
Exploring Large and Complex Environments
Fast and Efficiently

Chao Cao, Hongbiao Zhu, Howie Choset, and Ji Zhang

Abstract— This paper describes a novel framework for au-
tonomous exploration in large and complex environments.
We show that the framework is efficient as a result of its
hierarchical structure, where at one level it maintains a sparse
representation of the environment and at another level, a dense
representation is used within a local planning horizon around
the robot. The exploration path is computed at the two levels,
coarsely at the global scale and finely around the robot. Such
a framework produces detailed paths in the vicinity of the
robot, while trades off data resolution far away from the robot
for computational efficiency. In experiments, we evaluate our
method with a real robot exploring large and complex indoor
and outdoor environments. Results show that our method is
twice as efficient in covering spaces while using less than one-
fifth of processing in comparison to state-of-the-art methods.

I. INTRODUCTION

We consider the problem of covering a three-dimensional
space unknown a priori with an autonomous robot. The
term coverage has been used in a variety of contexts, but
in this paper, we define it to be passing the “footprint”
of a sensor or detector over all points in a target space.
This footprint is sometimes called “field of view”. Coverage
requires constantly maintaining a representation of the envi-
ronment to keep track of areas covered by the robot. As the
robot explores, it searches for feasible paths to traverse the
environment and complete the coverage. In cases where the
environment is large-scale, structurally complex, and three-
dimensional, the problem becomes computationally complex,
and ensuring complete coverage can become a challenge.

Existing work [1]–[4] greedily maximizes the marginal
reward, i.e., the added benefit of subsequent movement by
optimizing the next one or a few instant steps. The resulting
path is often inefficient, producing back-and-forth motion of
the robot and visiting the same areas repetitively. Further, ex-
cessive computation is another issue limiting the exploration
efficiency. The robot spends a considerable amount of time
waiting for onboard processing to finish, instead of exploring
continuously, resulting in ”stop-and-go” motions.

The method described in this paper aims at highly efficient
exploration for large, complex environments. The method
utilizes a hierarchical data structure to achieve fast com-
putation – one level in the data structure maintains data
sparsely at the global scale, while another level maintains
data densely within a local planning horizon around the
robot. The exploration path is computed at the two levels,

All authors are with the Robotics Institute at Carnegie Mellon
University, Pittsburgh PA. Emails: {ccao1, hongbiaz, choset,
zhangji}@cmu.edu

Fig. 1. A representative result produced by our method in a complex,
3D environment including indoor and outdoor scenes. The vehicle au-
tonomously explores over 1.4km in 20 minutes. The trajectory spans 16.0m
in elevation, which is color-coded by height in the figure. More experiment
details are in Section V.

coarsely at the global scale and finely around the robot,
and then joined together. We leverage the key insight that
only detailed paths are necessary in the vicinity of the robot,
while coarse paths provide sufficient utility far away from the
robot. The method maintains low-resolution data at the global
scale for computational efficiency. Further, the method seeks
the shortest exploration path overall instead of maximizing
the instant reward, which results in more efficient paths
without repetitive visiting to the same areas.

In experiments, we evaluate the method on a real robot
in various indoor and outdoor environments. We compare to
state-of-the-art methods in a cluttered indoor environment,
a large indoor environment where the robot travels close
to a kilometer. Comparison shows that our method covers
spaces twice as fast as the start-of-the-art and at the same
time using runtime less than one-fifth of the start-of-the-art.
Our simulation environment and source-code are publicly
available1 and experiment results are in a video2.

II. RELATED WORK

Many methods to autonomous exploration formulate the
problem using frontiers, i.e., the boundary between mapped
and unmapped areas [5]–[9]. The vehicle moves toward the
boundary and therefore extends the mapped areas. Other
methods model the environment based on information theory
[10]–[13] and topological representations [14]–[16]. Machine
learning has also been used to determine the exploration
strategy [17]–[19]. The aforementioned work can be ex-
tended to multi-robot scenarios [20]–[24]. Most existing

1Sim. environment and source-code: www.cmu-exploration.com
2Experiment video: https://youtu.be/pIo64S-uOoI

www.cmu-exploration.com
https://youtu.be/pIo64S-uOoI

methods rely on greedy strategies for exploration, where the
efficiency suffers from being myopic.

