {V }, the dis-
tribution can be illustrated by an ellipsoid shown as the blue
colored region in Fig. 7(a). The long axis of the ellipsoid
points in the z-direction, and the two short axes point in the
x- and y- directions with equal length. Let ΣT be a 3 × 3
covariance matrix corresponding to the Gaussian distribution.

The probability that a point Xk, Xk ∈ Qk, belongs to the tree
trunk centered at Xp

k is computed as:

p(Xk|Xp
k) =

1

(2π)
3
2 |ΣT |

1
2

e−
1
2 (Xk−Xp

k)T Σ−1
T (Xk−Xp

k). (17)

The lidar points, Qk, are stored in a 3D KD-tree [17]
for fast indexing. Then, for each particle, Xp

k, a set of its
surrounding points are selected fromQk, denoted as Sk, such
that p(Xk|Xp

k) is larger than a threshold (here we use 1%).
Let zpk be the observation of particle Xp

k; then the conditional
probability of zpk given Xp

k, P (zpk|X
p
k), can be computed as∏

Xk∈Sk p(Xk|Xp
k). Here, since Sk contains different number

of points for each particle, an additional term, (p0)
m, is

multiplied by the conditional probability, p(Xk|Xp
k), for nor-

malization. Here, m is the difference between the number of
points in Sk and the maximum number of surrounding points
found for each particle, and p0 is a scale factor (p0 = 1%).
Intuitively, by multiplying by (p0)

m, we equally add in m
points to Sk with p0 probability of being on the tree trunk.
This is also the minimum probability for a point to be
selected into Sk. Correspondingly, the importance weight for
Xp
k is proportional to its conditional probability, P (zpk|X

p
k),

w ∝ p(zpk|X
p
k) ∝ (p0)

m
∏

Xk∈Sk

e−
1
2 (Xk−Xp

k)T Σ−1
T (Xk−Xp

k).

(18)
A total number of 500 particles are used on each side.

The particles are resampled at each frame. While most of
the particles are concentrated on the closest tree trunk, we
also want to keep an eye on the surrounding region such
that as the vehicle drives, the closest tree trunk switches
from one tree to another. Here, we generate 5% of the
particles based on a 3D Gaussian distribution as illustrated
by the gray colored region in Fig. 7(b). The center of the
distribution is at the intersection of the fitted line, Ll, and
the y − z plane of the vehicle coordinate system {V }. The
long axis is parallel to Ll, and the two short axes point
in the z-direction and the direction perpendicular to Ll,
respectively. The remaining particles are resampled based on
the importance weights computed in (18), using low variance
resampling [4]. To select the closest tree trunk, a checking
mechanism monitors potential tree trunks that are closer to
the vehicle. The low variance resampling draws new particles
from those associated with the closest tree trunk. Then, the
detected tree trunk, Xl, is the weighted average of the same
set of particles used for the resampling.

 (a)  (b)

Fig. 7. (a) Distribution of the points on a tree trunk. The points are assumed
to follow a Gaussian distribution as illustrated by the blue colored region.
(b) Resampling region. In each resampling, 5% of the particles are drawn
from a Gaussian distribution as illustrated by the gray colored region.
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(c)

Fig. 9. Tree row and tree trunk detection errors using logged data. (a-b) show the angle and lateral offset errors for the detected tree rows. The errors
are compared for the output of the RANSAC line-fitting algorithm in Section V-B, the lines filtered by the EKF in Section V-C, and the ones with the
lateral offsets refined in Section V-D. (c) shows the distance errors for the detected tree trunks, in the forward (x-) and lateral (y−) directions. The red,
blue, and black lines represent the median, the 75% range, and the 100% range of the errors, respectively.
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Fig. 8. An example of detected tree rows and tree trunks using logged
data. The red colored lines represent the tree rows and the yellow colored
dots illustrate the particles surrounding the closest tree trunk on each side.
The black and white colored circles are tree trunks labeled by hand, the
black colored circles indicate the closest ones to the vehicle. As the vehicle
drives, the particles switch from one tree to the next. The lidar points are
is color coded by elevation, in the top-down order of red, blue, and green.

