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Abstract Here we propose a real-time method for low-drift
odometry andmapping using rangemeasurements from a 3D
laser scanner moving in 6-DOF. The problem is hard because
the range measurements are received at different times, and
errors in motion estimation (especially without an external
reference such asGPS) causemis-registration of the resulting
point cloud. To date, coherent 3D maps have been built by
off-line batch methods, often using loop closure to correct
for drift over time. Our method achieves both low-drift in
motion estimation and low-computational complexity. The
key idea that makes this level of performance possible is the
division of the complex problem of Simultaneous Localiza-
tion andMapping, which seeks to optimize a large number of
variables simultaneously, into two algorithms.One algorithm
performs odometry at a high-frequency but at low fidelity to
estimate velocity of the laser scanner. Although not neces-
sary, if an IMU is available, it can provide a motion prior and
mitigate for gross, high-frequency motion. A second algo-
rithm runs at an order of magnitude lower frequency for fine
matching and registration of the point cloud. Combination
of the two algorithms allows map creation in real-time. Our
method has been evaluated by indoor and outdoor experi-
ments as well as the KITTI odometry benchmark. The results
indicate that the proposedmethod can achieve accuracy com-
parable to the state of the art offline, batch methods.
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1 Introduction

3D Mapping remains a popular technology. The main issue
with laser ranging in which the laser moves has to do with
registration of the resulting point cloud. If the only motion
is the pointing of a laser beam with known internal kine-
matics of the lidar from a fixed base, this registration is
obtained simply. However, if the sensor base moves, as
in many applications of interest, laser point registration
has to do with both the internal kinematics and external
motion. The second one has to contain knowledge of how
the sensor is located and oriented for every range mea-
surement. Since lasers can measure distance up to several
hundred thousand times per second, high-rate pose estima-
tion is a significant issue. A common way to solve this
problem is to use an independent method of pose estima-
tion (such as with an accurate GPS/INS system) to register
the range data into a coherent point cloud in reference to
a fixed coordinate frame. When independent measurements
relative to a fixed coordinate frame are unavailable, the gen-
eral technique used is to register points using some sort
of odometry estimation, e.g. using combinations of wheel
motion, gyros, and by tracking features in range or visual
images.

Here we consider the case of creating maps using low-
drift odometry with a mechanically scanned laser ranging
device (optionally augmented with low-grade inertial mea-
surements) moving in 6-DOF. A key advantage of only using
laser ranging is that it is not sensitive to ambient lighting or
optical texture in the scene. New developments in laser scan-
ners have reduced the size and weight of such devices to the
level that they can be attached tomobile robots (including fly-
ing, walking or rolling) and even to people whomove around
in an environment to be mapped. Since we seek to push the
odometry toward the lowest possible drift in real-time, we
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Fig. 1 The method aims at motion estimation and mapping using a
moving 3D lidar. Since the laser points are received at different times,
distortion is present in the point cloud due to motion of the lidar (shown
in the left lidar cloud). Our proposed method decomposes the problem
by two algorithms running in parallel. An odometry algorithm estimates
velocity of the lidar and corrects distortion in the point cloud, then, a
mapping algorithmmatches and registers the point cloud to create amap.
Combination of the two algorithms ensures feasibility of the problem
to be solved in real-time

don’t consider issues related to loop closure. Indeed, while
loop closure could help further cancel the drift, we find that in
many practical cases such as mapping a floor of a buildings,
loop closure is unnecessary.

Our method, namely LOAM, achieves both low-drift in
motion estimation in 6-DOF and low-computational com-
plexity. The key idea that makes this level of performance
possible is the division of the typically complex problem
of simultaneous localization and mapping (illustrated in
Fig. 1), which seeks to optimize a large number of vari-
ables simultaneously, into two algorithms. One algorithm
performs odometry at a high-frequency but at low fidelity
to estimate velocity of the laser scanner moving through the
environment. Although not necessary, if an IMU is avail-
able, it can provide a motion prior and help account for
gross, high-frequency motion. A second algorithm runs at an
order of magnitude lower frequency for fine matching and
registration of the point cloud. Specifically, both algorithms
extract feature points located on edges and planar surfaces
and match the feature points to edge-line segments and pla-
nar surface patches, respectively. In the odometry algorithm,
correspondences of the feature points are found by ensuring
fast computation, while in the mapping algorithm, by ensur-
ing accuracy.

In the method, an easier problem is solved first as online
velocity estimation, after which, mapping is conducted as
batch optimization to produce high-precision motion esti-
mation and maps. The parallel algorithm structure ensures
feasibility of the problem to be solved in real-time. Further,
since motion estimation is conducted at a higher frequency,
mapping is given plenty of time to enforce accuracy. When
staggered to run at an order of magnitude slower than the
odometry algorithm, the mapping algorithm incorporates a
large number of feature points and uses sufficiently many
iterations to converge. The paper makes main contributions
as follows,

• Wepropose a software system using dual-layer optimiza-
tion to online estimate ego-motion and build maps;

• We carefully implement geometrical feature detection
and matching to meet requirements of the system: fea-
ture matching in the odometry algorithm is coarse and
fast to ensure high frequency, and is precise and slow in
the mapping algorithm to ensure low-drift;

• We test the method thoroughly with a large number of
datasets covering various types of environments;

• Wemake an honest attempt to present our work to a level
of detail allowing readers to re-implement the method.

The rest of this paper is organized as follows. In Sect. 2,
we discuss related work and how our work is unique com-
pared to the state of the art. In Sect. 3, we pose the research
problem formally. The lidar hardware and software systems
are described in Sect. 4. The odometry algorithm is presented
with details in Sect. 5, and the mapping algorithm in Sect. 6.
Experimental results are shown in Sect. 7. Finally, a discus-
sion and a conclusion aremade in Sects. 7 and 8, respectively.

2 Related work

Lidar has become a useful range sensor in robot naviga-
tion. For localization and mapping, one way is to perform
stop-and-scan to avoid motion distortion in point clouds
(Nuchter et al. 2007). Also, when the lidar scanning rate
is high compared to its extrinsic motion, motion distortion
can be neglectable. In this case, ICP methods (Pomerleau
et al. 2013) can be used to match laser returns between dif-
ferent scans. Additionally, a two-step method is proposed
to remove the distortion (Hong et al. 2010): an ICP based
velocity estimation step is followed by a distortion compen-
sation step, using the computed velocity. A similar technique
is also used to compensate for the distortion introduced by a
single-axis 3D lidar (Moosmann and Stiller 2011). However,
if the scanning motion is relatively slow, motion distortion
can be severe. This is especially the case when a 2-axis lidar
is used since one axis is typically much slower than the
other. Often, other sensors are used to provide velocity mea-
surements, with which, the distortion can be removed. For
example, the lidar cloud can be registered by state estima-
tion from visual odometry integrated with an IMU (Scherer
et al. 2012). When multiple sensors such as a GPS/INS and
wheel encoders are available concurrently, the problem is
often solved through Kalman filers or particle filters, build-
ing maps in real-time.