Recent work in exploration develops a framework based on
the Rapidly-exploring Random Tree (RRT) [25] or Rapidly-
exploring Random Graph (RRG) [26]. The framework spans
RRTs or RRGs through the environment taking into account
the sensor model and vehicle traversability. Specifically,
a method named Next-Best-View Planner (NBVP) [1] is
considered the state-of-the-art which models the nodes on the
RRT as viewpoints. The method greedily selects the branch
with the maximum collective reward from the associated
viewpoints. Witting et al. [2] extend the method by seeding
the RRT with the vehicle’s past trajectory, which allows
for further exploration in the areas previously passed by
the vehicle. However, using solely the past trajectory can
result in suboptimality of the exploration. A Graph-Based
Path Planning (GBP) method [3] improves the scheme by
constructing a global roadmap along the past trajectory. The
method searches the roadmap for routes to the areas that need
to be explored further. Heuristics are used to explicitly switch
between local exploration and global relocation. Recently, a
variant of [3] integrates motion primitives with the plan for
local smoothness of the exploration path [4]. In essence, due
to the randomness of RRT and RRG, these methods are prone
to overlooking areas that are not completely explored.

The main contribution of our work is an efficient explo-
ration framework that optimizes the full exploration path. In
the framework, planning at the global level guides the plan-
ning at the local level. When the exploration completes inside
the local planning horizon, the method implicitly relocates
to a different area for further exploration. In comparison to
[2]–[4], our method does not involve heuristics for mode
switching. We compare our method to NBVP [1] and GBP
[3] and show that our method significantly outperforms both
methods in exploring large, complex environments.

III. PROBLEM DEFINITION

Define Q ⊂ R3 as the workspace to be explored. Let
Qtrav ⊂ Q be the traversable subspace. We define a
viewpoint v = [pv,qv] ∈ SE(3) to describe the placement
of the onboard sensor, where pv ∈ Qtrav denotes the sensor
position and qv ∈ SO(3) denotes the orientation. We define
”surface” to be the generalized boundary between free space
and non-free space, the latter includes occupied and unknown
spaces. Let Sv ⊂ Q be the surfaces that are perceived by the
sensor located at v. Let L ⊂ SE(3) be a set of viewpoints
along the vehicle’s past trajectory. The perceived surfaces so
far are

S =
⋃
v∈L
Sv. (1)

Let Scov ⊂ S be the covered surfaces so far, and let S̄ =
S \ Scov be the yet uncovered surfaces. We would like to
find the shortest path T ∗ that passes through a sequence of
viewpoints, which completely cover S̄ when followed by a
robot with a sensor. Let vcurrent be the viewpoint located at
the vehicle’s current sensor pose. Our exploration problem
can be defined as follows,

Problem 1: Given S̄ and vcurrent, find the shortest path
T ∗ that passes through v1,v2, ..., which when followed by
the robot covers S̄ , and vcurrent ∈ T ∗.
Problem 1 is solved at each step as the vehicle explores, i.e.
the vehicle finds the shortest path at every instant time of
replanning to incorporate the latest sensor readings.

IV. METHODOLOGY

A. Local Planning

We begin with defining the criteria for a surface point to
be covered. Given a surface patch centered at ps ∈ R3 with
normal ns ∈ R3, the center point is covered by a viewpoint
v if the following two conditions are met,

|ps − pv| ≤ D, (2)
ns · (pv − ps)/|ns||pv − ps| ≥ T, (3)

where D and T are two constants. The criteria limits the
relative distance and orientation of the surface patch. Ideally,
we would like the surfaces to be perceived by the sensor
perpendicularly from a relatively short distance. Meeting the
criteria makes sure the surfaces are perceived well.

