Auton Robot (2017) 41:31-43
DOI 10.1007/s10514-015-9525-1

@ CrossMark

A real-time method for depth enhanced visual odometry

Ji Zhang! . Michael Kaess' - Sanjiv Singh!

Received: 1 March 2015 / Accepted: 17 November 2015 / Published online: 12 December 2015

© Springer Science+Business Media New York 2015

Abstract Visual odometry can be augmented by depth
information such as provided by RGB-D cameras, or from
lidars associated with cameras. However, such depth infor-
mation can be limited by the sensors, leaving large areas
in the visual images where depth is unavailable. Here, we
propose a method to utilize the depth, even if sparsely avail-
able, in recovery of camera motion. In addition, the method
utilizes depth by structure from motion using the previously
estimated motion, and salient visual features for which depth
is unavailable. Therefore, the method is able to extend RGB-
D visual odometry to large scale, open environments where
depth often cannot be sufficiently acquired. The core of our
method is a bundle adjustment step that refines the motion
estimates in parallel by processing a sequence of images, in
a batch optimization. We have evaluated our method in three
sensor setups, one using an RGB-D camera, and two using
combinations of a camera and a 3D lidar. Our method is rated
#4 on the KITTI odometry benchmark irrespective of sens-
ing modality—compared to stereo visual odometry methods
which retrieve depth by triangulation. The resulting average
position error is 1.14 % of the distance traveled.

Keywords Visual odometry - RGB-D - Range sensing

B Ji Zhang
zhangji@cmu.edu

Michael Kaess
kaess@cmu.edu

Sanjiv Singh

ssingh@cmu.edu

Robotics Institute, Carnegie Mellon University, Pittsburgh,
PA 15213, USA

1 Introduction

Visual odometry is the process of egomotion estimation given
asequence of camera imagery. Typically, monocular imagery
is insufficient to compute the egomotion because motion
along the camera optical axis can cause little motion of
visual features and therefore the estimation problem can be
degenerate. With a single camera (Klein and Murray 2007,
Newcombe et al. 2011; Engel et al. 2013; Forster et al.
2014), if assuming unconstrained motion, rotation can be
recovered but translation is up to scale. This situation can
be mitigated by using extra information such as knowledge
of a non-holonomic motion constraint (Scaramuzza 2011), or
measurements from an IMU integrated with the visual odom-
etry (Weiss et al. 2013). However, the results are dependent
on the quality of the extra information involved.

It is possible to obtain scale by using multiple cameras
simultaneously (Corke et al. 2004; Konolige et al. 2011).
Howeyver, this comes at its own cost-reduced effective field
of view and a limitation on the range that can be accurately
recovered from the multiple cameras. If a small baseline
is used, depth is uncertain for features far away from the
camera. But, if the cameras are separated significantly, inter-
camera calibration becomes difficult and accuracy can be
hard to ensure. When used in scenes where a large differ-
ence exists between near and far objects, depth can only be
obtained in certain parts of the images. Effectively, only near
features are used in recovery of the motion.

This paper proposes a method, namely DEMO, that can
effectively utilize depth information along with the imagery.
When used in scenes where a large difference exists between
near and far objects, depth can only be obtained in certain
parts of the images (an example is shown in Fig. 1). Our
method handles exactly this scenario—enhance motion esti-
mation through usage of any depth information available.

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10514-015-9525-1&domain=pdf

32

Auton Robot (2017) 41:31-43

(b)

Fig. 1 a Features tracked at an image frame. The green dots represent
features whose depth comes from the depth map, the blue dots rep-
resent features whose depth is determined by triangulation using the
previously estimated motion of the camera, and the red dots represent
features without depth. The proposed method uses all three types of
features in determining motion. b A depth image from an RGB-D cam-
era corresponding to a, where depth information is only available in the
vicinity of the camera. The gray and white pixels represent close and
far objects with respect to the camera, and the black pixels are areas that
depth is unavailable (Color figure online)

Hence, we extend RGB-D visual odometry to large scale,
open environments where depth often cannot be sufficiently
acquired. The method maintains and registers a depth map
using the estimated motion of the camera. Visual features are
associated with depth from the depth map, or by structure
from motion using the previously estimated motion. With
depth associated, we derive objective functions that minimize
the distances from the features to their lateral projections
onto the rays representing the features tracked at a consecu-
tive frame. This makes the method extra sensitive to features
at large angles off the camera periapical axis. Salient visual
features for which depth is unavailable are also used, which
provide different constraints in solving the problem. Further,
the method contains a bundle adjustment step which refines
the motion estimates in parallel by processing a sequence of
images, in a batch optimization.