If a 2-axis lidar is used without aiding from other sen-
sors, motion estimation and distortion correction become
one problem. In Barfoot et al.’s methods, the sensor motion
is modeled as constant velocity (Dong and Barfoot 2012;
Anderson and Barfoot 2013a) and with Gaussian processes
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(Tong and Barfoot 2013; Anderson and Barfoot 2013b; Tong
et al. 2013. Rosen et al. use Gaussian processes to model the
continuous sensor motion and formulate the problem into
a factor-graph optimization problem (Rosen et al. 2014).
Additionally, Furgale et al. propose to use B-spline func-
tions to model the sensor motion (Furgale et al. 2012). Our
method uses a similar linear motion model as (Dong and
Barfoot (2012); Anderson and Barfoot (2013a) in the odom-
etry algorithm. In the mapping algorithm, however, rigid
body transform is used. Another method is that of Bosse
and Zlot (Bosse and Zlot 2009; Bosse et al. 2012; Zlot
and Bosse 2012). They invent a 3D mapping device called
Zebedee composed of a 2D lidar and an IMU attached to
a hand-bar through a spring (Bosse et al. 2012). Mapping
is conducted by hand-nodding the device. The trajectory is
recovered by a batch optimizationmethod that processes seg-
mented datasets with boundary constraints added between
the segments. In this method, measurements of the IMU are
used to register the laser points and the optimization is used
to correct the IMU drift and bias. Further, they use mul-
tiple 2-axis lidars to map an underground mine (Zlot and
Bosse 2012). This method incorporates an IMU and uses
loop closure to create large maps. The method runs faster
than real-time. However, since it relies on batch processing
to develop accurate maps, the method currently is hard to
use in online applications to provide real-time state estima-
tion and maps.

The same problem of motion distribution exists in vision-
based state estimation. With a rolling-shutter camera, image
pixels are perceived continuously over time, resulting in dif-
ferent read-out time for each pixel. The state-of-the-art visual
odometry methods that deal with rolling-shutter effect ben-
efit from an IMU (Guo et al. 2014; Li and Mourikis 2014).
The methods use IMU mechanization to compensate for the
motion given read-out time of the pixels. In this paper, we
also have the option of using an IMU to cancel nonlinear
motion, and the proposed method solves for linear motion.

From feature’s perspective,Barfoot et al.’smethods (Dong
and Barfoot 2012; Anderson and Barfoot 2013a, b; Tong
and Barfoot 2013) create visual images from laser intensity
returns and match visually distinct features (Bay et al. 2008)
between images to recover motion. This requires dense point
cloud with intensity values. On the other hand, Bosse and
Zlot’s method (Bosse and Zlot 2009; Bosse et al. 2012; Zlot
and Bosse 2012) matches spatio-temporal patches formed
of local point clusters. Our method has less requirement on
point clouddensity anddoes not require intensity values com-
pared to Dong and Barfoot (2012), Anderson and Barfoot
(2013a, b), and Tong and Barfoot (2013) since it extracts and
matches geometric features in Cartesian space. It uses two
types of point features, on edges and local planar surfaces,
and matches them to edge line segments and local planar
patches, respectively.

Our proposed method in real-time produces maps that are
qualitatively similar to those by Bosse and Zlot. The dis-
tinction is that our method can provide motion estimates for
guidance of an autonomous vehicle. The paper is an extended
version of our conference paper (Zhang and Singh 2014).We
evaluate the method with more experiments and present with
more details.

3 Notations and task description

The problemaddressed in this paper is to performego-motion
estimation with point clouds perceived by a 3D lidar, and
build a map for the traversed environment. We assume that
the lidar is intrinsically calibratedwith the lidar internal kine-
matics precisely known (the intrinsic calibration makes 3D
projection of the laser points possible). We also assume that
the angular and linear velocities of the lidar are smooth and
continuous over time, without abrupt changes. The second
assumptionwill be released by usage of an IMU, in Sects. 7.2
and 7.3.

As a convention in this paper, we use right uppercase
superscription to indicate the coordinate systems. We define
a sweep as the lidar completes one time of scan coverage.
We use right subscription k, k ∈ Z+ to indicate the sweeps,
and Pk to indicate the point cloud perceived during sweep k.
Let us define two coordinate systems as follows.

• Lidar coordinate system {L} is a 3D coordinate system
with its origin at the geometric center of the lidar (see
Fig. 2). Here, we use the convention of cameras. The x-
axis is pointing to the left, the y-axis is pointing upward,
and the z-axis is pointing forward. We denote a point i
received during sweep k as X L

(k,i). Further, we use T
L
k (t)

to denote the transformprojecting a point received at time
t to the beginning of the sweep k.

• World coordinate system {W } is a 3D coordinate system
coinciding with {L} at the initial pose. We denote a point

Fig. 2 An example 3D lidar using in experiment evaluation. We will
use data from this sensor to illustrate the method. The sensor consists
of a Hokuyo laser scanner driven by a motor for rotational motion,
and an encoder that measures the rotation angle. The laser scanner has
180◦ field of view and 0.25◦ resolution. The scanning rate is 40 lines/s.
The motor is controlled to rotate from −90◦ to 90◦ with the horizontal
orientation of the laser scanner as zero

123



404 Auton Robot (2017) 41:401–416

i in {W } as XW
(k,i) and denote TW

k (t) as the transform
projecting a point received at time t to {W }.

With assumptions and notations made, our lidar odometry
and mapping problem can be defined as

Problem Given a sequence of lidar cloud Pk , k ∈ Z+,
compute ego-motion of the lidar in the world, TW

k (t), and
build a map with Pk for the traversed environment.

4 System overview

4.1 Lidar hardware

The study of this paper is validated on four sensor sys-
tems: a back-and-forth spin lidar, a continuously-spinning
lidar, a Velodyne HDL-32 lidar, and the sensor system used
by the KITTI benchmark Geiger et al. (2012, 2013). We
use the first lidar hardware as an example to illustrate the
method, therefore we introduce the lidar hardware in the
front of the paper to help readers understand the method.
The rest sensors will be introduced in the experiment sec-
tion. As shown in Fig. 2, the lidar is based on a Hokuyo
UTM-30LX laser scanner which has 180◦ field of view with
0.25◦ resolution and 40 lines/s scanning rate. The laser scan-
ner is connected to a motor controlled to rotate at 180◦/s
angular speed between −90 and 90◦ with the horizontal
orientation of the laser scanner as zero. With this partic-
ular unit, a sweep is a rotation from −90 to 90◦ or in
the inverse direction (lasting for 1 s). Here, note that for
a continuously-spinning lidar, a sweep is simply a semi-
spherical or a full-spherical rotation. An onboard encoder
measures themotor rotation anglewith 0.25◦ resolution,with
which, the laser points are back-projected into the lidar coor-
dinates, {L}.

