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Abstract We here address the issue of air vehicles flying autonomously at a high
speed in complex environments. Typically, autonomous navigation through a com-
plex environment requires a continuous heuristic search on a graph generated by a
k-connected grid or a probabilistic scheme. The process is expensive especially if
the paths must be kino-dynamically feasible. Aimed at tackling the problem from a
different angle, we consider the case that the environment is mostly known from a
prior map. The proposed method suggests the computation needed to find safe paths
during fast flight can be greatly reduced if we pre-compute and carefully arrange a
set of alternative paths before the flight. During the navigation, the vehicle selects a
pre-computed path to navigate without the need to generate a new path. The result
is that majority of the processing is migrated to offline path generation. Effectively,
the onboard computation is significantly reduced, taking < 3% of a CPU thread on a
modern embedded computer. In experiments, it enables a lightweight aerial vehicle
to maneuver aggressively through a cluttered forest environment at 10m/s.

1 Introduction

Fast autonomous flight in complex environments is challenging. Planning paths to
avoid obstacles discovered with onboard perception sensors requires creating and
updating a map of the environment that can be searched for kinodynamically feasi-
ble paths. This is computationally expensive. Since computational resources avail-
able for flying vehicles are limited, ideally, we would like a method that can guide an
aerial vehicle with low computational complexity. One way is to use a hierarchical
method that separates the problem of safe flight into two subproblems. One prob-
lem solves a global path-planning problem by searching a k-connected grid with a
heuristic ensuring that it does not get stuck into local minima. A second problem
solves a local problem that runs in parallel tracks the global path while avoiding ob-
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(a) (b)

(c)

Fig. 1 A simple illustration of pre-computed alternative lanes in (a) a 2D case and (b) a 3D case.
(a) is in top-down view. The yellow solid curve represents the main lane. The green, red, and gray
solid curves are alternative lanes at three different levels. The yellow dashed curves are crossways
connecting lanes at different levels. The paths are generated based on a prior map, therefore do
not collide with structures on the map, represented by the two black rectangles. (b) is in front
view. The yellow dot indicates the main lane. The green, red, and gray dots are alternative lanes.
Same with (a), the yellow dashed curves are crossways. The green, red, and gray dashed curves are
beltways connecting lanes at the same level. (c) A photo from an experiment where the proposed
method enables a lightweight aerial vehicle to maneuver aggressively at 10m/s in a cluttered forest
environment, avoiding obstacles labeled with the orange rectangles which do not exist on the map
but are only detected by onboard perception sensors. More details regarding the experiment are
available in Section 5.2, Test 1.

stacles. This method has been used successfully in aerial navigation but still requires
considerable computation. Here, we propose a method that reduces computational
complexity considerably such that it can ensure safe flight using very lightweight
computation onboard the aerial vehicle.

We propose to do this by trading computational complexity with memory. In-
stead of searching a graph that is continuously being updated by onboard perception
sensors, we pre-compute and carefully arrange a set of alternative paths before the
flight. Any prior map information is used to prune the set of alternative paths. During
the navigation, the vehicle does not generate a path but only chooses a pre-computed
path to follow. These pre-computed paths include a default path connecting from
start to goal, namely the “main lane”, a number of alternative paths to the default
path, namely “alternative lanes”, and short path segments for transitions among the
main lane and alternative lanes, namely “crossways” and “beltways” (see an exam-
ple in Fig. 1(a)-(b)). In such a method, the vehicle does not need to rely on the entire
perception sensor data to update the graph but uses only part of the data for collision
check on the pre-computed paths. This significantly reduces the onboard computa-
tion. The resulting online system consumes < 3% of a single CPU thread executed
on a modern embedded computer.
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One key insight is that the pre-computed paths function as a summary of the map
– these paths avoid structures on the map. The pre-computed paths gather abun-
dant information from the map in comparison to the existing planners. This heavily
releases the burden of online processing. Data from onboard perception sensors is
only for checking obstacle existence along the paths. This also lowers the require-
ment for the data density to carry out the path selection reliably. Another key insight
is that all alternative lanes lead to the goal. This way, the task is simplified where the
vehicle does not need to search for a path that ends at the goal – with any collision-
free path selected from the pre-computed paths, the vehicle will reach the goal by
simply following the path.

To the best of our knowledge, the demonstrated ability of aerial collision avoid-
ance has not been achieved by existing methods as in our experiment video1.