The proposed method is not limited to RGB-D cameras.
It can be adapted to various types of cameras as long as
depth information can be acquired and associated. We have
collected experimental data using an RGB-D camera and a
custom-built sensor consisting a camera and 3D lidar (a 2-
axis laser scanner). We have also evaluated the method using
the well-known KITTI benchmark datasets (Geiger et al.
2012, 2013), which contain carefully registered data from
a number of sensors and ground truth from a high-accuracy
GPS/INS. The method reported here uses images from a sin-
gle camera in a stereo pair and laser scans from a high rate
lidar. By submitting results to the benchmark server for which
the ground truth is not provided, the accuracy and ranking
are automatically calculated. The method is compared to var-
ious methods, including stereo/monocular visual odometry
methods and RGB-D visual odometry methods that uses a
camera and a lidar. The contributions of the paper are as
follows,

@ Springer

e We propose a visual odometry framework that can utilize
depth information from various sources to assist motion
estimation;

e The proposed method is able to maximally utilize image
information with and without depth coverage in motion
estimation;

e The proposed method is tested thoroughly with a large
number of datasets in various types of environments and
in large scale;

e We make an honest attempt to present our work to a level
of detail allowing readers to re-implement the method.

The rest of this paper is organized as follows. In Sect. 2,
we discuss related work. In Sect. 3, we state the problem. The
sensor hardware and software system are described in Sect. 4.
The frame to frame motion estimation and bundle adjustment
are discussed in Sects. 5 and 6. Experimental results are in
Sect. 7 and conclusion in Sect. 8.

2 Related work

Vision based methods are now common for motion estima-
tion (Nister et al. 2006; Maimone et al. 2007). To solve 6DOF
camera motion, stereo vision systems are often used (Howard
2008; Geigeretal.2011). The methods track and match visual
features between image frames. Depth information of the fea-
tures are retrieved by triangular geometry established from
the two image views with the camera baseline as a reference.
Among this area, Konolige, at al.’s stereo visual odometry
recovers the motion from bundle adjustment (Konolige et al.
2011). The method is integrated with an IMU and capable for
long distance off-road navigation. Further, Paz et al. (2008)
estimate the motion of stereo hand-hold cameras. The depth is
recovered for features close to the cameras, which help solve
scale of the translation estimation. Features far away from the
camera are used to solve orientation only. Our method fol-
lows the same idea to utilize both near and far features. How-
ever, it solves for motion by an optimization based approach.
Instead of classifying the features into two categories, we
consider three scenarios where the depth is provided from
the sensor, by structure from motion, and unavailable.

The introduction of RGB-D cameras has drawn great
attention in the research of visual odometry (Newcombe et al.
2011; Engelhard et al. 2011; Whelan et al. 2013; Dryanovski
et al. 2013). Such cameras provide RGB images along with
depth information within the camera range limit. When depth
information is available, motion estimation can be formu-
lated into a 2D-3D matching problem Sattler et al. (2011).
Huang et al. (2011) use tracked visual features with known
depth from an RGB-D camera to compute the motion esti-
mates. The method eliminates features if the corresponding
depth is unavailable from the depth images. Henry et al.
(2012) integrate visual features with the iterative closest

Auton Robot (2017) 41:31-43

33

point (ICP) method (Rusinkiewicz and Levoy 2001). The
motion estimation employs a joint optimization by minimiz-
ing combined 2D and 3D feature matching errors. Another
popular method is dense tracking (Kerl et al. 2013; Sturm
et al. 2013). The method minimizes the photometric error
using a dense 3D model of the environment from the depth
images. Overall, the methods Huang etal. (2011), Henry etal.
(2012), Kerl et al. (2013), Sturm et al. (2013) rely on suffi-
cient depth information for image processing. This can limit
their applications especially if the methods are used in open
environments, where depth information can only be limitedly
available in a near range of the camera. Few RGB-D visual
odometry methods are able to handle insufficiently provided
depth information. In the work of Hu et al. a heuristic switch
is used to choose between an RGB-D and a monocular visual
odometry method (Hu et al. 2012).

