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Abstract— Positioning and mapping can be conducted accu-
rately by state-of-the-art state estimation methods. However,
reliability of these methods is largely based on avoiding de-
generacy that can arise from cases such as scarcity of texture
features for vision sensors and lack of geometrical structures
for range sensors. Since the problems are inevitably solved
in uncontrived environments where sensors cannot function
with their highest quality, it is important for the estimation
methods to be robust to degeneracy. This paper proposes an
online method to mitigate for degeneracy in optimization-
based problems, through analysis of geometric structure of
the problem constraints. The method determines and separates
degenerate directions in the state space, and only partially solves
the problem in well-conditioned directions. We demonstrate
utility of this method with data from a camera and lidar sensor
pack to estimate 6-DOF ego-motion. Experimental results show
that the system is able to improve estimation in environmentally
degenerate cases, resulting in enhanced robustness for online
positioning and mapping.

I. INTRODUCTION

Recent developments on state estimation methods have
shown promising results in positioning and mapping. It
is now common to use vision and/or range sensing to
recover sensor motion with low drift over long distances.
However, the problem of degeneracy remains less studied
and prevents navigation systems from reliable functioning,
e.g. a camera in a feature-poor scene or a lidar in a planar
environment, causing estimation failure. Common ways to
deal with degeneracy are 1) switching to a different method,
and 2) adding in artificial constraints such as from a constant
velocity model during the course of state estimation. Neither
approach is satisfactory as the first approach requires a spare
method being available, and the second approach brings in
unnecessary errors even when the problem itself is well-
conditioned and solvable.

Our approach is motivated by the observation that even
if a set of data used by an estimation method is locally
degenerate, very often, some of the constraints provided can
be used to solve in a subspace of the original problem. In
other words, additional constraints or assumptions do not
need to apply in well-conditioned directions, but degenerate
directions only, to maximally reduce their negative effect.
The above discussion leads to two extreme cases, 1) the
problem is well-conditioned entirely and can be solved as
is, and 2) the problem is degenerate completely and needs
help in all DOF. Our method automatically separates de-
generate directions from well-conditioned directions. When
degeneracy is determined, a simple technique called solution
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Fig. 1. Intuition of the proposed method in determining state estimation
degeneracy. The black lines represent constraints in a state estimation
problem. (a) illustrates a well-conditioned problem. The solution (green dot)
is constrained in different directions. (b) gives an example of degeneracy.
The constraints are mostly parallel such that the problem is degenerate along
the blue arrow. Our method evaluates the constraints online to determine
degeneracy. A simple technique called solution remapping automatically
separates degenerate directions (blue arrow) from well-conditioned direc-
tions (orange arrow), and only solves the problem in the well-conditioned
directions. This prevents faulty solutions caused by degeneracy.

remapping linearly combines the solution with a best guess.
The problem is only solved in well-conditioned directions,
and the best guess is used in degenerate directions.

The proposed method online evaluates degeneracy for
optimization-based methods, through analysis of geometric
structure of the problem constraints. In a linearized system,
intuitively, a constraint is a (hyper-)plane in the state space. A
set of well-conditioned constraints should distribute toward
different directions, constraining the solution from different
angles (an example is shown in Fig. 1(a)). On the other hand,
the case that all planes are mostly parallel corresponds to
degeneracy – the solution is poorly constrained in directions
parallel to the planes (as shown in Fig. 1(b)). We mathemat-
ically define a degeneracy factor as stiffness of the solution
w.r.t. disturbances to the constraints. By formulating and
solving an optimization problem, we derive a closed form
expression of the degeneracy factor containing nothing but
eigenvalues and eigenvectors of the system – without rein-
venting the wheel, our findings enrich existing eigenvalues
and eigenvectors with new geometrical meanings.

Our method functions as a plug-in step and can be adapted
to common linear and nonlinear solvers with negligible add-
in computational complexity. We evaluate the method with
a custom-built state estimation system combing both vision
and lidar sensors. Experimental results show that the system
is able to improve estimation in environmentally degenerate
cases and robustly conduct online positioning and mapping.