4.2 Software system overview

Figure 3 shows a diagram of the software system. Let P̂
be the points received in a laser scan. During each sweep,
P̂ is registered in {L}. The combined point cloud during
sweep k forms Pk . Then, Pk is processed in two algo-
rithms. Lidar odometry takes the point cloud and computes
the motion of the lidar between two consecutive sweeps. The
estimated motion is used to correct distortion in Pk . The

algorithm runs at a frequency around 10 Hz. The outputs
are further processed by lidar mapping, which matches and
registers the undistorted cloud onto a map at a frequency of
1 Hz. Finally, the pose transforms published by the two algo-
rithms are integrated to generate a transform output around
10 Hz, regarding the lidar pose with respect to the map. Sec-
tions 5 and 6 present the blocks in the software diagram in
detail.

5 Lidar odometry

5.1 Feature point extraction

We start with extraction of feature points from the lidar
cloud, Pk . We notice that many 3D lidars naturally gener-
ate unevenly distributed points in Pk . With the lidar in Fig. 2
as an example, the returns from the laser scanner has a reso-
lution of 0.25◦ within a scan. These points are located on
a scan plane. However, as the laser scanner rotates at an
angular speed of 180◦/s and generates scans at 40Hz, the
resolution in the perpendicular direction to the scan planes is
180◦/40 = 4.5◦. Considering this fact, the feature points are
extracted from Pk using only information from individual
scans, with co-planar geometric relationship.

We select feature points that are on sharp edges and planar
surface patches. Let i be a point inPk , i ∈ Pk , and letS be the
set of consecutive points of i returned by the laser scanner in
the same scan. Since the laser scanner generates point returns
in CW or CCW order, S contains half of its points on each
side of i and 0.25◦ intervals between two points (still with
the lidar in Fig. 2 as an example). Define a term to evaluate
the smoothness of the local surface,

c = 1

|S| · ||XL
(k,i)||

∥
∥
∥

∑

j∈S, j �=i

(X L
(k,i) − X L

(k, j))

∥
∥
∥. (1)

The term is normalized w.r.t. the distance to the lidar center.
This is particularly made to remove scale effect and the term
can be used for both near and far points.

The points in a scan are sorted based on the c values, then
feature points are selected with the maximum c’s, namely,
edge points, and the minimum c’s, namely planar points. To
evenly distribute the feature points within the environment,
we separate a scan into four identical subregions. Each subre-

Fig. 3 Block diagram of the
lidar odometry and mapping
software system
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Scan Plane

Laser

(a) (b)

Fig. 4 a The solid line segments represent local surface patches. Point
A is on a surface patch that has an angle to the laser beam (the dotted
orange line segments). Point B is on a surface patch that is roughly
parallel to the laser beam. We treat B as a unreliable laser return and do
not select it as a feature point. b The solid line segments are observable
objects to the laser. Point C is on the boundary of an occluded region
(the dotted orange line segment), and can be detected as an edge point.
However, if viewed from a different angle, the occluded region can
change and become observable. We do not treat D as a salient edge
point or select it as a feature point (Color figure online)

gion canprovidemaximally 2 edgepoints and4planar points.
A point i can be selected as an edge or a planar point only if
its c value is larger or smaller than a threshold (5×10−3), and
the number of selected points does not exceed the maximum
point number of a subregion.

While selecting feature points, we want to avoid points
whose surrounded points are selected, or points on local pla-
nar surfaces that are roughly parallel to the laser beams (point
B in Fig. 4a). These points are usually considered as unreli-
able. Also, we want to avoid points that are on boundary of
occluded regions (Li and Olson 2011). An example is shown
in Fig. 4b. Point C is an edge point in the lidar cloud because
its connected surface (the dotted line segment) is blocked by
another object. However, if the lidar moves to another point
of view, the occluded region can change and become observ-
able. To avoid the aforementioned points to be selected, we
find again the set of points S. A point i can be selected only
if S does not form a surface patch whose normal is within
10◦ to the laser beam, and there is no point in S that is dis-
connected from i by a gap in the direction of the laser beam
and is at the same time closer to the lidar then point i (e.g.
point B in Fig. 4b).

In summary, the feature points are selected as edge points
starting from themaximum c value, and planar points starting
from the minimum c value, and if a point is selected,

• The number of selected edge points or planar points can-
not exceed the maximum of the subregion, and

• None of its surrounding point is already selected, and
• It cannot be on a surface patch whose normal is within
10◦ to the laser beam, or on boundary of an occluded
region.

An example of extracted feature points from a corridor scene
is shown in Fig. 5. The edge points and planar points are
labeled in yellow and red colors, respectively.

Fig. 5 An example of extracted edge points (yellow) and planar points
(red) from lidar cloud taken in a corridor. Meanwhile, the lidar moves
toward the wall on the left side of the figure at a speed of 0.5 m/s, this
results in motion distortion on the wall (Color figure online)

5.2 Finding feature point correspondence

The odometry algorithm estimates motion of the lidar within
a sweep. Let tk be the starting time of a sweep k. At the end
of sweep k − 1, the point cloud perceived during the sweep,
Pk−1, is projected to time stamp tk , illustrated in Fig. 6 (we
will discuss transforms projecting the points in Sect. 5.3).
We denote the projected point cloud as P̄k−1. During the
next sweep k, P̄k−1 is used together with the newly received
point cloud, Pk , to estimate the motion of the lidar.

Let us assume that both P̄k−1 andPk are available for now,
and start with finding correspondences between the two lidar
clouds. With Pk , we find edge points and planar points from
the lidar cloud using the methodology discussed in the last
section. Let Ek and Hk be the sets of edge points and planar
points, respectively. We will find edge lines from P̄k−1 as
correspondences of the points in Ek , and planar patches as
correspondences of those inHk .