In contrast to methods Huang et al. (2011), Henry et al.
(2012), Kerl et al. (2013), Sturm et al. (2013), Hu et al.
(2012), we propose a single method to handle sparse depth
information. To the best of our knowledge, this is the first
optimization based visual odometry method combining both
features with and without depth in solving for motion. Fur-
ther, since the method maintains and registers a depth map,
it can use depth information from different types of sensors.
The method is not limited to RGB-D cameras where depth is
associated to visual images for each pixel, but also supports
depth from lidars. As far as we know, no existing method in
the literature has associated a lidar to a monocular camera for
visual odometry estimation. This paper is an extended ver-
sion of our conference paper Zhang et al. (2014). We address
the method in more details and include more results in exper-
iments.

3 Notations and task description

The visual odometry problem addressed in this paper is to
estimate the motion of a camera using monocular images
with assistance of depth information. We assume that the
camera is well modeled as a pinhole camera (Hartley and
Zisserman 2004), the camera intrinsic parameters are known
from pre-calibration, and the lens distortion is removed. As a
convention in this paper, we use right superscript k, k € Z*
to indicate image frames. Define camera coordinate system,
{C}, as follows,

e {C}isa3Dcoordinate system with its origin at the camera
optical center. The x-axis points to the left, the y-axis
points upward, and the z-axis points forward coinciding
with the camera principal axis.

We want to utilize features with and without depth. Let
be a set of feature points. For a feature i, i € .7, that is
associated with depth, its coordinates in {C¥} are denoted as

Xf? , where X f‘ = [x{‘, y{‘, zf.‘ 17. For a feature with unknown
depth, we normalize the coordinates such that its z-coordinate
is one. Let X f{ be the normalized term of the feature, X f{ =
[)El(‘ , yf , 177, Intuitively, we can imagine a plane that is
parallel to the x — y plane of {C*} and at a unit length in
front of the coordinate origin, and X f{ is the point projected
onto the plane. With notations defined, our visual odometry

problem can be described as

Problem Given a sequence of image frames k, k € Z +, and
features, .#, compute the motion of the camera between each
two consecutive frames, k and k — 1, using Xf.‘ , if the depth

is available, and)_(f, if the depth is unknown, i € .#.

4 System overview
4.1 Sensor hardware

The proposed method is validated on, but not limited to, three
different sensor systems. The first two sensors shown in Fig. 2
are used to acquire author-collected data, while the third
one uses configuration of the KITTI benchmark datasets.
Through the paper, we will use data from the first two sen-
sors to illustrate the method. Figure 2a is an Xtion Pro Live
RGB-D camera. The camera is capable of providing RGB
and depth images at 30 Hz, with 640 x 480 resolution and
58¢ horizontal field of view. Figure 2b shows a custom-built
camera and 3D lidar. The camera can provide RGB images up
to 60 Hz, with 744 x 480 resolution and 83° horizontal field
of view. The 3D lidar is based on a Hokuyo UTM-30LX laser
scanner, which has 180° field of view with 0.25° resolution
and 40lines/s scanning rate. The laser scanner is actuated by
a motor for rotational motion to realize 3D scanning.

4.2 Software system overview

Figure 3 shows a diagram of the software system. First, visual
features are tracked by the feature tracking block. Depth

&Y 3D lidar

Camera
(a) (b)

Fig. 2 Two sensors involved in the evaluation. a An Xtion Pro Live
RGB-D camera. The camera is capable of providing 30Hz RGB and
depth images, with 640 x 480 resolution and 58° HFV. b A custom-
built camera and 3D lidar. The camera provides up to 60 Hz RGB images
with 744 x 480 resolution and 83° HFV. The 3D lidar consists of a
Hokuyo UTM-30LX laser scanner rotated by a motor to realize 3D scan.
The laser scanner has 180° FOV with 0.25° resolution and 40 lines/s
scanning rate

@ Springer

34

Auton Robot (2017) 41:31-43

Fig. 3 Block diagram of the
visual odometry software

system Depth Images/

Point Clouds

Features with/without Depth

Tracked Features
RGB Images

images from RGB-D cameras or point clouds from lidars
are registered by the depth map registration block, using the
estimated motion. The block also associates depth for the
visual features. The frame to frame motion estimation block
takes the features as the input, and its output is refined by
the bundle adjustment block using sequences of images. The
bundle adjustment runs at a low frequency (around 0.25-
1.0Hz). The transform integration block combines the high
frequency frame to frame motion with the low frequency
refined motion, and generates integrated motion transforms
at the same frequency as the frame to frame motion trans-
forms. Sections 5 and 6 present each block in detail.