II. RELATED WORK

The topic of this paper is most relevant to sensitivity
and robustness analysis. Sensitivity has been extensively
studied in the robotics community. Typically, a covariance
matrix is used as a representation of accuracy. For state
estimation problems, if a Kalman filter [1] is used, the filter
itself maintains a covariance matrix of the state estimate.
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Other work has been devoted to derive an upper bound of
the covariance [2]. With a particle filter [1], distributions
of the particles and the corresponding importance weights
represent the uncertainty. A Jacobian matrix is commonly
used to propagate errors from sensor noise to uncertainty of
state estimates assuming local linearity. For instance, Eudes
and Lhuillier [3] analyze accuracy of structure from motion
by deriving a sequence of Jacobian matrices connecting
errors in camera pixels and 3D reconstructed points, in a
local bundle adjustment problem. Also, Censi uses the error
model of ranger finders to derive a lower bound of the state
estimation accuracy (known as achievable accuracy) in both
pose tracking [4] and localization [5] problems. The bound
is derived through usage of Fisher information matrices.

Robustness is mostly studied in the control domain. Ro-
bustness refers to the capability of a system to converge to
a planned state or a sequence of states under disturbances
[6]. A well-known class of methods is robust control [7].
The methods study convergence characteristics of a closed
loop system with variations of system parameters, based
on the Lyapunov theory [8]. The methods are widely used
on ground [9] and aerial [10], [11] vehicles for controller
design. Also, from linear control theory [12], one is able
to determine controllable/observable subspaces. It is similar
to our method which finds degenerate directions. Using
controllability/observability gramian [13], one can analyze
directions of the controllable/observable subspaces through
its eigenvalues and eigenvectors. In comparison, our method
is designed for analysis of degeneracy. After separation of
degenerate directions from well-conditioned directions, the
method linearly projects the solution and combines it with
the best guess to prevent estimation failure.

The study of robustness is rather sparse in positioning
and mapping problems. The robustness of state estimates is
mostly handled heuristically. For example, with an RGB-D
camera, Hu et al.’s [14] motion estimation method switches
between two estimation algorithms to handle failure of an
individual algorithm. Also, robustness can refer to capability
of an optimization method in finding global optima instead of
local optima. For instance, the Levenberg-Marquardt method
is known to be more robust than the Gauss-Newton method
[15]. In comparison, our problem is essentially different.
The global optimum itself can be a faulty solution. Our
method is devoted to determining degenerate directions and
preventing the optimization from finding the global optimum
in those directions – the solution is only updated in well-
conditioned directions and a best guess is used in the
degenerate directions.

The contributions of this paper are, 1) defining and de-
riving a closed form expression of a degeneracy factor for
general optimization-based methods, and 2) introducing solu-
tion remapping to prevent estimation failure online with little
computational cost. Since the degeneracy is analyzed with a
linearized system, the paper is also relevant to perturbation
theory for linear systems [16]. However, perturbation theory
studies characteristics of the system with changes to existing
constraints, while our proposed method inserts an additional

constraint into the system as a disturbance and studies change
of the solution w.r.t. the disturbance. The difference is that
the disturbance can be introduced in an arbitrary direction
but the perturbation is limited to the existing constraints.

III. PROBLEM STATEMENT

The goal of this study is to evaluate degeneracy of an
optimization-based state estimation problem, by studying the
structure of the constraints in the state space. Define x as a
n × 1 state vector, where n is the dimension of the state
space. Our state estimation problem is to solve a function,

arg min
x

f2(x). (1)

In the case that (1) is a linear function of x, we can directly
solve for x with the singular value decomposition or QR
decomposition method [17]. On the other hand, if (1) is a
nonlinear function, methods such as Gauss-Newton, gradient
descent, and Levenberg-Marquardt [15] can be used. Most
nonlinear optimization methods locally linearize the problem
by computation of the Jacobian matrix of f w.r.t. x,

J = ∂f(x)/∂x. (2)

Given an initial guess, the methods iteratively adjust x by
usage of J until convergence to find an optimum.