2 Related Work

Our work is most related to literature in path planning and collision avoidance with
an emphasis on robot navigation. Given a traversable representation of the envi-
ronment, graph search-based methods such as Dijkstra [1], A* [2], and D* [3]
algorithms tessellate the space into nodes connected by links, and traverse dif-
ferent nodes to search for paths. Sampling-based methods cover the space with
random samples. Paths are generated by connecting selected samples. Contempo-
rary sampling-based methods such as Rapidly-exploring Random Tree and its vari-
ants [4, 5] can handle maps in a large scale, generating paths in a relatively short
amount of time.

Certain path planning methods pre-process a map to extract traversable informa-
tion based on a particular representation. Such a representation facilitates the path
search. For example, Probabilistic Roadmap (PRM) [6] based methods randomly
sample on the map to create a connectivity graph. Paths are then found by search-
ing on the graph. Other examples include Voronoi graph [7] and vector field [8]. In
comparison, these methods share the same insight with the proposed method that all
pre-process a map and summarize it into a certain representation. However, a key
difference is that the summarized representation in our method is for a single pair of
start and goal, while methods such as PRM still need to traverse the graph to find a
path ending at the goal. The result is that our navigation problem is simplified since
finding any collision-free path can bring the vehicle to the goal.

For autonomous on-road driving, various methods [9] pre-compute paths to indi-
cate traffic lanes. The paths and their intersections form a graph of the road network.
In these methods, the pre-computed paths are arranged based on existing roads.
Since roads are supposed to be collision-free by default, the paths are not to avoid
structures left on the roads but only represent the connectivity of the roads.

The contribution of the paper is in separation of path generation from onboard
computation, by offline pre-computing a set of alternative lanes. This way, the on-
board computation is reduced to the minimum. The method is adaptable to vehi-
cles and applications with limited onboard processing power. Further, our previous

1 Experiment video: https://youtu.be/pR7Jeq9wCVU

https://youtu.be/pR7Jeq9wCVU
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work [10] used short alternative paths to enable navigation and collision avoidance.
A major improvement in this paper is to use long alternative lanes with crossways
and beltways for lane switching. The proposed method is proven to have a signifi-
cantly lower probability of full navigation blockage, and uses a much fewer number
of pre-computed paths in comparison to our previous method.

3 Problem Definition

The proposed method uses pre-computed alternative lanes to enable vehicle naviga-
tion and collision avoidance. We start with definitions of the alternative lanes as the
following.

• Define Q ⊂ R as the configuration space of a vehicle, and Qoccu ⊂Q as the oc-
cupied subspace based on the prior map. Qoccu is untraversable. The traversable
space is defined as Qtrav = Q\Qoccu. Let A ∈Qtrav and B ∈Qtrav be the naviga-
tion start and end points.

• Define a path named main lane connecting from A to B. The main lane is at level
0, denoted as l0 ∈Qtrav.

• Define alternative lanes to the main lane as paths connecting from A to B. The
alternative lanes adjacent to the main lane are at level 1. Away from the main
lane, the alternative lanes adjacent to level i ∈ Z+ lanes are at level i+ 1. An
alternative lane at level i is denoted as l j

i ∈Qtrav, where j ∈ Z+ is the index at
level i.

• Define crossways as paths connecting the main lane l0 and alternative lanes l j
i

sharing the same lane index at different levels (e.g. lanes connected to a yellow
dashed curve in Fig. 1(b)). A crossway can start and end at any level, denoted as
ck
(i, j) ∈Qtrav, where i is the level that ck

(i, j) starts from, j the lane index that ck
(i, j)

connects to, and k ∈ Z+ is the crossway index given i and j.
• Define beltways as paths connecting alternative lanes l j

i at the same level. A
beltway is denoted as bk

(i, j) ∈ Qtrav, where i and j are the level and lane index

that bk
(i, j) starts from, and k is the beltway index given i and j.

• Define vertices as intersections between lanes and crossways or beltways. A ver-
tex is denoted as vk

(i, j) ∈ Qtrav, where i and j are the level and lane index that

vk
(i, j) locates on, and k is the vertex index given i and j. Note that all vertices are

on lanes. That says, crossways and beltways can only intersect at connections to
lanes.

• A path set G = {l0, l j
i ,c

k
(i, j),b

k
(i, j),v

k
(i, j)}, i, j,k ∈ Z+, consists of all aforemen-

tioned paths and vertices.