5 Frame to frame motion estimation
5.1 Mathematical derivation

We start with mathematical derivation for the frame to frame
motion estimation. The corresponding algorithm is discussed
in the next section. Recall that X f “land X f‘ are the coordi-
nates of a tracked feature in {C¥~'} and {C*}. Define R and
T as the 3 x 3 rotation matrix and 3 x 1 translation vector
of the camera between the two frames, we model the camera
motion as rigid body transformation,

Xf=RX\‘"'4+T. (1

Next, we will work on features with known depth. Acquir-
ing depth for the features will be discussed in the later part
of this paper. Here, note that we only associate depth for one
of the two frames—frame k — 1. This is because the depth
maps are registered in the camera coordinates by the esti-
mated motion. By the time of frame k, the depth map at
frame k — 1 is available and the depth of X f ~! can be asso-
ciated. However, the depth map is unavailable to frame k
as the last frame to frame motion has not been computed.
This is especially true for the sensor configuration in Fig. 2b.
Since laser points are perceived continuously over time, esti-
mated motion is needed to register the points on the depth
map. Further, our observation is that depth maps change little
between consecutive frames and using that of one frame is
sufficient. Recall that X f is the normalized term of X f‘ , where
the z-coordinate is one, we rewrite (1) as

X =R 4T 2)

@ Springer

R —
Bundle
Frame to Adjustment
Frame Motion
Transform i Low Frequency Refined Transform
High Frequency

Feature Tracking ‘ —){ Transform Integration Integrated Transform

where R and T form an SE(3) transformation Murray et al.
(1994). Equation (2) contains three rows. Combining the 1st
and 2nd rows with the 3rd row, respectively, we eliminate zf.‘
as the unknown depth. This gives us two equations as follows,

Ry — FR)X + 1 — 513 =0, 3)
Ry — " ROX* ' + 1 — 5k13 = 0, (4)

where Ry, and Ty, h € {1, 2, 3} are the Ath rows of R and T,
respectively.
For a feature with unknown depth, we rewrite (1) as the

. k—1 . . _
following. Here, X; is the normalized term of X f 1,

1

=k _ = k—
#X; = IRX;

+T.)
Equation (5) also contains three rows. Combining all rows to
eliminate both sz and zf_l, we obtain,

_ _ _ _ k—1
(=353 + T, ¥T5 — Ty, — 55T + 5°T1IRX;

=0. (6)

So far, we have modeled the frame to frame motion for
features with and without depth separately. Now, we will
solve the motion using both types of features. Define 6 as a
3 x 1vector, 8 = [6, 0y, OZ]T, where the normalized term
0/110|| represents direction of the rotation axis and ||6|] is the
rotation angle between frames k and k—1. The rotation matrix
R can be expressed by exponential map through Rodrigues
formula (Murray et al. 1994),

L+ gy sin16]] + 20— (1 — cos |[61])
if 0 is not a small angle, (7N
I+ o + %éz otherwise,

where 0 is the skew symmetric matrix of 6. Here, note that
when 6 is a small angle, we take the second-order Taylor
expansion of the Rodrigues formula in (7) to avoid the prob-
lem of dividing by zero.

Substituting (7) into (3)—(4), we can derive two equations
for a feature with depth, and substituting (7) into (6), we can
derive one equation for a feature with unknown depth. Each
equation is a function of # and T'. Suppose we have a total of
m and n features with known and unknown depth. Stacking
the equations, we obtain a nonlinear function,

fAT; 0]) = e, ®)

Auton Robot (2017) 41:31-43

35

where f has 2m+n rows, ¢ isa (2m+n) x 1 vector containing
the residuals, and [T'; €] is the vertical joining of the vectors.
Compute the Jacobian matrix of f with respect to [T; 6],
denoted as J, where J = df/0[T; 6]. Equation (8) can be
solved by the Levenberg—Marquardt (LM) method (Hartley
and Zisserman 2004),

[T; 617 < [T; 617 — 7Y + rdiagJ") "' J7e.)

Here, A is a scale factor determined by the LM method.

The proposed method is a sparse feature based method.
Features are tracked regardless of depth information being
available. The tracked features are then formulated into
different equations according to the depth information. In
comparison, direct methods such as Kerl et al. (2013) and
Sturm et al. (2013) employ overall image warping in the
depth available areas, eliminating the need to process individ-
ual features. However, as discussed in Forster et al. (2014),
sparse feature based methods can produce better accuracy.
The method Forster et al. (2014), therefore, performs direct
image matching to generate initial guess followed by sparse
motion estimation to warrant accuracy.