Regardless of linearity, a linear problem is always in-
volved, either as the problem itself or as a step when solving
a nonlinear problem. Hence we investigate the linear problem

arg min
x
‖Ax− b‖2 . (3)

Our method considers each row in (3) as a (hyper-)plane
in the space of x, and studies geometric distribution of the
planes to determine degeneracy. We make two assumptions,

• We assume that matrix A is appropriately weighted
taking into account sensor noise. In other words, (3)
is a linearized form of (1) that retains the weights of
the original problem.

• We assume that the problem is full rank, i.e. not under-
constrained and the state estimate is dominated by the
true sensor measurements in the case that the problem
itself is not degenerate.

With assumptions made, our problem can be stated as,

Problem 1: Given a linearized system as (3), determine
degeneracy and corresponding degenerate directions in the
state space. In the case of degeneracy, prevent faulty solu-
tions from occurring in the degenerate directions.

IV. DEGENERACY EVALUATION

A. Mathematical Derivation

This section describes the methodology to evaluate de-
generacy of a linearized system. We start with mathematical
definition of the degeneracy factor. As shown in Fig. 2, the
black lines represent the constraints in a system described
by (3), and the blue dot indicates the true solution, denoted
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Fig. 2. Definition of degeneracy factor. We insert an additional constraint
(orange line) as a disturbance and inspect movement of the solution x0.

as x0. To measure degeneracy of the system, we insert an
additional constraint passing through x0 as the orange line,

cT (x− x0) = 0, ||c|| = 1, (4)

where c is a n × 1 vector indicating the normal of the
constraint (the black arrow in Fig. 2). Since the constraint
intersects with x0, insertion of the constraint does not change
x0. Then, we move the constraint toward its normal direction
c for a certain distance δd. Correspondingly, we measure the
shift of x0 in the same direction. Let δxc be the amount of
shift. For a given δd, the shift δxc varies as a function of the
direction of c. Let δx∗c be the maximum amount of shift,

δx∗c = max
c
δxc. (5)

We now define the degeneracy factor as follows,

Definition 1: The degeneracy factor D of a system is
mathematically defined as D = δd/δx∗c .

By such a definition, we evaluate stiffness of the solution
w.r.t. disturbances to the constraints. By maximizing δxc,
we find a direction in which the solution is the least stable.
The corresponding stiffness in that direction is considered a
measurement of degeneracy. In other words, the degeneracy
is determined by the lower-bound of stiffness w.r.t. distur-
bances in all possible directions. Here, note that Definition 1
is not limited to linearized systems. However, a closed form
expression of D is available if the system is linearized. Next,
Lemma 1 and Lemma 2 help us derive D.

Lemma 1: For the linearized system (3), the degeneracy
factor D is a function of A, but not b.

Proof: Let us start with insertion of the additional
constraint passing through x0. Eq. (3) can be viewed as
solving Ax = b with the l2 norm. Stacking (3) with (4),[

A
cT

]
x =

[
b

cT x0

]
. (6)

It is trivial to see that the solution of (6) is still x0. Now,
we introduce a disturbance by shifting the constraint toward
this normal direction by δd. This gives[

A
cT

]
x =

[
b

cT x0 + δd

]
. (7)

Let δx be the corresponding shift of x0. With the disturbance
introduced, the solution of (7) becomes x0 + δx. Applying
left pseudo-inverse to the left sides of (6) and (7), where[

A
cT

]−1
left

= (
[

AT c
] [ A

cT

]
)−1

[
AT c

]
, (8)

and subtracting (6) from (7), we can compute δx,

δx = (AT A + ccT )−1cδd. (9)

Recall that ||c|| = 1, the shift in the direction of c, δxc, can
be calculated as the dot product of c and δx,

δxc = cT δx = cT (AT A + ccT )−1cδd. (10)

Eq. (10) tells us that δxc is a function of A, c, and δd, but
not a function of b. Hence, we complete the proof.