Note that at the beginning of sweep k, Pk is an empty
set, which grows during the course of the sweep as more

Fig. 6 Project point cloud to the end of a sweep. The blue colored line
segment represents the point cloud perceived during sweep k,Pk−1. At
the end of sweep k − 1, Pk−1 is projected to time stamp tk to obtain
P̄k−1 (the green colored line segment). Then, during sweep k, P̄k−1 and
the newly perceived point cloud Pk (the orange colored line segment)
are used together to estimate the lidar motion (Color figure online)
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(a) (b)

Fig. 7 Finding an edge line as the correspondence for an edge point
in Ẽk (a), and a planar patch as the correspondence for a planar point
in H̃k (b). In both (a, b), j is the closest point to the feature point i ,
found in P̄k−1. The orange lines represent the same scan of j , and the
blue lines are the preceding and following scans. To find the edge line
correspondence in a, we find another point, l, on the blue lines, and
the correspondence is represented as ( j, l). To find the planar patch
correspondence in b, we find another two points, l andm, on the orange
line and the blue line, respectively. The correspondence is ( j, l, m)

(Color figure online)

points are received. Lidar odometry recursively estimates
the 6-DOF motion during the sweep, and gradually includes
more points as Pk increases. Ek and Hk are projected to the
beginning of the sweep (again, we will discuss transforms
projecting the points later). Let Ẽk and H̃k be the projected
point sets. For each point in Ẽk and H̃k , we are going to find
the closest neighbor point in P̄k−1. Here, P̄k−1 is stored in a
3D KD-tree (Berg et al. 2008) in {Lk} for fast index.

Figure 7a represents the procedure of finding an edge line
as the correspondence of an edge point. Let i be a point in
Ẽk , i ∈ Ẽk . The edge line is represented by two points. Let j
be the closest neighbor of i in P̄k−1, j ∈ P̄k−1, and let l be
the closest neighbor of i in the preceding and following two
scans to the scan of j . ( j, l) forms the correspondence of i .
Then, to verify both j and l are edge points, we check the
smoothness of the local surface based on (1) and require that
both points have c > 5×10−3. Here, we particularly require
that j and l are from different scans considering that a single
scan cannot containmore than one points from the same edge
line. There is only one exception where the edge line is on
the scan plane. If so, however, the edge line is degenerated
and appears as a straight line on the scan plane, and feature
points on the edge line should not be extracted in the first
place.

Figure 7b shows the procedure of finding a planar patch
as the correspondence of a planar point. Let i be a point in
H̃k , i ∈ H̃k . The planar patch is represented by three points.
Similar to the last paragraph, we find the closest neighbor of
i in P̄k−1, denoted as j . Then, we find another two points,
l and m, as the closest neighbors of i , one in the same scan
of j but not j , and the other in the preceding and following
scans to the scan of j . This guarantees that the three points
are non-collinear. To verify that j , l, and m are all planar
points, again, we check the smoothness of the local surface
and require c < 5 × 10−3.

With the correspondences of the feature points found, now
we derive expressions to compute the distance from a feature

point to its correspondence. We will recover the lidar motion
by minimizing the overall distances of the feature points in
the next section.We start with edge points. For a point i ∈ Ẽk ,
if ( j, l) is the corresponding edge line, j, l ∈ P̄k−1, the point
to line distance can be computed as

dE =
∣
∣
∣(X̃

L
(k,i) − X̄

L
(k−1, j)) × (X̃

L
(k,i) − X̄

L
(k−1,l))

∣
∣
∣

∣
∣
∣X̄

L
(k−1, j) − X̄

L
(k−1,l)

∣
∣
∣

, (2)

where X̃
L
(k,i), X̄

L
(k−1, j), and X̄

L
(k−1,l) are the coordinates of

points i , j , and l in {Lk}, respectively. Then, for a point i ∈
H̃k , if ( j, l, m) is the corresponding planar patch, j, l,m ∈
P̄k−1, the point to plane distance is

dH =

∣
∣
∣
∣
∣

(X̃
L
(k,i) − X̄

L
(k−1, j))

((X̄
L
(k−1, j) − X̄

L
(k−1,l)) × (X̄

L
(k−1, j) − X̄

L
(k−1,m)))

∣
∣
∣
∣
∣

∣
∣
∣(X̄

L
(k−1, j) − X̄

L
(k−1,l)) × (X̄

L
(k−1, j) − X̄

L
(k−1,m))

∣
∣
∣

.

(3)

5.3 Motion estimation

The lidar motion is modeled with constant angular and linear
velocities during a sweep. This allows us to linear interpo-
late the pose transform within a sweep for the points that are
received at different times. Let t be the current time stamp,
and recall that tk is the starting timeof the current sweep k. Let
T L
k (t) be the lidar pose transform between [tk, t]. T L

k (t) con-
tains 6-DOF motion of the lidar, T L

k (t) = [τ L
k (t), θ L

k (t)]T ,
where τ L

k (t) = [tx , ty, tz]T is the translation and θ L
k (t) =

[θx , θy, θz]T is the rotation in {Lk}. Given θ L
k (t), the cor-

responding rotation matrix can be defined by the Rodrigues
formula (Murray and Sastry 1994),

RL
k (t) = eθ̂ L

k (t) = I + θ̂ L
k (t)

||θ L
k (t)|| sin ||θ L

k (t)||

+
(

θ̂ L
k (t)

||θ L
k (t)||

)2

(1 − || cos θ L
k (t)||). (4)

where θ̂ L
k (t) is the skew symmetric matrix of θ L

k (t).
Given a point i , i ∈ Pk , let t(k,i) be its time stamp, and let

T L
(k,i) be the pose transform between [tk, t(k,i)]. T L

(k,i) can

be computed by linear interpolation of T L
k (t),

T L
(k,i) = t(k,i) − tk

t − tk
T L
k (t). (5)

Here, note that T L
k (t) is a changing variable over time and

the interpolation uses the transform of current time t . Recall
that Ek and Hk are the sets of edge points and planar points
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extracted from Pk . The following equation helps project Ek
and Hk to the beginning of the sweep, namely Ẽk and H̃k ,

X̃
L
(k,i) = RL

(k,i)X
L
(k,i) + τ L

(k,i), (6)

where X L
(k,i) is a point in Ek or Hk and X̃

L
(k,i) is the corre-

sponding point in Ẽk or H̃k . RL
(k,i) and τ L

(k,i) are the rotation

matrix and translation vector corresponding to T L
(k,i).

Recall that (2) and (3) compute the distances between
points in Ẽk and H̃k and their correspondences. Combining
(2) and (6), we can derive a geometric relationship between
an edge point in Ek and the corresponding edge line,

fE (X L
(k,i), T

L
k (t)) = dE , i ∈ Ek . (7)

Similarly, combining (3) and (6), we can establish another
geometric relationship between a planar point inHk and the
corresponding planar patch,

fH(X L
(k,i), T

L
k (t)) = dH, i ∈ Hk . (8)

Finally, we solve the lidar motion with the Levenberg-
Marquardt method (Hartley and Zisserman 2004). Stacking
(7) and (8) for each feature point in Ek and Hk , we obtain a
nonlinear function,

f (T L
k (t)) = d, (9)

where each row of f corresponds to a feature point, and d
contains the corresponding distances. We compute the Jaco-
bian matrix of f with respect to T L

k (t), denoted as J, where
J = ∂ f/∂T L

k (t). Then, (9) can be solved through nonlinear
iterations by minimizing d toward zero,

T L
k (t) ← T L

k (t) − (JT J + λdiag(JT J))−1JT d. (10)

λ is a factor determined by theLevenberg-Marquardtmethod.