VI. EXPERIMENTS

To validate the 3D perception algorithm proposed in this
paper, we collect range data with the sensor in Fig. 4 in
various commercial orchards. These are environments char-
acterized by canopies with large volumes, branches sticking
out into the driving row, pipes, cinder blocks, and other small
objects that a 2D planar laser is not able to or has great
difficulty to perceive. Additionally, we conducted online row
following experiments based on the tree row and tree trunk
information resulted from processing of the lidar data in real
time. These are described in this section.

A. Off-line Tests with Orchard Data

Off-line tests were conducted with data collected over
four hours in three commercial orchards in South Korea.
The lidar sensor was mounted on a manually-driven vehicle,
moving at about 0.4m/s. An example of the results obtained
is shown in Fig. 8. The red lines represent the tree rows;
the yellow dots are the particles surrounding the tree trunk
closest to the vehicle on each side. The black and white

circles are manually-labeled tree trunks for ground truth
purposes; the black ones represent the trunks closest to the
vehicle. From Fig. 8(a) to Fig. 8(b), as the vehicle drives, the
particles switch from one tree to the next on the same row.
Correspondingly, the detected tree trunks switch as indicated
by the black circles.

Fig. 9 presents the accuracy for the tree row and trunk
detection. Fig. 9(a-b) show the angle and lateral offset
errors for the detected tree rows, respectively. The errors
are compared with the output of the RANSAC line-fitting
algorithm in Section V-B, the lines filtered by the EKF in
Section V-C, and the ones with the lateral offsets refined in
Section V-D. Since the offset refinement step does not change
the line orientation, only the first two terms are compared in
Fig. 9(a). One can see that the errors are reduced significantly
after each step of processing. Fig. 9(c) shows the distance
errors for the detected tree trunks in the forward and lateral
directions. Most of the errors are within a 3cm range around
the true value.

B. Closed Control-loop Row Following

To show that the proposed 3D perception system provides
sufficient accuracy for row following, we implemented it
onboard an autonomous orchard vehicle (Fig. 10(a)). The
vehicle is based on a Toro Workman MDE chassis retrofitted
as a drive-by-wire platform. It is equipped with steering and
driving wheel encoders that provide odometry measurements.
A proportional-integral controller is used in the low-level
steering and speed control loops. Trajectory control is im-

 

 

 

 

(a)
 

(b)

Fig. 10. Autonomous vehicle and orchard used to validate the 3D
perception algorithm. (a) Drive-by-wire orchard vehicle based on a Toro
Workman MDE chassis, equipped with steering and driving wheel encoders
for odometry measurements. The 3D lidar sensor is mounted on the front.
The vehicle is also equipped with an Applanix Pos-LV positioning system
for ground truth acquisition. (b) Tree rows used in the row following tests.
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Fig. 11. An example of row following while the vehicle drives along
the row centerline. The red and blue curves represent the angle and lateral
distance between the vehicle and the row centerline. The position error is
within 4cm in a 350cm wide row, and the angular error is within 1 degree.

 

 

Fig. 12. Row following errors. The left and middle columns show
the angular and lateral distance errors while the vehicle follows the row
centerline, using the detected tree rows. The right column shows the lateral
distance error from the vehicle to one side of the trees, while the vehicle
keeps a constant distance to the trees on that side using the detected tree
trunks. The red, blue, and black colors have the same meaning as in Fig. 8.

plemented by the vehicle tracking a look-ahead point 1.5m
ahead of it, a technique known as pure pursuit [18]. The 3D
lidar sensor is mounted on the front, and a laptop computer
on the vehicle runs the perception and control algorithms.
The vehicle is also equipped with a high-accuracy Applanix
Pos-LV positioning system for ground truth purposes.

The experiment site is in a commercial orchard in Penn-
sylvania (Fig. 10(b)) composed of four rows, each one over
200m long. We first tested tree row detection by driving
the vehicle along the row centerline, which is the mid-line
between the two detected tree rows. The vehicle follows each
row three times at a speed of 0.8m/s. Fig. 11 shows a typical
result. The red and blue curves represent the angle and lateral
distance between the vehicle and the row centerline. The
position error is within 4cm in a 350cm wide row, and the
angular error is within 1 degree. Fig. 12 (left and center plots)
show the angular and distance errors over a total of twelve
traversals. The maximum angular error is 5 degrees, with
50% of the errors within 2.5 degrees; likewise, the maximum
distance error is about 27cm in a 350cm wide row, with 50%
of the errors within 14cm.