Lemma 1 indicates that the degeneracy is only determined
by directions of the constraints, represented by A, and
irrelevant to positions of the constraints, b. This confirms our
intuition in Fig. 1 that parallelism of the constraints intro-
duces degeneracy while different directions of the constraints
maintain a well-conditioned system. Further, the following
Lemma 2 will help us derive the expression of D.

Lemma 2: For the linearized system (3), D = λmin + 1,
where λmin is the smallest eigenvalue of AT A.

Proof: Since ||c|| = 1, the left and right pseudo-inverse
of c are c−1left = (cT c)−1cT = cT and c−Tright = c(cT c)−1 = c.
Substituting these two equations into (10), we obtain

δxc = c−1left(AT A + ccT )−1c−Trightδd

= (cT (AT A + ccT )c)−1δd

= (cT AT Ac + 1)−1δd. (11)

In (11), the value of δd is given. To maximize δxc, we
equally minimize cT AT Ac in the following problem,

Problem 2: Compute c∗ to minimize function

c∗ = arg min
c

cT AT Ac, s.t. ||c|| = 1. (12)

In (12), since ||c|| = 1, Problem 2 is equal to

c∗ = arg min
c

cT AT Ac
cT c

. (13)

The term to be minimized in (13) is a Rayleigh quotient
[18]. Since AT A is a symmetric matrix, the minimum of
the quotient is equal to the minimum eigenvalue of AT A,
namely λmin. This happens when c∗ is the corresponding
eigenvector of λmin. Substituting c∗ into (11), we can derive

δx∗c =
δd

λmin + 1
. (14)

Therefore, the degeneracy factor D = δd/δx∗c = λmin + 1.

Lemma 2 indicates that the degeneracy is determined
by λmin of AT A. The associated eigenvector, denoted as
vmin, represents the first degenerate direction. Let λi and
vi be the i-th smallest eigenvalue and eigenvector of AT A,
i = 1, ..., n, where λ1 = λmin and v1 = vmin. Further
expanding the above result for one more step using the theory
of Rayleigh quotient, we conclude that the degeneracy in
the perpendicular direction to v1,..., vi−1 is λi + 1, and the
corresponding vi indicates the i-th degenerate direction.
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Fig. 3. (a) Illustration of solution remapping in a linear problem. (b) An
example of solution remapping applied to a nonlinear problem.

B. Solution Remapping

In this section, we introduce a simple technique which we
call solution remapping to handle degeneracy. We start with
a linear problem and then discuss usage of the technique in
a nonlinear problem. We first find a number m, 0 ≤ m ≤ n,
of eigenvalues λ1,..., λm that are smaller than a threshold.
Here, m = 0 indicates a well-conditioned system and m = n
indicates a completely degenerate system. Let us construct
three matrices as follows,

Vp = [v1, ..., vm, 0, ..., 0]T , (15)

Vu = [0, ..., 0, vm+1, ..., vn]T , (16)

Vf = [v1, ..., vm, vm+1, ..., vn]T . (17)

Following the convention of Kalman filters, let us define
xp as a prediction which is the best guess of the true state. Let
xu be an update obtained from solving the system equation
described in (3). Here, note that even though the problem
is degenerate, (3) is still solvable and yields a solution due
to noise contained in the system. The key idea of solution
remapping is to use xp in the degenerate directions, v1,...,
vm, and xu in the well-conditioned directions, vm+1,..., vn.
The final solution, xf , is a linear combination of xp and xu,

xf = x′p + x′u, (18)

where x′p = V−1f Vpxp and x′u = V−1f Vuxu.
Fig. 3(a) explains the intuition behind solution remapping,

in a two dimensional example. The black axes represent
the eigenvectors of a system and the lengths of the axes
indicate the eigenvalues. In this example, v1 is a degenerate
direction and v2 is a well-conditioned direction. With (18),
we project xp onto v1 to obtain x′p, and xu onto v2 to
obtain x′u. Finally, xf is the vector sum of x′p and x′u. Here,