The local planning problem solves for a path Tlocal within
the local planning horizon around the vehicle. Define H ⊂ Q
as the local planning horizon as shown in Fig. 2. LetHtrav ⊂
H be the traversable subspace and CHtrav be the corresponding
C-space considering rotation and translation. Recall that S̄
denotes the uncovered surfaces. We define S̄H ⊂ S̄ as the
uncovered surfaces to be perceived from viewpoints in CHtrav.
The problem of computing Tlocal can be stated as follows,

Problem 2: Given CHtrav, find the shortest path T ∗local =
v1,v2, ... where vi ∈ CHtrav, i = 1, 2, ... to cover S̄H.

Problem 2 is solved in an iterative random-sampling
process. At each iteration, we randomly sample a set of
viewpoints that completely covers S̄H, then we form a path
using the viewpoints. Through the iterations, paths with
shorter lengths are found and the path that has the shortest
length is kept. We use S̄v ⊂ S̄H to denote the uncovered

Fig. 2. Illustration of our method. The coordinate frame represents the
vehicle. The green box represents the local planning horizon H. The solid
green squares represent the exploring subspaces Gi, i ∈ Z+. The solid
blue curve is the local path Tlocal. The dashed blue line is the global path
Tglobal. The orange dotes on Tlocal are the viewpoints vi, i ∈ Z+. The red
curves are the uncovered surfaces S̄H to be perceived by the viewpoints.
The method uses an iterative random-sampling process in determining the
viewpoints to cover S̄H.

surfaces to be perceived from v ∈ CHtrav. The reward of v is
defined as the area of S̄v, denoted as Av. It is worth men-
tioning that the problem exhibits submodularity [27], i.e. the
more viewpoints selected, the less reward from an additional
viewpoint being selected. This is because of the field-of-
view overlaps among the viewpoints where the same surface
can be perceived from multiple viewpoints. As a result, the
reward of a viewpoint is dependent on the viewpoints visited
earlier on the path. Let vi, i ∈ Z+, be the i-th viewpoint on
Tlocal. The uncovered surfaces to be perceived from vi, S̄vi ,
needs to be adjusted to S̄vi

−
⋃i−1

j=1(S̄vi
∩ S̄vj

), and Avi
is

adjusted accordingly.

Algorithm 1 solves Problem 2. The algorithm begins with
uniformly generating a set of viewpoint candidates V in CHtrav
(line 1). Then, it computes the rewards Av for all viewpoint
candidates v ∈ V by estimating their coverages S̄v (line 3).
To compute Tlocal, the following two steps are repeated for a
number of K ∈ Z+ iterations. In the first step, the algorithm
randomly samples a min-cardinality subset of viewpoints
from V that covers S̄H (line 6-14). This uses a priority queue
Q to manage the candidate viewpoints. The priority of a
viewpoint v is set to its reward Av. Viewpoints are selected
from the priority queue with probabilities proportional to
their rewards (line 8). Due to the submodularity as we have
discussed, the rewards of the remaining viewpoints in the
priority queue are reduced properly after a viewpoint is
selected to account for the effect of field-of-view overlaps
between the viewpoints (line 11-13). The viewpoint sampling
process finishes when the priority queue is empty or the
marginal reward of adding a new viewpoint is smaller than
a threshold Amin.

In the second step, the algorithm computes a path using the
sampled viewpoints. Here, two viewpoints vstart and vend

are set as the start and end viewpoints of Tlocal (line 15). This
is by choosing the closest viewpoints to the two adjacent
nodes on the global path Tglobal (more details in section
IV-B). Then, the algorithm finds the shortest collision-free
path between every viewpoint pair in the set of sampled
viewpoints Vi and construct a distance matrix Di containing
the length of the paths (line 16). This uses the A* algorithm
[28] to search for the paths in Htrav. Next, the algorithm
solves a Traveling Salesman Problem (TSP) [29] to produce
a path that starts at vstart and ends at vend (line 17). In the
end, upon completion of the iterations, the algorithm returns
the shortest path found as Tlocal (line 22).

Let n be the number of viewpoint candidates generated
on line 1 in Algorithm 1. At each iteration, the number
of sampled viewpoints is no more than n. After sampling
each viewpoint, adjusting the rewards of the viewpoints
in the priority queue takes O(n) time (lines 11-13). We
model the time of finding the shortest path between two
viewpoints as bounded by a constant. For all viewpoint pairs,
the time complexity is O(n2). The TSP is solved using the
Lin–Kernighan heuristic which consumes O(n2.2) time [29].
The process is over a constant K iterations. Therefore, the
time complexity of Algorithm 1 is O(n2.2).