Algorithm 1: Frame to Frame Motion Estimation

1 input: X\, X 'or X\ ic.s
2 output:0,T
3 begin
4 0, T — initialization based on a constant velocity model or
zero at the first frame;
5 for a number of iterations do
6 for eachi € .# do
7 if 7 is depth associated then
8 Derive (3)-(4) using Xf{ and Xf."l as
functions of 6 and T,
(3): (R —FR)X + T —®T3 =0,
(4): (Ry—FR)X + T — T3 = 0;
9 Stack (3)-(4) into (8) : f([T; 0]) = ¢€;
10 end
11 else
12 Derive (6) using X} and X; ' as a function
of and T,
(6): [T+ T, &1 —T1, —FT+7T1)
RY, ' =0;
13 Stack (6) into (8) : f([T; 0]) =¢;
14 end
15 end
16 Compute a bisquare weight for each feature based on
the residuals in (8) : f([T; 6]) = ¢;
17 Update 6, T for one iteration based on,
(9):[T; 6] [T 6]" — (J"J + Adiag(J'J)) ' J'e
18 if the inlier ratio is smaller than a threshold then
19 ‘ Report the frame is skipped and return;
20 end
21 if the nonlinear optimization converges then
22 ‘ Break;
23 end
24 end
25 Return 0, T;
26 end

5.2 Motion estimation algorithm

The frame to frame motion estimation algorithm is presented
in Algorithm 1. We do not implement key framing as we
seek for the maximum number of features tracked between
consecutive frames. This helps provide more constraints in
the bundle adjustment step which will be discussed in Sect. 6.
However, if not enough inliers can be found, for example due
to moving objects in the scene, the frame is skipped. As we
have mentioned that the proposed method only uses depth
information associated at frame k — 1, all features taken as

. . k
the input at frame k are without depth, as X;. Features at

frame k — 1 are separated into X f‘ “land X f_l for those with
and without depth. On line 8, a feature with depth contributes
two equations to the nonlinear function (8), and on line 12,
a feature with unknown depth contributes one equation.

We use a constant velocity model for initialization of 6 and
T on line 4. Optionally, the terms are initialized to zero at the
first frame. The algorithm is adapted to a robust fitting frame-
work (Andersen 2008). On line 16, the algorithm assigns
a bisquare weight for each feature based on their residuals
in (8). Features that have larger residuals are assigned with
smaller weights, and features with residuals larger than a
threshold are considered as outliers and assigned with zero
weights. Online 17,0 and T are updated for one iteration. The
nonlinear optimization terminates if convergence is found, or
the maximum iteration number is met. The nonlinear opti-
mization also terminates if the ratio of the inlier features is
lower than a threshold, which lead to neglecting of the current
frame. Finally, the algorithm returns the motion estimation 6
and T.

5.3 Feature depth association

In this section, we discuss how to associate depth to the visual
features. As illustrated in Fig. 4, a depth map is registered
by the estimated motion of the camera. The depth map is
projected to the last image frame whose transform to the
previous frame is established. Here, we use frame k — 1 to
keep the same convention with the previous sections.

New points are added to the depth map upon receiving
from depth images or point clouds. Only points in front of
the camera are kept, and points that are received a certain
time ago are forgotten. Then, the depth map is downsized to
maintain a constant point density. We want to keep an even
angular interval among the points viewed from the origin of
{C*11, or the optical center of the camera at frame k — 1.
Here, we choose angular interval over Euclidean distance
interval with the consideration that an image pixel represents
an angular interval projected into the 3D environment. We
use the same format for the depth map.

@ Springer

36

Auton Robot (2017) 41:31-43

~@
[SY0)
w®
= O

i i

&> @ &
1 21

N

@ & O
2 3 1

(a) (b) (c)

Fig. 4 Illustration of depth map registration. a—c represent three image
frames. In each figure, we show the camera frame on the top and the
corresponding image on the botfom. Three points are registered labeled
with 1-3. The illumination of a point indicates its distance to the cam-
era. In this example, the camera moves forward. The registered points
change illumination during the camera motion, leave the camera field
of view in the end and are removed from the depth map

The map points are converted into a spherical coordinate
system coinciding with {C¥~1}. A point is represented by
its radial distance, azimuthal angle, and polar angle. When
downsizing, only the two angular coordinates are considered,
and the points are evenly distributed with respect to the angu-
lar coordinates. This results in a denser point distribution that
is closer to the camera, and vice versa. An example of a regis-
tered depth map is shown in Fig. 5, color coded by elevation.
The point clouds are collected by the lidar in Fig. 2b, while
the camera points to a wall.