Algorithm 1: Nonlinear Solver with Solution Remapping
1 input : f (nonlinear function), xp (predicted solution)
2 output : xf (final solution)
3 begin
4 xf ← xp; O(∗)
5 Linearize f at xp to get A, b, and AT A; O(∗)
6 Compute λi and vi of AT A, i = 1, ..., n; O(n3)
7 Determine a number m of λi smaller than a threshold,

construct Vp, Vu, and Vf based on (15)-(17); O(n2)
8 while nonlinear iterations do O(kn2 + ∗)
9 Compute update ∆xu; O(∗)

10 xf ← xf + V−1
f Vp∆xu; O(n2)

11 end
12 Return xf ;
13 end

Fig. 4. Determining threshold. From one sample dataset, we calculate the
distribution of λmin in both well-conditioned scenes and degenerate scenes.
The threshold is set at the mid-point of the margin between both groups.

the threshold determining degeneracy is calculated from one
test containing both well-conditioned scenes and degenerate
scenes. Fig. 4 provides an example. The threshold λmin is
generated by a scan matching method which encounters a
planar environment. The threshold is set at the mid-point of
the margin between both groups.

Now, let us adapt solution remapping to a nonlinear solver
in Algorithm 1. The algorithm takes a nonlinear function f
and a prediction xp as input, and computes the final solution
xf . Solution remapping is done by lines 6, 7, and 10. On
line 6, we compute the eigenvalues λi and eigenvectors vi,
i = 1, ..., n. On line 7, we construct the three matrices Vp,
Vu, and Vf by comparing λi to a threshold. The solution
is only updated in the well-conditioned directions on line
10, leaving xp in the degenerate directions unchanged. From
our experience it is not necessary to update the directions
for each nonlinear iteration but the first iteration only,
saving computation time. Here, we use O(∗) to denote the
original complexity of the nonlinear solver. By introduction
of solution remapping, the additional add-in complexity is
stated in the following theorem.

Theorem 1: Algorithm 1 adds O(kn2 + n3) time to the
original nonlinear solver, where k is the number of iterations,
and n is the dimension of the state space.

Here, note that when the dimension of the state space n is
constant and relatively small, the add-in complexity becomes
O(k). This is often the case, for example when tracking the
state under 6-DOF motion. Finally, let us give an example
to explain the intuition behind Algorithm 1. As shown in
Fig. 3(b), the black curves represent elevation curves. In this
example, the global minimum (orange dot) is far away from
the true state (blue dot) because of the degenerate constraint
structure. In fact, the global minimum is determined by noise
along the degenerate direction (indicated by the blue arrow).
To prevent the solution from moving toward the faulty global
minimum, we use xp in the degenerate direction. The solution
is only updated along the orange arrow during optimization.
The result is that we find a solution as the green dot, much
closer to the true state than the global minimum.

V. VISION-LIDAR EGO-MOTION ESTIMATION SYSTEM

A. Sensor Hardware

The study of this paper is validated on, but not limited
to a custom built camera and lidar system. The camera is
a uEye monochrome camera configured at 60Hz frame rate
and 752 × 480 pixel resolution with 76◦ horizontal field of
view. The lidar is a Hokuyo UTM-30LX laser scanner which
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Fig. 5. Sensors involved in the study. The sensors are composed of an
uEye camera and a custom built 3D lidar based on a Hokuyo laser scanner.

has 180◦ field of view and 0.25◦ resolution with 40 lines/sec
scanning rate. A motor rotates the laser scanner at 180◦/s
average angular speed back and forth between −90◦ and
90◦ to realize 3D scanning. An encoder measures the motor
rotation angle with 0.25◦ resolution.

B. Software System

The vision and lidar integrated motion estimation system
built in our previous work [19] takes visual images and
lidar clouds from the sensors in Fig. 5 and estimates its
ego-motion to build a map of the traversed environment.
The system uses a visual odometry method running at a
high frequency (60Hz) followed by scan matching at a low
frequency (1Hz) to refine motion estimates, hence is able to
map in real-time on the move. We have chosen this system
as it combines multiple components for evaluation of the
proposed method. The system combines three modules as
shown in Fig. 6, each formulates and solves a nonlinear
optimization problem with the Levenberg-Marquardt method
[15], and is adapted with solution remapping.