Algorithm 1: ComputeLocalPath

input : traversable C-space CHtrav, uncovered surfaces
S̄H, global path Tglobal, current viewpoint vc

output: local path Tlocal
1 V ← GenerateViewpointCandidates(CHtrav);
2 Q← new PriorityQueue();
3 For every v ∈ V , estimate its coverage S̄v, push v

into Q with the priority equal to its reward Av;
4 Tlocal ← ∅, lbest ← +∞;
5 for i := 1 to K do
6 Vi ← {vc}, Qi ← Q;
7 while Qi 6= ∅ and Qi.front().priority ≥ Amin do
8 v← ProbabilisticPick(Qi);
9 Vi ← Vi ∪ v;

10 Qi.erase(v);
11 for v′ ∈ Qi do
12 Qi.UpdatePriority(v′);
13 end
14 end
15 vstart,vend ←

GetStartAndEndViewpoints(Tglobal, Vi);
16 Di ← ComputeShortestPaths(CHtrav, Vi);
17 Ti ← SolveTSP(Di);
18 if Length(Ti) < lbest then
19 Tlocal ← Ti, lbest ← Length(Ti);
20 end
21 end
22 return Tlocal;

B. Global Planning

The space outside H is divided into subspaces. Each sub-
space stores the covered and uncovered surfaces developed
during the exploration. In addition, each subspace holds a
status from one of three categories: “unexplored”, “explor-
ing”, and “explored”. If a subspace does not contain any
covered or uncovered surfaces, the status is ”unexplored”.
If a subspace contains only covered surfaces, the status is
”explored”. If a subspace contains uncovered surfaces, the
status is ”exploring”. Here, we only consider the exploring
subspaces as these are the subspaces used in global planning.
Let m ∈ Z+ be the number of exploring subspaces. A
subspace is denoted as Gi ⊂ Q, i = 1, 2, ...,m. The set of
exploring subspaces is denoted as Ĝ = {Gi | i = 1, 2, ...,m}.
We state the global planning problem as follows.

Problem 3: Given H ⊂ Q and Ĝ = {Gi | i = 1, 2, ...,m},
find the shortest path T ∗global that goes through the centroids
of H and Gi, i = 1, 2, ...,m.

Problem 3 is solved as a TSP. As shown in Algorithm 2,
we compute the distances between each two exploring sub-
spaces (line 1). Here, the Euclidean distance between the
centroids of the two subspaces is used. However, in complex
environments, Euclidean distances can be insufficient to
accurately measure the traveling distance. Alternatively, the
algorithm can use a roadmap constructed in the traversable

Algorithm 2: ComputeExplorationPath
input : local planning horizon H, traversable

C-space CHtrav, uncovered surfaces S̄H,
exploring subspaces Ĝ, current viewpoint vc

output: exploration path T
1 D← ComputeDistanceMatrix(H, Ĝ);
2 Tglobal ← SolveTSP(D);
3 Tlocal ← ComputeLocalPath(CHtrav, S̄H, Tglobal, vc);
4 T = ConcatenatePaths(CHtrav, Tlocal, Tglobal);
5 return T ;

space along the past trajectory and search the roadmap for
the shortest path between the two exploring subspaces.

Algorithm 2 gives the procedure of computing the explo-
ration path T . The TSP is solved using the Lin–Kernighan
heuristic [29] (line 2). The resulting global path Tglobal
consists of the centroids of H and all subspaces in Ĝ. Then,
the algorithm calls Algorithm 1 to compute Tlocal (line 3).
Finally, Tlocal and Tglobal are concatenated. This is by finding
the shortest collision-free paths from the start point vstart and
end point vend on Tlocal to the boundary of H and replacing
the centroid of H on Tglobal with the boundary points. Fig. 3
shows an example of the exploration. The solid and dashed
blue paths represent Tlocal and Tglobal, respectively.