5.4 Lidar odometry algorithm

Lidar odometry algorithm is shown inAlgorithm1. The algo-
rithm takes as inputs the point cloud from the last sweep,
P̄k−1, the growing point cloud of the current sweep, Pk , and
the pose transform from the last recursion as initial guess,
T L
k (t). If a new sweep is started, T L

k (t) is set to zero to
re-initialize (line 4–6). Then, the algorithm extracts feature
points from Pk to construct Ek and Hk on line 7. For each
feature point, we find its correspondence in P̄k−1 (line 9–19).
The motion estimation is adapted to a robust fitting frame-
work (Andersen 2008). On line 15, the algorithm assigns a
bisquare weight for each feature point as the following equa-
tion. The feature points that have larger distances to their

Algorithm 1: Lidar Odometry

1 input : P̄k−1, Pk , TL
k (t) from the last recursion at initial guess

2 output : P̄k , newly computed TL
k (t)

3 begin
4 if at the beginning of a sweep then
5 TL

k (t) ← 0;
6 end
7 Detect edge points and planar points in Pk , put the points in

Ek and Hk , respectively;
8 for a number of iterations do
9 for each edge point in Ek do

10 Find an edge line as the correspondence, then
compute point to line distance based on (7) and stack
the equation to (9);

11 end
12 for each planar point inHk do
13 Find a planar patch as the correspondence, then

compute point to plane distance based on (8) and
stack the equation to (9);

14 end
15 Compute a bisquare weight for each row of (9);
16 Update TL

k (t) for a nonlinear iteration based on (10);
17 if the nonlinear optimization converges then
18 Break;
19 end
20 end
21 if at the end of a sweep then
22 Project each point in Pk to tk+1 and form P̄k ;
23 Return TL

k (t) and P̄k ;
24 end
25 else
26 Return TL

k (t);
27 end
28 end

correspondences are assigned with smaller weights, and the
feature points with distances larger than a threshold are con-
sidered as outliers and assigned with zero weights.

w =
{

(1 − α2)2 − 1 < α < 1,
0 otherwise,

(11)

where

α = r

6.9459σ
√
1 − h

.

In the above equation, r is the corresponding residual in
the least square problem, σ is the absolute deviation of
the residuals from the median, and h is the leverage value
or the corresponding element on the diagonal of matrix
J(JT J))−1JT where J is the same Jacobian matrix used in
(10). Then, on line 16, the pose transform is updated for one
iteration. The nonlinear optimization terminates if conver-
gence is found, or the maximum iteration number is met. If
the algorithm reaches the end of a sweep, Pk is projected
to time stamp tk+1 using the estimated motion during the
sweep, forming P̄k . This makes ready for the next sweep to
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Fig. 8 Illustration of mapping process. The blue curve represents the
lidar pose on the map, TW

k−1(tk), generated by the mapping algorithm
at sweep k − 1. The orange curve indicates the lidar motion during the
entire sweep k, T L

k (tk+1), computed by the odometry algorithm. With
TW
k−1(tk) and T L

k (tk+1), the undistorted point cloud published by the

odometry algorithm is projected onto themap, denoted as Q̄k (the green
line segments), and matched with the existing cloud on the map,Qk−1
(the black colored line segments) (Color figure online)

be matched to P̄k . Otherwise, only the transform T L
k (t) is

returned by the algorithm for the next round of recursion.

6 Lidar mapping

The mapping algorithm runs at a lower frequency then the
odometry algorithm, and is called only once per sweep.
At the end of sweep k, lidar odometry generates a undis-
torted point cloud, P̄k , and simultaneously a pose transform,
T L
k (tk+1), containing the lidar motion during the sweep,

between [tk, tk+1]. The mapping algorithmmatches and reg-
isters P̄k in the world coordinates, {W }, illustrated in Fig. 8.
To explain the procedure, let us defineQk−1 as the point cloud
on the map, accumulated until sweep k −1, and let TW

k−1(tk)
be the pose of the lidar on the map at the end of sweep k − 1,
tk . With the output from lidar odometry, the mapping algo-
rithm extents TW

k−1(tk) for one sweep from tk to tk+1, to
obtain TW

k (tk+1), and transforms P̄k into the world coordi-
nates, {W }, denoted as Q̄k . Next, the algorithm matches Q̄k

with Qk−1 by optimizing the lidar pose TW
k (tk+1).

The feature points are extracted in the same way as in
Sect. 5.1, but 10 times of feature points are used. To find cor-
respondences for the feature points, we store the point cloud
on the map, Qk−1, in 10 m cubic areas. The points in the
cubes that intersect with Q̄k are extracted and stored in a 3D
KD-tree (Berg et al. 2008) in {W }.We find the points inQk−1

within a certain region (10cm× 10cm× 10cm) around the
feature points. Let S ′ be a set of surrounding points. For an
edge point, we only keep points on edge lines in S ′, and
for a planar point, we only keep points on planar patches.
The points are distinguished between edge points and pla-
nar points based on their c values. Here, we use the same
threshold (5 × 10−3) as in Sect. 5.1. Then, we compute the
covariance matrix of S ′, denoted as M, and the eigenvalues
and eigenvectors of M, denoted as V and E, respectively.
These values determine poses of the point clusters and hence
the point-to-line and point-to-plane distances. Specifically, if
S ′ is distributed on an edge line, V contains one eigenvalue

Fig. 9 Integration of pose transforms. The blue colored region illus-
trates the lidar pose from the mapping algorithm, TW

k−1(tk), generated
once per sweep. The orange colored region is the lidar motion within
the current sweep, T L

k (t), computed by the odometry algorithm. The
motion estimation of the lidar is the combination of the two transforms,
at the same frequency as T L

k (t) (Color figure online)

significantly larger than the other two, and the eigenvector
in E associated with the largest eigenvalue represents the
orientation of the edge line. On the other hand, if S ′ is dis-
tributed on a planar patch, V contains two large eigenvalues
with the third one significantly smaller, and the eigenvector
in E associated with the smallest eigenvalue denotes the ori-
entation of the planar patch. The position of the edge line or
the planar patch is calculated such that the line or the plane
passes through the centroid of S ′.