As a convention in this paper, let us use ‘obstacles’ to refer to objects that do not
exist on the prior map but appear on paths in G . The occupied space on the prior
map Qoccu refers to ‘structures’. The navigation problem is to guide a vehicle from
A to B and avoid obstacles using a path set G .
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4 Method

4.1 Online Algorithm

The navigation and path selection algorithm is implemented based on the Dijkstra’s
algorithm [11]. Given a path set G , let v,v′ ∈ G be two adjacent vertices – v and v′

are connected by a path in G with no other vertex in between. Let us use N (v) to
denote the set of adjacent vertices of v, v′ ∈N (v) and vice versa. Our algorithm
uses a combination of two costs in determining a path. For an edge connecting two
adjacent vertices v and v′, a distance cost, cd(v,v′), is based on the distance from the
edge to the closest surrounding object,

cd(v,v′) =
∫ v′

v
max{D−d(δ ),0}dδ , (1)

where
d(δ ) = min{dstru(δ ),dobst(δ )}.

Here, dstru(δ ) defines the distance from each point on the edge to the closest struc-
ture on the map, pre-computed during the path generation, dobst(δ ) denotes the dis-
tance to the closest online discovered obstacle, δ is the length along the edge start-
ing from v, and D is a pre-defined safety distance threshold. In (1), d(δ ) is assigned
dstru(δ ) or dobst(δ ) depending on which one is closer, and contributes to cd(v,v′)
only if d(δ ) < D. In other words, if a path is further than D away from all sur-
rounding objects, there is no penalty for traveling through the path. The distance
cost cd(v,v′) uses an integration over the length of the edge, therefore if d(δ ) < D
along the path, the further the vehicle travels, the higher the cost is.

The second cost comes from that the vehicle switches from one lane to another.
We prefer the vehicle to stay on the same lane instead of switching between lanes
frequently. To this end, a switching cost, cs(v,v′), is designed. An edge on a lane has
a zero switching cost, an edge on a crossway or beltway has a non-zero switching
cost. This means that passing through a crossway or beltway for lane switching is
penalized. The cost of an edge, c(v,v′), is the weighted sum,

c(v,v′) = cd(v,v′)+wscs(v,v′), (2)

where ws is the weight. We evaluate the vehicle being away from surrounding ob-
jects to be much more important than staying on the same lane, hence we have
1 >> ws > 0.

With the costs defined, our navigation and path selection algorithm solves an
optimization problem that minimizes the accumulated cost along the path.

Problem 1 Given a path set G , compute a path l∗ connecting adjacent vertices in
G by minimizing the cost,

l∗ = argmin ∑
v,v′∈l, v′∈N (v)

c(v,v′). (3)
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Algorithm 1 solves the problem. The algorithm takes as inputs a path set G , a set
V ⊂ G containing vertices within the perception range based on the current vehicle
pose, a set Vend ⊂ V consists of vertices on the boundary of the perception range, a
set Eoccl composed of occluded edges based on the current perception sensor data,
and the current path lc. The algorithm outputs the vehicle navigation command.
Upon the navigation starts, the vehicle is at the start point A and lc is set to the main
lane l0. At the beginning of each function call, the algorithm initializes a priority
queue, Q, with the first vertex on lc ahead of the vehicle, v0, on line 7. The algo-
rithm propagates through all accessible vertices in V by processing vertices in Q
with the lowest cost and pushing unvisited vertices into Q, on lines 8-20. Once a
vertex is pushed into Q, it is labeled as visited, and once a vertex is processed, it is
removed from Q. Through the propagation, the algorithm updates the costs of the
vertices on line 12, and the pointers to the previous vertices on line 13. After the
propagation finishes, the algorithm checks each vertex in Vend, on lines 21-26. If the
end point B ∈ Vend and B is unvisited, or all vertices in Vend are unvisited, meaning
a full blockage is found, the algorithm reports navigation unsuccessful, on line 22.
Otherwise, the algorithm chooses B if B ∈ Vend, or a vertex in Vend with the lowest
cost if B /∈ Vend, back-tracks to v0 from the vertex to determine a path, and updates
lc to the path. The above process recurs until B is reached, and the algorithm reports
navigation successful, on line 30.