If the exploration completes inH (S̄H = ∅), the processing
reduces to the case that the shortest paths connect the vehicle
to the boundary of H, which are further connected to the ad-
jacent subspaces along Tglobal. The vehicle follows the path
to transit to an exploring subspace to resume exploration.
In other words, the algorithm implicitly transitions between
exploration and relocation to another area to explore further.
If S̄H = ∅ and Ĝ = ∅, the exploration terminates.

In Algorithm 2, computing the distance matrix takes
O(m2) time and solving the TSP runs in O(m2.2) time,
where m is the number of exploring subspaces. Recall that
Algorithm 1 takes O(n2.2) time where n is the maximum
number of viewpoints. We model the time of concatenating
Tlocal and Tglobal as bounded by a constant. Theorem 1 states
the time complexity of our algorithm.

Theorem 1: Algorithm 2 runs in O(n2.2 + m2.2) time.

Fig. 3. An example exploration process with real data. The figure uses the
same color code as Fig. 2. The white points show lidar scan data, with which
the method extracts the uncovered surfaces (red points). The yellow dots are
the viewpoint candidates, from which, the method samples the viewpoints
(orange dots) to cover the red points.

C. Implementation Details

In our implementation, the configuration space Q is evenly
divided into square blocks. Each subspace Gi consists of a
block. The local planning horizon H consists of 5×5 blocks
with the vehicle in the center block. During exploration, if
the vehicle crosses the boundary of a block, a rollover is
introduced where a number of 5 blocks behind the vehicle
roll out of H and another 5 blocks in front of the vehicle
become inside H. Accordingly, the memory that maintains
data in these blocks for local planning is reallocated.

To accelerate processing, we use a piece of dedicated
memory for estimating the coverage of each viewpoint. The
memory keeps track of the surrounding geometry of the
viewpoint candidates. Specifically, the index of an element
in the memory denotes a direction seen from the viewpoint
candidate, and the value denotes the distance from the
viewpoint candidate to the closest object in that direction.
At a planning cycle, we take one frame of registered sensor
data and compare it to the previous frames to extract the
“changes”. This is implemented using a voxel grid – if both
new and old data points locate in the same voxel, we consider
it as no change, otherwise, we consider it as a change.
The “changed” data points are used to update the memory.
The method then estimates the surfaces perceived from the
viewpoint candidates. Using dedicated memory allows us to
incrementally update a viewpoint’s coverage, which avoids
re-computation between planning cycles thus considerably
accelerates the process.

V. EXPERIMENTS

We conduct experiments using the vehicle platform in
Fig. 4. The vehicle is equipped with a Velodyne Puck lidar,
a camera at 640× 360 resolution, and a MEMS-based IMU.
The system uses our prior method for state estimation as
well as mapping explored areas [30]. Collision avoidance
uses a trajectory library-based method [31]. Our exploration
algorithm runs on a laptop computer with a 4.1GHz i7 CPU
and uses a single CPU thread for processing.

In our method, the local planning horizon is set as a
40m×40m area around the vehicle. Each subspace is an
8m×8m area. The covered and uncovered surfaces are repre-
sented as 3D points at the resolution of 0.2m. The viewpoint
candidates are generated at the resolution of 0.5m. The
method replans at the frequency of 1Hz and processes lidar
scan data stacked in the last second. We compare with two
existing methods that are considered state-of-the-art.

Fig. 4. Experiment vehicle platform.

• NBVP [1]: A method using a Rapidly-exploring Ran-
dom Tree (RRT) [25] to span the space. It finds the
most informative branch in the RRT as the path to the
next viewpoint. We evaluate using open-source code.

• GBP [3]: An extension of NBVP where the method
builds a roadmap through the traversable space and
searches the roadmap for a route to relocate the vehicle.
The method explicitly switches between exploration
mode and relocation mode. We use open-source code
tuned and adapted to the testing environments.