To compute the distance from a feature point to its corre-
spondence, we select two points on an edge line, and three
points on a planar patch. This allows the distances to be com-
puted using the same formulations as (2) and (3). Then, an
equation is derived for each feature point as (7) or (8), but dif-
ferent in that all points in Q̄k share the same time stamp, tk+1.
The nonlinear optimization is solved again by the Levenberg-
Marquardt method (Hartley and Zisserman 2004) adapted to
robust fitting (Andersen 2008), and then Q̄k is registered on
the map.

To evenly distribute the points, themap cloud is downsized
byvoxel-gridfilters (Rusu andCousins 2011) each timeanew
scan ismergedwith themap.The voxel-grid filters average all
points in each voxel, leaving an averaged point in the voxel.
Edge points and planar points use different voxel sizes. With
edge points, the voxel size is 5cm×5cm×5cm. With planar
points, it is 10cm×10cm×10cm. The map is truncated in a
500m× 500m×500m region surrounding the sensor to limit
the memory usage.

Integration of the pose transforms is illustrated in Fig. 9.
The blue colored region represents the pose output from lidar
mapping, TW

k−1(tk), generated once per sweep. The orange
colored region represents the transform output from lidar
odometry, T L

k (t), at a frequency round 10Hz. The lidar pose
with respect to the map is the combination of the two trans-
forms, at the same frequency as lidar odometry.

7 Experiments

During experiments, the algorithms processing the lidar data
run on a laptop computer with 2.5 GHz quad cores and 6Gib
memory, on topof the robot operating system (ROS) (Quigley
et al. 2009) in Linux. The method consumes a total of two
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Fig. 10 Maps generated in a, b a narrow and long corridor, c, d a large lobby, e, f a vegetated road, and g, h an orchard between two rows of trees.
The lidar is placed on a cart in indoor tests, and mounted on a ground vehicle in outdoor tests. All tests use a speed of 0.5m/s

threads, the odometry and mapping programs run on two
separate threads.

7.1 Accuracy tests

The method has been tested in indoor and outdoor environ-
ments using the lidar in Fig. 2. During indoor tests, the lidar
is placed on a cart together with a battery and a laptop com-
puter. One person pushes the cart and walks. Figure 10a, c
show maps built in two representative indoor environments,
a narrow and long corridor and a large lobby. Figure 10b,
d show two photos taken from the same scenes. In outdoor
tests, the lidar is mounted to the front of a ground vehicle.
Figrue 10e, g show maps generated from a vegetated road
and an orchard between two rows of trees, and photos are
presented in Fig. 10f, h, respectively. During all tests, the
lidar moves at a speed of 0.5 m/s.

To evaluate local accuracy of the maps, we collect a sec-
ond set of lidar clouds from the same environments. The
lidar is kept stationary and placed at a few different places
in each environment during data selection. The two point
clouds are matched and compared using the point to plane
ICPmethod (Rusinkiewicz and Levoy 2001). After matching
is complete, the distances between one point cloud and the
corresponding planar patches in the second point cloud are
considered as matching errors. Figure 11 shows the density
of error distributions. It indicates smaller matching errors
in indoor environments than in outdoor. The result is reason-

Fig. 11 Matching errors for corridor (red), lobby (green), vegetated
road (blue) and orchard (black), corresponding to the four scenes in
Fig. 10 (Color figure online)

able because feature matching in natural environments is less
exact than in manufactured environments.

Further, we want to understand how lidar odometry and
lidar mapping function and contribute to the final accuracy.
To this end, we take the dataset in Fig. 1 and show output of
each algorithm. The trajectory is 32m in length. Figure 12a
uses lidar odometry output to register laser points directly,
while Fig. 12b is the final output optimized by lidar mapping.
As we mention at the beginning, the role of lidar odometry
is to estimate velocity and remove motion distortion in point
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Fig. 12 Comparison between a lidar odometry output and b final lidar
mapping output with the dataset in Fig. 1. The role of lidar odometry is
to estimate velocity and remove motion distortion in point clouds. This
algorithm has a low fidelity. Lidar mapping further performs careful
scan matching to warrant accuracy on the map

clouds. The low-fidelity of lidar odometry cannot warrant
accurate mapping. On the other hand, lidar mapping further
performs careful scan matching to warrant accuracy on the
map. Table 1 shows computation time brake-down of the
two programs in the accuracy tests. We see lidar mapping
takes totally 6.4 times of computation of lidar odometry to
remove drift. Here, note that lidar odometry is called 10 times
while lidar mapping is called once, resulting in same level of
computation load on the two threads.

Additionally, we conduct tests to measure accumulated
drift of the motion estimate. We choose corridor for indoor
experiments that contains a closed loop. This allows us to
start and finish at the same place. The motion estimation
generates a gap between the starting and finishing positions,
which indicates the amount of drift. For outdoor experiments,
we choose orchard environment. The ground vehicle that car-
ries the lidar is equipped with a high accuracy GPS/INS for
ground truth acquisition. The measured drifts are compared
to the distance traveled as the relative accuracy, and listed
in Table 2. Specifically, Test 1 uses the same datasets with
Fig. 10a, g. In general, the indoor tests have a relative accu-
racy around 1% and the outdoor tests are around 2.5%.

7.2 Tests with IMU assistance

We attach an Xsens MTi-10 IMU to the lidar to deal with
fast velocity changes. The point cloud is pre-processed in
two ways before sending to the proposed method, (1) with

Table 1 Computation break-down for accuracy tests

Program Build Match Others (ms) Total (ms)

KD-tree (ms) Features (ms)

Odometry 11 23 14 48

Mapping 58 134 117 309

Table 2 Relative errors for motion estimation drift

Environment Test 1 Test 2

Distance (m) Error (%) Distance (m) Error (%)

Corridor 58 0.9 46 1.1

Orchard 52 2.3 67 2.8

orientation from the IMU, the point cloud received in one
sweep is rotated to align with the initial orientation of the
lidar in that sweep, (2) with acceleration measurement, the
motion distortion is partially removed as if the lidar moves at
a constant velocity during the sweep. Here, the IMU orienta-
tion is obtained by integrating angular rates from gyros and
readings from accelerometers in a Kalman filter (Thrun et al.
2005). After IMU pre-processing, the motion left to solve
is the orientation drift from the IMU, assumed to be linear
within a sweep, and the linear velocity. Hence, it satisfies the
assumption that the lidar has linear motion within a sweep.
The point cloud is then processed by the lidar odometry and
mapping programs.