1) Frame to Frame Visual Odometry: The visual odom-
etry estimates motion between two consecutive frames. We
track Harris corners [20] by the Kanade Lucas Tomasi (KLT)
method [21]. The scale of translation is determined from lidar
range measurements. We register lidar clouds on a depthmap
in the camera field of view and associate depth to visual
features from the depthmap. For a feature point, we find
three points on the depthmap that form a planar patch with
a KD-tree [22]. The depth is calculated by projecting a ray
from the camera center to the planar patch.

When solving for motion, the method first tries to associate
depth from the depthmap. However, if depth is unavailable
from the depthmap, it tries to reconstruct the depth by trian-
gulation using the estimated motion if the feature is tracked
long enough. As the last choice, the method uses the feature
without depth by using a different type of constraint. The
motion estimation solves an optimization problem including
constraints from features both with and without depth.

2) Sweep to Sweep Refinement: The refinement module
matches lidar clouds between consecutive sweeps to refine
the motion estimates. Here, a sweep is the process that the
lidar completes for one full scan coverage, or a 180◦ rotation

 
Fig. 6. Block diagram of the motion estimation software system.

of the Hokuyo laser scanner (lasting for 1s). The drift of the
visual odometry is modeled with constant velocity within
a sweep. This module combines a linear motion model to
remove distortion in the lidar clouds caused by drift of the
visual odometry.

The scan matching uses geometric features located on
local edges and planar surfaces, namely edge points and
planar points. It matches an edge point and a planar point
from the current sweep to an edge line segment and a
planar surface patch from the previous sweep. The motion
refinement minimizes overall distances from the edge points
and planar points to their correspondences.

3) Sweep to Map Registration: The registration module
matches lidar clouds from sweeps to the current map and
registers the lidar clouds to incrementally expand the map. As
distortion caused by drift of the visual odometry is removed,
this module simply assumes rigid body transformation, simi-
lar to the standard iterative closest point method [23]. Again,
both edge points and planar points are used in scan matching.

VI. EXPERIMENTS

We conduct experiments with the vision-lidar motion
estimation system introduced in Section V. For each test,
the sensor hardware in Fig. 5 is carried by a person who
walks at a speed of 0.5m/s. The proposed degeneracy factor
is compared with two other terms:
• Inverse Maximum Covariance Eigenvalue (IMCE):

From the least-square regression theory [17], one is
able to determine the covariance of a linear solution,

Σ = σ2(AT A)−1, (19)

where σ2 is a variance computed from the residuals,
σ2 = ||Ax0 − b||2/(n − m). Here, recall that n is
the number of constraints and m is the dimension of
the linear problem. Since we propose in Section IV
to use the eigenvalues of AT A to evaluate degeneracy,
let us also use the eigenvalues of Σ. Here, IMCE is
defined as inverse of the maximum eigenvalue of Σ.
Additionally, to inspect how each element contributes
to the covariance, let us define another term R as
squared sum of the residuals, R = ||Ax0 − b||2.

• Inverse Condition Number (ICN): The condition num-
ber [24] of a linear system is determined by the
ratio between the minimum and maximum eigenvalues
of AT A, defined as

√
λm/λ1. The term evaluates

numerical condition of a linear system. A large con-
dition number indicates ill-conditioning. In this case,
the resulting solution suffers from inaccuracy due to
numerical calculation errors. For comparison purposes,
we take its inverse and denote it as ICN.

The overall experiments consist of four tests. Test 1
validates the proposed method for visual odometry (first
module in Fig. 6), Test 2 concentrates on the two scan
matching sections (second and third modules in Fig. 6), and
Test 3 covers all three modules. We consider failure cases
of the visual odometry and classify them into motion blur,
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dynamic environment, and feature-poor scene. We think that
motion blur can be handled by a fast camera and image frame
rate, and dynamic environments can be addressed by outlier
rejection or distraction suppression technique [25]. A feature-
poor scene is the most relevant to degeneracy. Typically, this
occurs where the camera faces a texture-less environment,
points to the sun, or is in a dark environment. Likely, few
features are available or the features are extracted from a
concentrated area within the images.