The methods are evaluated in three distinctive environ-
ments. Test 1 is conducted in an indoor environment as
shown in Fig. 5. The environment consists of cluttered
scenes and narrow passways. Fig. 5(a) gives the resulting
trajectories of all three methods. Carefully examining the
trajectories reveals that NBVP misses some local areas while
GBP and our method complete the coverage. Based on our
understanding of the method, NBVP is theoretically limited
in transiting between separate areas to explore. The issue is
mitigated in GBP by using a graph-based search to help the
vehicle relocate. Fig. 5(d) and Fig. 5(e) compare the explored
volumes and traveling distances. The explored volumes are
calculated using the lidar scan data. It takes 119s for our
method to explore the environment while NBVP takes 415s
and GBP takes 274s, both consume more than twice of our
method. Fig. 5(f) shows the runtime. The average runtime
for NBVP is 2.6s, for GBP is 1.5s, and for our method is
0.17s. Ours is less than one-fifth of NBVP and GBP.

Test 2 is in a large indoor environment consisting of lob-
bies and dining areas connected by long corridors as shown
in Fig. 6. Note that the map is cleaned up for visualization
purpose. The space expands on both sides of the corridors
and windows and glass walls add additional difficulty to
the environment. NBVP and GBP are not able to cover the
space completely leaving a large portion uncovered. NBVP
is set to explore the maximum area (80m×80m) without
leading to a performance drop. GBP produces endless back-
and-forth motion to the end of the run and is stopped. Our
method completes the exploration after traveling over 988m
in 1167s. Especially, we can see in the close-up view in
Fig. 6(a) that the green trajectory (NBVP) is repetitive and
inefficient. Fig. 6(e) presents the explored volumes. As the
method terminates, NBVP takes 1228s to cover 687m3 while
the same amount of space is covered by our method in 206s.
GBP takes 1801s to cover 1388m3 and that amount of space
is covered by our method in 550s. In both cases, our method
is twice more efficient. In Fig. 6(f), NBVP uses 1228s to
travel over 231m and the same distance is completed by our
method in 265s. GBP travels over 958m overall, almost the
same as our method. Since the vehicle often needs to navigate
through explored areas for relocating to a different area to
explore further, we consider the explored volume as a better
measure of the efficiency. Fig. 6(g) presents the runtime. The
average runtime for NBVP is 2.5s, for GBP is 1.8s, and for
our method is 0.13s. Again, our method is more than five
times faster than NBVP and GBP in terms of processing.

Test 3 is in a complex environment including both indoor

(a)

(b) (c)

(d)

(e)

(f)

Fig. 5. Results of Test 1 in a cluttered indoor environment. (a) shows the
resulting map of our method and the trajectories of NBVP, GBP, and our
method overlaid on the map. The blue dot indicates the start point of all
three trajectories. (b)-(c) are two photos taken from the locations as labeled
in (a). (d) is the explored volumes vs. time. (e) is the traveling distances
vs. time. (f) is the runtime vs. traveling distance. In comparison, NBVP and
GBP respectively take 415s and 274s to complete the exploration while our
method takes 119s. The average runtime for NBVP is 2.6s, for GBP is 1.5s,
and for our method is 0.17s.

and outdoor scenes over a 3D terrain. The results are shown
in Fig. 1 and Fig. 7. Our method completes the exploration
after traveling over 1403m in 1217s. The resulting trajectory
spans over 16.0m in elevation. In particular, the green box
in Fig. 7(a) indicates the area where Test 1 is conducted.

(a)

(b) (c) (d)

(e)

(f)

(g)

Fig. 6. Results of Test 2 in a large indoor environment. The figure shares
the same layout as Fig. 5. Neither NBVP nor GBP is able to explore the
space completely. Both leave a large portion of the space unexplored. Our
method completes after traveling over 988m in 1167s.

Here, we present the results of our method only as the
difficulty of this environment is beyond what the other
two methods are able to handle. Finally, Table I gives the

(a)

(b) (c) (d)

Fig. 7. Results of Test 3 in a complex environment including indoor
and outdoor scenes over a 3D terrain. Our method finishes exploring the
environment after traveling over 1403m in 1217s. Fig. 1 shows another view
of the resulting map and trajectory. The trajectory spans 16.0m in elevation.
The green box in (a) indicates the area of Test 1.

runtime breakdown for our method. The numbers indicate
that there is not a significant difference in the overall runtime
between indoor and outdoor environments. We see the time
on updating representation in local planning dominates the
overall runtime. This confirms our insight that using the
hierarchical framework to keep the local planning horizon
relatively small reduces the computational complexity and
keeps the processing fast. The computation at the global scale
is lightweight due to usage of sparse data and coarse paths.