Figure 13a shows a sample result. A person holds the lidar
and walks on a staircase. When computing the red curve, we
use orientation provided by the IMU, and our method only
estimates translation. The orientation drifts over 25◦ during
5 mins of data collection. The green curve relies only on
the optimization in our method, assuming no IMU is avail-
able. The blue curve uses the IMU data for preprocessing
followed by the proposed method. We observe small differ-
ence between the green and blue curves. Figure 13b presents
the map corresponding to the blue curve. In Fig. 13c, we
compare two closed views of the maps in the yellow rectan-
gular in Fig. 13b. The upper and lower figures correspond to
the blue and green curves, respectively. Careful comparison
finds that the edges in the upper figure are sharper than those
in the lower figure.

Table 3 compares relative errors inmotion estimationwith
and without using the IMU. The lidar is held by a person
walking at a speed of 0.5 m/s and moving the lidar up and
down at a magnitude around 0.5 m. The ground truth is man-
ually measured by a tape ruler. In all four tests, using the
proposed method with assistance from the IMU gives the
highest accuracy, while using orientation from the IMU only
leads to the lowest accuracy. The results indicate that the IMU
is effective in canceling the nonlinear motion, with which,
the proposed method handles the linear motion.

7.3 Tests with micro-helicopter datasets

We further evaluate the method with data collected from an
octo-rotor micro aerial vehicle. As shown in Fig. 14, the heli-
copter is mounted with a 2-axis lidar, which shares the same
design with the one in Fig. 2 except that the laser scanner
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Fig. 13 Comparison of results with/without aiding from an IMU. A
person holds the lidar and walks on a staircase. The black dot is the
starting point. In a, the red curve is computed using orientation from
the IMU and translation estimated by our method, the green curve relies
on the optimization in ourmethod only, and the blue curve uses the IMU
data for preprocessing followed by themethod.b is themap correspond-
ing to the blue curve. In c, the upper and lower figures correspond to the
blue and green curves, respectively, using the region labeled by the yel-
low rectangle in b. The edges in the upper figure are sharper, indicating
more accuracy on the map (Color figure online)

Table 3 Motion estimation errors with/without using IMU

Environment Distance (m) Error

IMU (%) Ours (%) Ours+IMU (%)

Corridor 32 16.7 2.1 0.9

Lobby 27 11.7 1.7 1.3

Vegetated road 43 13.7 4.4 2.6

Orchard 51 11.4 3.7 2.1

Fig. 14 a Octo-rotor helicopter used in the study. A 2-axis lidar is
mounted to the font of the helicopter with a zoomed in view in b. The
lidar is based on a Hokuyo laser scanner, sharing the same design with
the one in Fig. 2 except the laser scanner spins continuously

Fig. 15 Results from a small bridge. a shows trajectory of the heli-
copter. The black dot is the starting position. b, c show the map built by
the proposed method, where b is a zoomed in view of the area inside
the yellow rectangle in c. The helicopter is manually flown during data
collection. Starting from one side, it flies underneath the bridge, turns
back, and flies underneath the bridge again (Color figure online)

spins continuously. For such a lidar unit, a sweep is defined as
a semi-spherical rotation on the slow axis, lasting for one sec-
ond. A Microstrain 3DM-GX3-45 IMU is also mounted on
the helicopter. The odometry and mapping programs process
both lidar and IMU data.

We show results from two datasets in Figs. 15 and 16.
For both tests, the helicopter is manually flown at a speed
of 1 m/s. In Fig. 15, the helicopter starts from one side of
the bridge, flies underneath the bridge and turns back to fly
underneath the bridge for the second time. In Fig. 16, the
helicopter starts with taking-off from the ground and ends
with landing back on the ground. In Figs. 15a and 16a, we
show trajectories of the flights, and in Figs. 15b and 16b,
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Fig. 16 Results from the front of a house. a shows trajectory of the
helicopter. The black dot is the starting position. b, c show the map built
by the proposed method, where b is a zoomed in view of the area inside
the yellow rectangle in c. The helicopter is manually flown, starting
with taking-off from the ground and ending with landing on the ground
(Color figure online)

we show zoomed in views of the maps, corresponding to the
areas inside the yellow rectangles in Figs. 15c and 16c. We
are not able to acquire ground truth for the helicopter poses
or the maps. For relative small environments as in both tests,
the method continuously re-localizes on the maps built at the
beginning of the tests. Hence, calculating loop closure errors
becomes meaningless. Instead, we can only visually exam
accuracy of the maps in the zoomed in views.

7.4 Tests with a Velodyne lidar

These experiments use a Velodyne HDL-32E lidar mounted
on two vehicles shown in Fig. 17. Figure 17a is a utility

Fig. 17 Vehicles carrying a Velodyne HDL-32E lidar for data logging.
a is a utility vehicle driven on sidewalks and off-road terrains. b is a
passenger vehicle driven on streets

vehicle driven on sidewalks and off-road terrains. Figure 17b
is a passenger vehicle driven on streets. For both vehicles, the
lidar is mounted high on the top to avoid possible occlusions
by the vehicle body.

The Velodyne HDL-32E is a single-axis laser scanner. It
projects 32 laser beams simultaneously into the 3D environ-
ment. We treat each plane formed by a laser beam as a scan
plane. A sweep is defined as a full-circle rotation of the laser
scanner. The lidar acquires scans at 10 Hz by default. We
configure lidar odometry to run at 10 Hz processing individ-
ual scans. Lidar mapping stacks scans for a second to do the
batch optimization. The computation brake-down for the two
programs is shown in Table 4.

Figure 18 shows results of mapping the university cam-
pus. The data is loggedwith the vehicle in Fig. 17a for 1.0 km

Table 4 Computation break-down for Velodyne HDL-32E tests

Program Build Match Others (ms) Total (ms)

KD-tree (ms) Features (ms)

Odometry 18 35 16 69

Mapping 131 283 149 563

Fig. 18 Results of mapping university campus. The overall run is
1.0 km and the vehicle speed is at 2–3 m/s. a shows the final map
built and b shows the trajectory and registered laser points overlaid on
a satellite image. The horizontal position error from matching with the
satellite image is ≤1m
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Fig. 19 Results ofmapping streets. The path is 3.6 km in length and the
vehicle speed is at 11–18 m/s. The figures are in the same arrangement
with Fig. 18. The horizontal position error from matching with the
satellite image is ≤2m

of travel. The driving speed during the test is maintained at
2–3 m/s. Figure 18a shows the final map built. Figure 18b
shows the estimated trajectory (red curve) and the registered
laser points overlaid on a satellite image. By matching the
trajectory to the sidewalk (the vehicle is not driven on the
street) and the laser points to the building walls, we deter-
mine the horizontal position drift is≤1 m. By comparison of
mapped buildings from both sides, we are able to determine
the vertical drift to be ≤1.5 m. This results in the overall
position error to be ≤0.2% of the distance traveled.