We have certain preferences for the path selection. As shown in Fig. 2(a), when
an obstacle is discovered, we prefer the vehicle to avoid early by switching to an-
other lane, keeping the safety margin high. This is realized by a priority check on
line 11. The priority check compares two vertices {v,v′} and prefers v′ to be on the
same lane with v as the first choice, v′ at the same level with v as the second choice,
v′ at a lower level than v as the third choice, and v at a higher level than v as the last
choice. The result is that the algorithm selects paths switched early and kept on the
same lane further before the obstacle. Also, the algorithm selects paths that avoid
obstacles by taking lanes at a lower level than a higher level, being closer to the
main lane l0. The priority check is employed again on line 25 in choosing a vertex
in Vend as the end of the path. The algorithm compares vertices with the same lowest
cost based on the priority check to determine the vertex.

Further, when switching between lanes, we prefer the vehicle to take beltways
at a lower level then a higher level, as illustrated in Fig. 2(b). This is by adjusting

(a) (b)

Fig. 2 Two examples of preferred paths. In both examples, the blue solid curves are the preferred
paths as opposed to the blue dashed curves. In (a), when an obstacle is discovered, we prefer the
path to switch early keeping the safety margin high. In (b), when switching between the two blue
vertices, we prefer the vehicle to take a beltway at a lower level than a higher level, being closer to
the main lane l0 as that is the default lane to follow.
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the switch costs to be minimally different. As discussed, edges on lanes have zero
switch costs. Edges on crossways have the minimum non-zero costs. Edges on belt-
ways have higher costs than crossways, and the higher the level, the higher the cost.
Note that the differences among the switch costs are significantly smaller than the
switch costs themselves such that accumulating the differences along a path has a
minor effect on selecting the lanes but only the crossways and beltways.

Let us analyze the computational complexity of Algorithm 1. Denote R as
the perception range. Recall V is the set of vertices within R. Denote E as the
set of edges connecting adjacent vertices in V . The Dijkstra’s algorithm runs in
O((|V |+ |E |) log |V |) time when implemented with a priority queue. In our setup,

Algorithm 1: Navigation and Path Selection
1 input: a path set G connecting between A and B, sets of vertices V ,Vend ⊂ G , set of

occluded edges Eoccl, current path lc;
2 output: navigation command;
3 begin
4 while B is not approached do
5 if lc consists of any edge e ∈ Eoccl or e /∈ l0 then
6 For each v ∈ V , label v as unvisited, c(v)← ∞;
7 Find the first vertex on lc ahead of the vehicle as v0, label v0 as visited,

c(v0)← 0, Q←{v0};
8 while Q = /0 do
9 Find v ∈Q with the lowest cost, remove v from Q;

10 for each v′ ∈ V ∩N (v) and (v,v′) /∈ Eoccl do
11 if c(v′)> c(v)+ c(v,v′) or (c(v′) = c(v)+ c(v,v′) and {v,v′} passes a

priority check) then
12 c(v′)← c(v)+ c(v,v′);
13 p(v′)← v;
14 if v′ is unvisited then
15 Label v′ as visited;
16 Push v′ into Q;
17 end
18 end
19 end
20 end
21 if (B ∈ Vend and B is unvisited) or (∀v ∈ Vend, v is unvisited) then
22 Finish and report navigation unsuccessful;
23 end
24 else
25 If B ∈ Vend, v′′← B, otherwise, find all v ∈ Vend sharing the lowest cost,

choose v′′ among those so that {v0,v′′} passes a priority check,
back-track to v0 by recurring v′′← p(v′′), then update lc;

26 end
27 end
28 Navigate the vehicle on lc;
29 end
30 Finish and report navigation successful;
31 end
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each vertex on an alternative lane l j
i ∈ G , i, j ∈ Z+, connects to at most a lane, a

crossway, and a beltway at the same time. All edges in E are connected to vertices
on alternative lanes. Therefore, we have O(|E |) = O(|V |). The algorithm checks
if an edge is occluded (edge ∈ Eoccl) on lines 5 and 10. This step is conducted by
keeping a full list of the edges in E . A flag is associated with each edge to indicate
occlusion. Hence, checking each edge takes O(1) time. Before running Algorithm
1, the system performs collision check for all edges in E using the current per-
ception sensor data. Accelerated by a voxel grid implementation (more details in
Section 5.2), each edge takes O(1) time. The overall time for collision check is in
O(|E |) = O(|V |). Therefore, the computational complexity can be stated.

Theorem 1 Algorithm 1 runs in O((V | log |V |) time, where V ⊂ G is the set of
vertices within the perception range R. Collision check consumes O(|V |) time.

4.2 Path Generation

In our previous work [10], the state-of-the-art BIT* path planner [4] is used to gen-
erate the main path connecting from start point A to end point B. The resulting path
is further smoothed to meet our requirement for high-speed flights. In this paper, we
retain the same method for generation of the main lane, which is considered a solved
problem. The contribution of this paper is using pre-computed alternative lanes to
enable navigation and collision avoidance.