With such consideration, Test 1 is conducted in a corridor.
As shown in Fig. 7, the path goes through two feature-poor
corners labeled with numbers 1 and 2. Fig. 7(a) presents
the estimated trajectory and the map built when degeneracy
is eliminated by solution remapping (Algorithm 1). Here,
prediction is provided by a constant velocity model. Fig. 7(b)
shows one sample image from each of the labeled cor-
ners. In Fig. 7(c)-(d), we show the eigenvectors of matrix
AT A corresponding to the two images in Fig. 7(c). Darker
blocks indicate larger values, and rows in top-down order
correspond to small to large eigenvalues. The directions
above the red lines are degenerate. Careful comparison finds
that in location 1, the most degenerate direction is lateral
translation (the darkest block on the first row is labeled with
“L: left”). This makes sense as features in location 1 are
vertically distributed, resulting in lateral translation to be
poorly constrained. Correspondingly, the red trajectory jumps
leftward. In location 2, Fig. 7(d) indicates degeneracy mostly
in vertical translation (the darkest block on the first row is
labeled with “U: up”). This is because the features span
horizontally. Accordingly, the red trajectory jumps upward.

Next we examine IMCE. In Fig. 7(f), we show the values
for both the first and last iterations in the nonlinear optimiza-
tion. We see that the values of IMCE are noisy mostly due
to the noisy nature of the squared sum of the residuals R
(Fig. 7(g)). Note that the value at the first iteration is more
meaningful as ideally we want to detect degeneracy from
the beginning of the optimization so that solution remapping
can be introduced. However, we also see IMCE at the first
iteration is much noisier than at the last iteration as R is
not yet minimized. In Fig. 7(h), we show the number of
constraints, which is also involved in the computation of the
covariance Σ and possibly brings in uncertainty.

Finally we compare ICN and degeneracy factor D in
Fig. 7(i). Here, ICN is manually scaled to match with D.
Further, we compare the ratio of the two terms D/ICN in
Fig. 7(j). It is apparent that the value of the ratio reduces
in locations 1 and 2, indicating D is more effective. The
reason is that ICN calculates the ratio between the minimum
and maximum eigenvalues of AT A such that the maximum
eigenvalue also has effect on the term. In Fig. 7(k), we show
the maximum eigenvalue λ6 which decreases in locations
1 and 2. The reduction of λ6 contributes to the increase
of ICN. Here, the consideration is that degeneracy should
not be determined by the well-conditioned directions but by
the degenerate directions themselves. Finally, we show the
number of degenerate DOF during Test 1 in Fig. 7(l).

Then, in Test 2, we choose an environment which contains

a piece of flat ground as in Fig. 8. Traveling on the flat
ground results in sliding of the scan matching on the red

(a) Map (b) Image features

(c) Location 1 (d) Location 2 (e)

(f) IMCE at the first and last iterations

(g) R at the first and last iterations

(h) Number of constraints

(i) ICN, D

(j) ICN, D

(k) Maximum eigenvalue of AT A

(l) Number of degenerate DOF

Fig. 7. Test 1: Visual odometry degeneracy in feature-poor environment.
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curve in Fig. 8(a). Correspondingly, the top three rows of
Fig. 8(c)-(d) indicate that degeneracy occurs in the directions
of forward translation, lateral translation, and yaw rotation,
meaning that translation parallel to the ground and rotation
perpendicular to the ground are poorly constrained.

Looking into the rest of the figure, we find that the value
of IMCE is either noisy or does not decrease obviously
(for the sweep to sweep refinement section in Fig. 8(f)
and the sweep to map registration section in Fig. 8(g)).
Again, this is because IMCE is determined by multiple terms
including squared sum of the residuals R and the number
of constraints. Here, note that the values of IMCE do not
differ much between the first and last iterations because the
scan matching only refines motion estimates generated by
the visual odometry. The value of R reduces little during the
course of optimization. Fig. 8(h)-(i) compare ICN and D.
We can see an obvious drop of value between 35-70s when
the degeneracy occurs. In Fig. 8(j), the ratio D/ICN also
decreases slightly during this interval. In Fig. 8(k), we see
that the method detects three degenerate DOF corresponding
to the top three rows in Fig. 8(c)-(d).