Figure 19 shows results from another test. We drive the
vehicle in Fig. 17b on streets for 3.6 km. Except waiting
for traffic lights, the vehicle speed is mostly between 11–
18 m/s. The figures in Fig. 19 are organized in the same
way as Fig. 18. By comparison with the satellite image, we
determine the horizontal position error is ≤ 2m. For vertical
accuracy, however, we are not able to evaluate.

7.5 Tests with KITTI datasets

Finally, we test themethod using theKITTI odometry bench-
mark (Geiger et al. 2012, 2013). The datasets are loggedwith
sensorsmounted on top of a passenger vehicle in road driving
scenarios. As shown in Fig. 20, the vehicle is equipped with

Fig. 20 a Vehicle used by the KITTI benchmark for data logging. The
vehicle is mounted with a Velodyne lidar, stereo cameras, and a high
accuracy GPS/INS for ground truth acquisition. Our method uses data
from the Velodyne lidar. b Zoomed in view of the sensors. Images taken
from http://www.cvlibs.net/datasets/kitti/

color stereo cameras, monochrome stereo cameras, a Velo-
dyne HDL-64E laser scanner, and a high accuracy GPS/INS
for ground truth. The laser data is logged at 10 Hz and used
by the method for motion estimation. To reach the maximum
accuracy possible, the scan data is processed in a slightly dif-
ferentway than in Sect. 7.4. Instead of stacking 10 scans from
lidar odometry, lidar mapping runs at the same frequency
as lidar odometry and processes each individual scan. This
results in the system running at 10% of the real-time speed,
taking one second to process a scan.

The datasets contain 11 tests with the GPS/INS ground
truth provided. The maximum driving speed in the datasets
reaches 85 km/h (23.6 m/s). The data covers mainly three
types of environments: “urban“ with buildings around,
“country” on small roads with vegetations in the scene, and
“highway” where roads are wide and the vehicle speed is
fast. Figure 21 presents sample results from the three envi-
ronments. On the top row, we show estimated trajectories of
the vehicle compared to the GPS/INS ground truth. On the
middle and bottom rows, the map and a corresponding image
is shown from each dataset. The maps are color coded by
elevation. The complete test results with the 11 datasets are
listed in Table 5. The three tests from left to right in Fig. 21
are datasets 0, 3, and 1 in the table. Here, the accuracy is
calculated by averaging relative position errors using seg-
mented trajectories at 100, 200, . . . , 800m lengthes, based
on 3D coordinates.

Our resulting accuracy is ranked #2 on the KITTI odom-
etry benchmark1 irrespective of sensing modality, with an
average of 0.88% position error compared to the distance
traveled. The results outperform the state of the art vision-
based methods (stereo visual odometry methods) (Persson
et al. 2015; Badino and Kanade 2011, 2013; Lu et al. 2013;
Bellavia et al. 2013 for over 14% in position error and 24% in
orientation error. In fact, the method is also partially used by
the #1 rankedmethodwhich runs visual odometry for motion

1 www.cvlibs.net/datasets/kitti/eval_odometry.php.
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Fig. 21 Sample results using the KITTI benchmark datasets. The
datasets are chosen from three types of environments: urban, country,
and highway from left to right, corresponding to tests number 0, 3, and
1 in Table 5. In a–c, we compare estimated trajectories of the vehicle

to the GPS/INS ground truth. The black dots are starting positions. d–f
show maps corresponding to a–c, color coded by elevation. An image
is shown from each dataset to illustrate the environment, in g–i

Table 5 Configurations and results of the KITTI benchmark datasets

Data no. Configuration Mean relative
position error
(%)

Distance (m) Environment

0 3714 Urban 0.78

1 4268 Highway 1.43

2 5075 Urban + Country 0.92

3 563 Country 0.86

4 397 Country 0.71

5 2223 Urban 0.57

6 1239 Urban 0.65

7 695 Urban 0.63

8 3225 Urban + Country 1.12

9 1717 Urban + Country 0.77

10 919 Urban + Country 0.79

The errors are measured using segments of trajectories at
100, 200, . . . , 800m lengthes based on 3D coordinates, as averaged
percentages of the segment lengthes

estimation and the proposed method for motion refinement
(Zhang and Singh 2015). We think laser-based state esti-
mation is superior than vision-based methods due to the
capability of lidars in measuring far points. The lidar range
errors are relatively constantw.r.t. the distancemeasured, and
points far away from the vehicle ensure orientation accuracy
during scan matching.

8 Discussion

When building a complex system, one question is which
components in the system function as the keys to ensure
the performance. Our first answer is the dual-layer data
processing structure. This allows us to break down the state
estimation problem into two problems that aremuch easier to
solve. Lidar odometry only cares about velocity of the sensor
and motion distortion removal. The velocity estimates from
lidar odometry are not precise (see Fig. 12a) but are good
enough to de-wrap point clouds. After which, lidar mapping
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only needs to consider rigid body transform for precise scan
matching.

Our implementation of geometrical feature detection and
matching is a means to realize online and real-time process-
ing. Particularly in lidar odometry, matching does not have
to be very precise but high-frequency is more important for
point cloud de-wrapping. The implementation takes process-
ing speed as its priority. However, if sufficient amount of
computation is available, e.g. with GPU acceleration, the
implementation is less necessary.

We do have the choice of choosing the frequency ratio
between lidar odometry and lidar mapping. Setting the ratio
to be 10 is our preference (lidarmapping is an order ofmagni-
tude slower than lidar odometry). This means lidar mapping
stacks 10 scan outputs from lidar odometry for one time of
batch optimization. Setting the ratio to be higher will typi-
cally causemore drift. Also, each time lidar mapping finishes
processing, a jumpwill be introduced to themotion estimates.
The ratio is able to keep the motion estimates to be smooth.
On the other hand, setting the ratio to be lower will cause
more computation and is usually not necessary. The ratio also
balances computation load on the two CPU threads. Chang-
ing the ratio will put more computation load on one thread
than the other.

9 Conclusion and future work

Motion estimation and mapping using point clouds from a
rotating laser scanner can be difficult because the problem
involves recovery of motion and correction of motion distor-
tion in lidar clouds. The proposed method divides and solves
the problem by two algorithms running in parallel. Coopera-
tion of the two algorithms allows accurate motion estimation
and mapping to be realized in real-time. The method has
been tested in a large number of experiments covering vari-
ous types of environments, using author collected data aswell
as datasets from the KITTI odometry benchmark. Since the
current method does not recognize loop closure, our future
work involves developing a method to correct motion esti-
mation drift by closing the loop.
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