Consider the main lane is given, the alternative lanes are generated by solving
an optimization problem. The optimization utilizes a number of key-points on the
alternative lanes. As shown in Fig. 3(a), the green dots represent the key-points on
an alternative lane at level 1 (green line). The alternative lane is initialized with a
constant lateral interval to the main lane. Then, a collision check is executed. If oc-
clusion is found on the alternative lane, the corresponding key-points are shifted in
one out of two directions, toward or away from the main lane as indicated by the sil-
ver arrows. The direction w.r.t. each structure is set randomly through multiple iter-
ations considering all structures occluding the alternative lane. The set of directions
with the minimum accumulated distance of key-point movements are chosen. Here,
moving toward the main lane is decided. The optimization starts thereafter which
adjusts the key-points to the light green dots. A spline curve is then fit through the
key-points to generate a path.

Fig. 3 Generation of alternative lanes. The yellow line represents the main lane, the green line
presents an alternative lane at level 1, and the green dots are key-points. The alternative lane is
initialized with a constant lateral interval to the main lane. Then, a collision check is run. If the
alternative lane intersects with structures on the map as represented by the black region, the cor-
responding key-points can be shifted in one out of two directions, toward or away from the main
lane as indicated by the silver arrows. The directions w.r.t. the structures are chosen in a random
and iterative process. An optimization follows which adjusts the key-points to the light green dots.
A spline curve is then fit through the key-points to generate a path.
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The optimization takes into account the curvature on the alternative lanes, dis-
tances to structures on the prior map, and lateral intervals between adjacent lanes.
Define a distance cost, cd(l

j
i ), for an alternative line l j

i ∈ G , i, j ∈ Z+ as,

cd(l
j
i ) =

∫ B

A
max{D−dstru(δ ),0}dδ , (4)

where dstru(δ ) is the distance from each point on l j
i to the closest structure, δ is the

length along the lane starting from A, and D the safety distance threshold. Similar
to (1), cd(l

j
i ) is only effective when the lane is closer than D to a structure. Denote

r as the radius of the vehicle. We require dstru(δ ) ≥ r through the lane. Define a
curvature cost, cc(l

j
i ), for l j

i ,

cc(l
j
i ) =

∫ B

A
κ(δ )dδ , (5)

where κ(δ ) is the curvature associated with each point on l j
i . Next, to maintain a

relatively constant lateral interval between adjacent lanes, we define another cost.
Let P be the set of pairwise lanes in G that are adjacent, P = {(l, l′)|l, l′ ∈
G and l, l′ are adjacent}. A lateral interval cost, cl(l, l′), for an adjacent pair of lanes
(l, l′) ∈P is defined as,

cl(l, l′) =
∫ B

A
|H−h(δ )|dδ , (6)

where h(δ ) is the lateral interval between l and l′ for each point on l, and H is
the desired lateral interval. The optimization problem is to minimize a joint cost
combining all three costs defined above. Here, note that each alternative lane starts
at A and ends at B. Denote S(l j

i ) and E(l j
i ) as the start point and end point of l j

i ,
S(l j

i ) = A and E(l j
i ) = B. The optimization computes the alternative lanes in a path

set G as stated in Problem 2. The problem is solved by the Levenberg-Marquardt
method [12] through iterations.

Problem 2 Given a path set G , adjust key-points on each alternative lane in G to
minimize the following cost,

min ∑
{l,l′}∈P

cl(l, l′)+ ∑
l j
i ∈G

(wdcd(l
j
i )+wccc(l

j
i )), (7)

subject to S(l j
i ) = A, E(l j

i ) = B where l j
i ∈ G , i, j ∈ Z+.