Next, we tested the tree trunk detection by commanding
the vehicle to drive with a constant distance to one side of
the trees. The vehicle follows each row twice, first following
one side and then the other, at a speed of 0.4m/s. Fig.13
shows an example of the detected tree trunks in one test.
The red curve shows the distance of the closest tree trunks
to the vehicle in the forward direction, and the blue curve

 

 

Fig. 13. An example of row following while the vehicle keeps a constant
distance to one side of the trees. The red curve is the distance from the tree
trunks to the vehicle in the forward direction, and the blue curve shows the
distance in the lateral direction. As the vehicle drives, the closest tree trunk
switches from one tree to the next one, causing the instantaneous jumps on
both curves. The blue curve shows that, at every transition from one trunk
to the next, the distance error decreases asymptotically to zero.

is the distance in the lateral direction. As the vehicle drives,
the closest tree trunk switches from one tree to the next one,
causing the instantaneous jumps on both curves. The blue
curve shows that, at every transition from one trunk to the
next, the distance error decreases asymptotically to zero. The
lateral distance error from the vehicle to the tree trunks is
measured with a tape ruler as the vehicle passes by each tree.
The overall error over eight traversals is shown in Fig. 12
(right). The maximum error is 11cm, with 50% of the errors
within 5cm.

C. Comparison with Planar Lidar

When the tree rows are well structured to form the
equivalent of straight walls, a planar lidar is sufficient for
row following. To illustrate this case, we use data logged in
a high-density orchard in Pennsylvania. The vehicle is driven
at 0.5m/s for two hours. We compare the results with the data
logged in three orchards in South Korea, where the trees are
more irregular. Since the returns from a planar lidar are on
a horizontal plane, the offset refinement step (Section V-D)
is unnecessary. Fig. 14 shows an example of the detected
tree rows when a planar lidar is used in regular and irregular
rows. The data in Fig. 14(b) is perceived by the 3D lidar
sensor, and extracted from a horizontal plane to simulate the
case where a planar lidar is used.

Fig. 15 shows the maximum absolute errors in each row
for tree row detection. The errors are compared in three
scenarios: a planar lidar in regular rows, a planar lidar in ir-
regular rows, and the 3D lidar in irregular rows (the proposed
method). Since we require continuous estimation of the tree
rows during the row following, these are the maximum errors

 

 

 

 

 

(a)

 

 

 

 

 

(b)

Fig. 14. An example of tree row detection using a planar lidar in regular
(a) and irregular (b) rows. The red lines are the detected tree rows. The blue
points are the lidar returns on a horizontal plane.
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(a)

 

 
(b)

Fig. 15. Comparison of the maximum absolute errors in each row during
the tree row detection. These are the maximum errors that the vehicle has to
deal with to successfully follow a row. (a) and (b) show angular and offset
errors for three cases: planar lidar in regular rows, planar lidar in irregular
rows, and 3D lidar in irregular rows. The red, blue, and black colors have the
same meaning as Fig. 8. The planar lidar’s accuracy is insufficient for row
following in irregular environments, a shortcoming that is properly solved
by the 3D lidar and the perception algorithm described here.

that the vehicle has to deal with to successfully follow a row.
In the middle column, the lidar returns are extracted from
multiple horizontal planes with different heights above the
ground. Then, the horizontal plane whose associated errors
are the smallest is selected. The results in Fig. 15 indicate
that in irregular rows, a planar lidar is insufficient while a
3D lidar sensor becomes necessary.

VII. CONCLUSION

Two-dimensional lidar sensing has been proven effective
for autonomous row following in modern orchards, where
the trees form an almost perfect ”fruit wall” that facilitates
perception. Most fruit production environments, however,
have volumous canopies with branches sticking into the row
and objects such as pipes and rocks that make 2D sensing
infeasible for row following. Here we propose a novel 3D
perception method based on a 3D lidar to detect the tree rows
and trunks in uneven, irregular environments. The method is
validated with real orchard data and proven to provide much
better row information than a planar, 2D lidar in the same
environment. We also preliminarily demonstrate that the row
information can be used to close the vehicle guidance and
control loop at an orchard experimental site.

Future work will focus on further validating the perception
method in commercial orchards with uneven canopies for the
purposes of refining the underlying algorithms. The ultimate
goal is to build a low-cost perception and navigation package
that can be incorporated into many different drive-by-wire
farm vehicles to automate fruit production operations.
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