VI. CONCLUSION

We propose a method for autonomous exploration of
large, complex environments. The method uses a hierarchical
framework to plan a detailed path within the local planning
horizon and trade off data density at the global scale for
computational efficiency. Further, the method plans a full
exploration path rather than finding instant viewpoints to
maximize the marginal coverage. The resulting path is ef-
ficient without redundant revisiting. We evaluate the method
in physical experiments in various indoor and outdoor en-
vironments. We compare the results to two state-of-the-art
methods and conclude that our method covers spaces more
than twice as fast as the state-of-the-art while the average
runtime is less than one-fifth of the start-of-the-art.

TABLE I
RUNTIME BREAKDOWN

Local Planning
Test Update Sample Find Global Overall

Representation Viewpoints Path Planning

Test 1 147.4ms 1.2ms 12.5ms 8.3ms 169.4ms
Test 2 121.6ms 1.3ms 2.5ms 8.6ms 134.0ms
Test 3 106.9ms 5.7ms 45.6ms 9.6ms 167.8ms

REFERENCES

[1] A. Bircher, M. Kamel, K. Alexis, H. Oleynikova, and R. Siegwart,
“Receding horizon” next-best-view” planner for 3D exploration,” in
IEEE international conference on robotics and automation (ICRA),
Stockholm, Sweden, May 2016.

[2] C. Witting, M. Fehr, R. Bähnemann, H. Oleynikova, and R. Siegwart,
“History-aware autonomous exploration in confined environments us-
ing mavs,” in IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), Madrid, Spain, Oct. 2018.

[3] T. Dang, F. Mascarich, S. Khattak, C. Papachristos, and K. Alexis,
“Graph-based path planning for autonomous robotic exploration in
subterranean environments,” in IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), Macau, China, Nov. 2019.

[4] M. Dharmadhikari, T. Dang, L. Solanka, J. Loje, H. Nguyen,
N. Khedekar, and K. Alexis, “Motion primitives-based path planning
for fast and agile exploration using aerial robots,” in IEEE Interna-
tional Conference on Robotics and Automation (ICRA), Paris, France,
May 2020.

[5] B. Yamauchi, “A frontier-based approach for autonomous exploration,”
in IEEE International Symposium on Computational Intelligence in
Robotics and Automation, 1997, pp. 146–151.

[6] D. Holz, N. Basilico, F. Amigoni, and S. Behnke, “Evaluating the ef-
ficiency of frontier-based exploration strategies,” in 41st International
Symposium on Robotics (ISR) and 6th German Conference on Robotics
(ROBOTIK), Munich, Germany, 2010.

[7] C. Dornhege and A. Kleiner, “A frontier-void-based approach for
autonomous exploration in 3D,” Advanced Robotics, vol. 27, no. 6,
pp. 459–468, 2013.

[8] L. Heng, A. Gotovos, A. Krause, and M. Pollefeys, “Efficient visual
exploration and coverage with a micro aerial vehicle in unknown
environments,” in IEEE International Conference on Robotics and
Automation (ICRA), Seattle, WA, May 2015.

[9] T. Cieslewski, E. Kaufmann, and D. Scaramuzza, “Rapid exploration
with multi-rotors: A frontier selection method for high speed flight,” in
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), Vancouver, Canda, Sept. 2017.

[10] F. Bourgault, A. A. Makarenko, S. B. Williams, B. Grocholsky, and
H. F. Durrant-Whyte, “Information based adaptive robotic explo-
ration,” in IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), Lausanne, Switzerland, Oct. 2002.

[11] C. Stachniss, G. Grisetti, and W. Burgard, “Information gain-based ex-
ploration using rao-blackwellized particle filters.” in Robotics: Science
and Systems, Cambridge, MA, June 2005.

[12] W. Tabib, M. Corah, N. Michael, and R. Whittaker, “Computation-
ally efficient information-theoretic exploration of pits and caves,” in
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), Daejeon, Korea, Oct. 2016.