With the alternative lanes computed, the method places crossways and beltways.
A collision check is run for each placement. If a crossway or a beltway intersects
with structures on the map, the corresponding edges are removed. In addition, the
method uses segmented paths for smooth transitions between lanes and crossways
or beltways. These paths are generated online based on template spline curves.
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5 Experiments

5.1 Simulation

We test the proposed method in simulation using alternative lanes in a 2D case. As
shown in Fig. 4, the alternative lanes are separated with 5m intervals. Obstacles are
defined as 5m squares. Through the test, 1-10 obstacles are placed along the paths
to introduce blockage, from simple to complicated scenarios. It is worth to mention
that In Fig. 4(e) and Fig. 4(f), we compare the proposed method with our previous
method based on short alternative paths [10]. We use a sequence of obstacles to
block the main lane. In Fig. 4(e), the proposed method simply switches to an alter-
native lane (green line) and keeps on that lane to avoid the obstacles. In Fig. 4(f),
however, the previous method recursively takes alternative paths at higher levels and
eventually finds no collision-free path. Note that the problem in Fig. 4(f) is partially
caused by that all alternative paths end on the main path. If organized differently
where alternative paths at level 2 and above end on alternative paths at one level
lower, the vehicle will switch among alternative paths at different levels to handle
such a case. Nevertheless, the vehicle will behave unnaturally curing left and right.

(a) (b) (c) (d) (e)

(f) (g) (h)

Fig. 4 Simulation results. The test is based on a 2D path set. The main lane is in yellow, from left
to right. Alternative lanes at level 1 and level 2 are in green and red, respectively. Crossways are
yellow dashed lines. The lanes are separated with 5m intervals. Obstacles are 5m squares placed on
the paths to introduce blockage. In (a), one obstacle is used and the vehicle chooses an alternative
lane at level 1 to avoid. In (b), two obstacles are used, one blocking the main lane and the other
blocking the alternative lane on one side of the main lane. The vehicle chooses an alternative lane
on the other side. In (c), three obstacles block the main lane and its both sides. The vehicle switches
to the alternative lane below the main lane after the obstacle. In (d), the three obstacles are retained
and the one on the bottom is moved away from the main lane. This obstacle does not block the
alternative lane as in (c) but stays close to it. The vehicle still switches to the alternative lane after
the obstacle because of the effect of the distance cost. Further, in (e) and (f), we compare the
proposed method with our previous method which uses short alternative paths to realize collision
avoidance [10]. A sequence of obstacles are placed on the main lane. With the proposed method, in
(e), the vehicle simply switches to an alternative lane and keeps on that lane to avoid these obstacle.
With the previous method, in (f), however, the vehicle is recursively forced to take alternative
paths at higher levels and eventually finds no collision-free path. In (g) and (h), we employ more
complicated displacements of obstacles. The vehicle chooses an alternative lane at level 2 in (g),
and two alternative lanes at level 1 and level 2 on different sides of the main lane in (h).
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5.2 UAV Experiments

Our experimental platform is shown in Fig. 5. This is a DJI Matrice 600 Pro aircraft
carrying a DJI Ronin MX gimbal. A sensor-computer pack is mounted to the gim-
bal and therefore is kept in the flight direction for obstacle detection. The sensor-
computer pack consists of a Velodyne Puck laser scanner, a camera at 640× 360
pixel resolution, and a MEMS-based IMU. A 3.1GHz i7 embedded computer carries
out all onboard processing. The state estimation is based on our previous work [10],
which integrates data from the three sensors to provide vehicle poses and registered
laser scans. The map is built from a manual flight a month before the flight test.

We report on two flight tests. Test 1 is in a cluttered forest environment. As
shown in Fig. 6, the pre-computed paths consist of a main lane, alternative lanes
at two levels, and associated crossways, based on a prior 3D laser map. The map
is built by hand-holding the sensor-computer pack and walking in the environment.
The test has two separate runs, with first a clear path and then artificial obstacles
on the path. For each run, the UAV flies at a speed of 10m/s. In the case of a clear
path, the vehicle follows the main lane to the end. Then, with artificial obstacles, the
vehicle switches among pre-computed lanes to avoid the obstacles.

Test 2 is on an inactive industrial site. As shown in Fig. 7, the test involves a
main lane and two levels of alternative lanes. Crossways and beltways are used
for lane switching. There are totally 11 lanes, 1234 crossways, and 551 beltways.
Three obstacles are placed on the path – an insistent canopy, a tree, and a wire. The
vehicle avoids each obstacle by switching from one lane to another. Fig. 7(c)-(e)
compare the switched paths to our previous method that uses short alternative paths
for collision avoidance [10]. The yellow curve is the main lane and the blue curve
is the executed path. The coordinate frame represents the vehicle. As we see, with
the proposed method, the path switch takes place earlier as soon as the obstacle is
discovered, while the obstacle is further ahead. This leaves a higher safety margin.
In comparison, the previous method does not switch path until the obstacle is close.
This is due to the usage of short alternative paths – even the vehicle sees a distanced
obstacle, only an alternative path starting close to the obstacle is taken. Further, the
previous method uses a main path, and 597 and 8101 alternative paths at levels 1
and 2, with 8699 paths in total. The number of paths increases exponentially w.r.t.