Finally, we conduct a larger scale test in Test 3 containing
indoor and outdoor environments, as shown in Fig. 9. The
path starts in front of a building, passes through the building
and exits to the outside, climbs stairs, and follows a small
trail to come back and finish at the exact starting position.
The overall traveling distance is 538m. The path contains two
degenerate scenes for the visual odometry in locations 1 and
3 due to undesirable lighting conditions, and two degenerate
scenes for the scan matching in locations 2 and 4. In location
2, the lidar sees the flat ground and one wall on its right side
causing degeneracy in forward translation. In location 4, the
lidar only sees the flat ground similar to Test 2. We observe
that the value of D drops in locations 1 and 3 in Fig. 9(c)
and in locations 2 and 4 in Fig. 9(d)-(e).

Fig. 10 further compares the estimated trajectories. The
green curve is without solution remapping, hence jumps oc-
cur along the path. The red curve is estimated with consistent
motion prior added to the motion estimation problems. The
visual odometry section takes motion prior from a constant
velocity model, and each scan matching section takes output
from the previous section. Here, the motion prior is given
as little as possible to eliminate degeneracy. However, it still
causes drift at the end to be about three times as large as
on the blue curve (proposed method). Thanks to solution
remapping, the system is able to conquer all degeneracy
resulting in a 0.71% relative position error at the end of
the blue curve compared to the distance traveled.

VII. DISCUSSION

As the solution remapping linearly combines the predic-
tion and update, one can argue that this is a variant of the
Kalman filter. Our response is that a filter handles accuracy,
while the proposed method is devoted to degeneracy and
robustness. The difference is that filters average multiple
noisy measurements to gain better accuracy. When working
with degeneracy, we consider the solution to be completely

unusable in the degenerate directions and simply take the
prediction instead. Our second response is that solution

(a) Map (b) Lidar scan

(c) Sweep to sweep (d) Sweep to map (e)

(f) IMCE of sweep to sweep refinement section

(g) IMCE of sweep to map registration section

(h) ICN, D of sweep to sweep refinement section

(i) ICN, D of sweep to map registration section

(j) D/ICN for both sections

(k) Number of degenerate DOF

Fig. 8. Test 2: Scan matching degeneracy on flat ground.
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(a) Map (b) Image features and lidar scans

(c) D of frame to frame visual odometry section (d) D of sweep to sweep refinement section (e) D of sweep to map registration section

Fig. 9. Test 3: Complete test including indoor and outdoor environments. The overall path is 538m long, starting in front of a building, passing through
the building with stairs and following a trail on hilly terrain to return to the start. The path encounters four degenerate scenes labeled with 1-4.
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Fig. 10. Trajectories of Test 3. The green curve is estimated without
solution remapping, and jumps occur along the path. The red curve uses
consistent motion prior to eliminate degeneracy. This results in more drift
consequently. The blue curve uses the proposed solution remapping. The
position error at the end is 0.71% of the 538m trajectory length.

remapping can be adapted to individual iterations of non-
linear optimization. A filter only takes the final solutions to
seed steps. Finally, a filter can be the following step of the
proposed method taking its output for further integration.

VIII. CONCLUSION

Robustness of estimation is critical for state estimation
and especially for autonomous vehicles. This paper improves
robustness by handling environmental degeneracy. A degen-
eracy factor is mathematically defined and derived. Degen-
eracy is evaluated through computation of the associated
eigenvalues and eigenvectors. When degeneracy occurs, the
proposed method automatically separates the state space
and partially solves the problem only in well-conditioned
directions. In degenerate directions, a best guess is used
instead. The method is tested with a custom-built vision
and lidar system in a number of challenging scenarios, for
online positioning and mapping. Experimental results show
that the system is able to conquer environmentally degenerate
moments, to reliably estimate state, and to use the state to
build accurate 3D representations of the environment.
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