[13] S. Bai, J. Wang, F. Chen, and B. Englot, “Information-theoretic
exploration with bayesian optimization,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), Daejeon, Korea,
Oct. 2016.

[14] H. Choset, S. Walker, K. Eiamsa-Ard, and J. Burdick, “Sensor-based
exploration: Incremental construction of the hierarchical generalized
voronoi graph,” The International Journal of Robotics Research,
vol. 19, no. 2, pp. 126–148, 2000.

[15] E. U. Acar and H. Choset, “Sensor-based coverage of unknown
environments: Incremental construction of morse decompositions,”
The International Journal of Robotics Research, vol. 21, no. 4, pp.
345–366, 2002.

[16] S. Kim, S. Bhattacharya, R. Ghrist, and V. Kumar, “Topological
exploration of unknown and partially known environments,” in 2013
IEEE/RSJ International Conference on Intelligent Robots and Systems.
IEEE, 2013, pp. 3851–3858.

[17] S. Thrun, “Learning metric-topological maps for indoor mobile robot
navigation,” Artificial Intelligence, vol. 99, no. 1, pp. 21–71, 1998.

[18] T. Kollar and N. Roy, “Trajectory optimization using reinforcement
learning for map exploration,” The International Journal of Robotics
Research, vol. 27, no. 2, pp. 175–196, 2008.

[19] T. Chen, S. Gupta, and A. Gupta, “Learning exploration policies for
navigation,” in Proceedings of Seventh International Conference on
Learning Representations (ICLR), New Orleans, LA, May 2019.

[20] W. Burgard, M. Moors, C. Stachniss, and F. E. Schneider, “Coordi-
nated multi-robot exploration,” IEEE Transactions on robotics, vol. 21,
no. 3, pp. 376–386, 2005.

[21] M. S. Couceiro, R. P. Rocha, and N. M. Ferreira, “A novel multi-
robot exploration approach based on particle swarm optimization
algorithms,” in IEEE International Symposium on Safety, Security, and
Rescue Robotics, Kyoto, Japan, Oct. 2011.

[22] A. Bautin, O. Simonin, and F. Charpillet, “Minpos: A novel frontier
allocation algorithm for multi-robot exploration,” in International
conference on intelligent robotics and applications, Montréal, Canada,
Oct. 2012.

[23] C. Nieto-Granda, J. G. Rogers III, and H. I. Christensen, “Coordination
strategies for multi-robot exploration and mapping,” The International
Journal of Robotics Research, vol. 33, no. 4, pp. 519–533, 2014.

[24] M. Corah and N. Michael, “Efficient online multi-robot exploration
via distributed sequential greedy assignment.” in Robotics: Science
and Systems, Cambridge, MA, July 2017.

[25] S. M. LaValle, “Rapidly-exploring random trees: A new tool for path
planning,” 1998.

[26] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” The International Journal of Robotics Research,
vol. 30, no. 7, pp. 846–894, 2011.

[27] M. Roberts, D. Dey, A. Truong, S. Sinha, S. Shah, A. Kapoor, P. Han-
rahan, and N. Joshi, “Submodular trajectory optimization for aerial
3D scanning,” in Proceedings of the IEEE International Conference
on Computer Vision, Venice, Italy, Oct. 2017.

[28] S. Russell and P. Norvig, “Artificial intelligence: a modern approach,”
2002.

[29] C. H. Papadimitriou, “The complexity of the lin–kernighan heuristic
for the traveling salesman problem,” SIAM Journal on Computing,
vol. 21, no. 3, pp. 450–465, 1992.

[30] J. Zhang and S. Singh, “Laser-visual-inertial odometry and mapping
with high robustness and low drift,” Journal of Field Robotics, vol. 35,
no. 8, pp. 1242–1264, 2018.

[31] J. Zhang, C. Hu, R. G. Chadha, and S. Singh, “Falco: Fast likelihood-
based collision avoidance with extension to human-guided navigation,”
Journal of Field Robotics, 2020.

	Introduction
	Related Work
	Problem Definition
	Methodology
	Local Planning
	Global Planning
	Implementation Details

	Experiments
	Conclusion
	References