Fig. 5 UAV experimental platform. A DJI Matrice 600 Pro aircraft carries our sensor-computer
pack on a DJI Ronin MX gimbal. The gimbal keeps the sensors in the flight direction for obstacle
detection. The sensor-computer pack consists of a Velodyne Puck laser scanner, a camera at 640×
360 pixel resolution, and a MEMS-based IMU. An i7 embedded computer carries out all onboard
processing. Note that GPS data is unused in all tests.
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(a) (b)

(c) (d) (e)

Fig. 6 Result of Test 1. (a) shows a 3D laser map used as the prior map. An aerial image from
the same area is shown at the top-right corner. (b) shows the pre-computed paths overlaid on the
prior map where the canopy of the trees is cropped. The main lane is in yellow. Two levels of
alternative lanes are in green and red, respectively. Crossways are in slate blue. The test contains
two separate runs, both at 10m/s. First, no obstacle is present and the vehicle follows the main
lane to the end. Then, multiple artificial obstacles are placed on the path as shown in (c). The
vehicle avoids the obstacles by switching among pre-computed lanes. (d) shows online registered
laser scan data while the vehicle is avoiding the obstacles labeled with the white rectangles. The
obstacle in the dotted white rectangle is out of the camera field of view and not present in the image
at the bottom-right corner. The yellow curve is the main lane and the blue curve is the executed
path. The coordinate frame represents the vehicle. (e) shows the complete executed path for the
second run in blue and the obstacles in dark red. The numbers 1-3 correspond to the numbers in
(c) and (d) illustrating the obstacle locations w.r.t. the prior map.

the level. The proposed method uses 1796 paths and the number of paths is constant
at each level.

For further evaluation, we run tests in simulation using the setup in Test 2. Obsta-
cles are modeled as 1m cubes randomly and repeatedly generated from a uniform
distribution in the 3D space. As shown in Fig. 8, the rate of navigation failure or
full navigation blockage increases w.r.t. the number of obstacles. Employing more
alternative lanes (2 levels instead of 1 level) helps reduce the rate of navigation fail-
ure to a large extent. When compared to the previous method, the proposed method
constantly produces a significantly lower rate of navigation failure. These results
validate the advantage of using long alternative lanes for collision avoidance. Fur-
ther, we compare to the BIT* path planner [4], which uses the randomly generated
obstacles combined with the online registered laser scan data to find paths along the
main lane. The failure criterion is set as not being able to find a collision-free path
within 1s. We can see that both of our methods result in lower rate of failure.

Finally, let us inspect some metrics for the collision avoidance. Collision check is
implemented with a voxel grid at 0.4m resolution overlaid on the prior map. Corre-
spondences are pre-established from the voxels to the corresponding occluded paths.
During the navigation, we index the voxel for each laser point to find the correspon-
dences and hence determine the path occlusions. As shown in Table 1, the process
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(a) (b)

(c) (d) (e)

Fig. 7 Result of Test 2 conducted on an inactive industrial site. (a) shows the prior 3D laser map
with the main lane (yellow), two levels of alternative lanes (green and red), and crossways (slate
blue). (b) shows the same prior map with beltways (green and red). The paths avoid a tree as labeled
with the orange rectangle in (a), pass through a narrow area and avoid two wires as labeled with
the orange rectangles in (b). A close view of the paths around the wires is at the top-left corner in
(b). The crossways and beltways in some sections are removed for a better view. (b)-(d) show the
avoidance of three obstacles – an insistent canopy, a tree, and a wire left on the path in addition
to those labeled with the orange rectangles. On the left side of each figure, we draw the executed
path (blue) and the main lane (yellow) by the proposed method. The coordinate frame represents
the vehicle. On the right side, we compare to the previous method using short alternative paths. We
can see that with the proposed method, the path switches earlier while the obstacle is further ahead,
leaving a higher safety margin. With the previous method, the path switch does not take place until
the obstacle is close.

of collision check takes 33.7µs at most for each laser scan (5Hz). Execution of Al-
gorithm 1 for path selection takes another 362.1µs at most, resulting in 395.8µs of
overall online processing. This is comparable to our previous method. Further, the
BIT* path planner [4], known for the computational speed, takes 200ms to gener-

Fig. 8 Further evaluation using the setup in Test 2. Obstacles are modeled as 1m cubes randomly
distributed in the 3D space. As we see, the rate of navigation failure or full navigation blockage
increases w.r.t. the number of obstacles. Using 2 levels of alternative lanes instead of 1 level reduces
the rate of navigation failure to a large extent. Compared to the previous method, the proposed
method constantly produces a significantly lower rate of failure. Also, we compare to the BIT*
planner [4] using the randomly generated obstacles combined with the online laser scan data.
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Table 1 Online and offline computation time for Tests 1 and 2
Collision check Path selection Offline

Test Mean Worst Mean Worst path generation

1 13.5µs 29.1µs 236.1µs 253.0µs 2.1 minutes
2 16.2µs 33.7µs 348.4µs 362.1µs 3.4 minutes

ate an acceptably smooth path with the same datasets. The worst case is over 1s to
produce the very first path.

6 Conclusion

The paper proposes a novel method which utilizes offline generated alternative lanes
to enable robot navigation. The alternative lanes are computed based on a prior map
and organized at different levels. Collision avoidance is conducted by switching
among the pre-computed lanes, through crossways and beltways. The method elim-
inates the necessity of online path generation, migrating majority of the computation
to offline processing. The resulting system consumes < 3% of a single CPU thread
on a modern embedded computer. It makes possible for a lightweight UAV to ma-
neuver aggressively in a cluttered forest environment, at a constant speed of 10m/s.

References

1. R. Kala and K. Warwick, “Multi-level planning for semi-autonomous vehicles in traffic sce-
narios based on separation maximization,” J. of Intelligent and Robotic Systems, vol. 72, no.
3/4, pp. 559–590, 2013.

2. B. MacAllister, J. Butzke, A. Kushleyev, H. Pandey, and M. Likhachev, “Path planning for
non-circular micro aerial vehicles in constrained environments,” in IEEE International Con-
ference on Robotics and Automation (ICRA), Karlsruhe, Germany, May 2013.

3. M. Rufli and R. Y. Siegwart, “On the application of the D search algorithm to time-based
planning on lattice graphs,” in The European Conf. on Mobile Robots (ECMR), Dubrovnik,
Croatia, Sept. 2009.

4. J. Gammell, S. Srinivasa, and T. Barfoot, “Batch informed trees (BIT*): Sampling-based op-
timal planning via the heuristically guided search of implicit random geometric graphs,” in
IEEE Intl. Conf. on Robotics and Automation (ICRA), Seattle, WA, May 2015.

5. S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal motion planning,” The
International Journal of Robotics Research, vol. 30, no. 7, pp. 846–894, 2011.

6. D. Hsu, J.-C. Latombe, and H. Kurniawati, “On the probabilistic foundations of probabilistic
roadmap planning,” The Intl. J. of Robotics Research, vol. 25, no. 7, pp. 627–643, 2006.

7. P. Beeson, N. K. Jong, and B. Kuipers, “Towards autonomous topological place detection
using the extended Voronio graph,” in IEEE International Conference on Robotics and Au-
tomation (ICRA), Barcelona, Spain, April 2005.

8. G. A. S. Pereira, S. Choudhury, and S. Scherer, “A framework for optimal repairing of vector
field-based motion plans,” in Intl. Conf. on Unmanned Aircraft Systems, June 2016.

9. B. Paden, M. Cap, S. Z. Yong, D. Yershov, and E. Frazzoli, “A survey of motion planning and
control techniques for self-driving urban vehicles,” IEEE Transactions on Intelligent Vehicles,
vol. 1, no. 1, pp. 33–55, 2016.

10. J. Zhang, R. G. Chadha, V. Velivela, and S. Singh, “P-CAP: Pre-computed alternative paths
to enable aggressive aerial maneuvers in cluttered environments,” in IEEE/RSJ Intl. Conf. on
Intelligent Robots and Systems (IROS), Madrid, Spain, Oct. 2018.

11. S. LaValle, Planning Algorithms. New York, NY, USA: Cambridge University Press, 2006.
12. D. Bertsekas, Nonlinear Programming. Cambridge, MA, 1999.


	P-CAL: Pre-computed Alternative Lanes for Aggressive Aerial Collision Avoidance
	Ji Zhang, Rushat Gupta Chadha, Vivek Velivela, and Sanjiv Singh
	Introduction
	Related Work
	Problem Definition
	Method
	Online Algorithm
	Path Generation

	Experiments
	Simulation
	UAV Experiments

	Conclusion
	References