To associate depth to the visual features, we store the depth
map in a 2D KD-tree (de Berg et al. 2008) based on the two
angular coordinates. As illustrated in Fig. 6, this equals to
projecting points on the depth map onto a sphere with a unit
distance to the camera center. For each feature i, i € .#, as
illustrated by the orange point, we find three points from the
KD-tree that are the closest to the feature. The three points
form a local planar patch in the 3D environment, and the
3D coordinates of the feature are found by projecting onto
the planar patch. Denote Xﬁ_l, j € {1, 2,3} as the Euclid-
ean coordinates of the three points in {C k=13 "and recall that
Xf.“] is the coordinates of feature i in {C*~'}. The depth is
computed by solving a function as follows,

Fig. 5 An example of the depth map with point clouds perceived by
the lidar in Fig. 2b. The points are color coded by elevation. The camera
points to a wall during data collection

@ Springer

Fig. 6 TIllustration of depth association. We represent points on the
depth map by spherical coordinate representation. The points are stored
in a 2D KD-tree based on the azimuthal angle and polar angle as illus-
trated in the figure. This equals to projecting the points onto a sphere
with a unit distance to the camera center. For each feature (indicated by
the orange point), we find the three closest points from the KD-tree. The
depth of the feature is then interpolated from the three points assuming
a local planar patch formed by the three points in the 3D environment
(Color figure online)

~k—1

1 ok—1 ok—1
0. SS1(0.¢

X< @& T %) = 0. 10

Further, if the depth is unavailable from the depth map for
some features but they are tracked for longer than a certain
distance in the Euclidean space, we triangulate the features
using the image sequences where the features are tracked.
This uses a similar procedure as Vogiatzis and Hernandez
(2011), Forster et al. (2014), where the depth of a feature is
updated based on a Bayesian probabilistic model each time
the feature is tracked for one more frame. Figure 7 gives
an example of depth associated features, corresponding to
Fig. 1. The white dots are points on the depth map, only
available within a limited range. The green dots represent
features whose depth are provided by the depth map, and the
blue dots are from structure from motion.

6 Bundle adjustment

The camera frame to frame motion estimated in the previ-
ous section is refined by a bundle adjustment, which takes
a sequence of images and performs a batch optimization.

Fig. 7 Features projected into the 3D environment corresponding to
Fig. 1. The depth map (white dots) is from depth images collected by
the RGB-D camera in Fig. 2a, only available within a limited range.
The green dots are features whose depth is provided by the depth map,
and the blue dots are from triangulation using the previously estimated
motion (Color figure online)

Auton Robot (2017) 41:31-43

37

== Frame to frame motion

Before BA: Djjjjﬂjﬂjjm]mﬂj: == Motion being refined by BA
During BA: Djjjjjjjjm]m == Refined Motion
After BA:

Fig. 8 Illustration of bundle adjustment. The orange segment repre-
sents frame to frame motion, the green segment represents the motion
being refined by bundle adjustment, and the blue segment is refined
motion. Each vertical bar indicates an image frame. On the fop row,
the system accumulates frame to frame motion (orange) in front of the
refined motion (blue). When enough image frames are accumulated,
on the second row, bundle adjustment is executed refining the green
segment. After the bundle adjustment, on the third row, the green seg-
ment becomes refined motion. The system keeps accumulating frame to
frame motion (orange) for the next bundle adjustment to execute (Color
figure online)

As a trade-off between accuracy and processing time, we
choose one image out of every five images as the bundle
adjustment input. The image sequence contains a number of
eight images (taken from 40 original images). This allows the
batch optimization to finish before the next image sequence
is accumulated and ready for processing. The bundle adjust-
ment process is illustrated in Fig. 8, using the iISAM (Kaess
et al. 2012) open source library. We choose iSAM over other
libraries because it supports user-defined camera models, and
can conveniently handle both features with and without avail-
able depth.

In this step, outlier features are already eliminated in the
frame to frame motion estimation. All selected inlier features
are used in the bundle adjustment. While bundle adjust-
ment itself is time-consuming, skipping outlier removal helps
reduce processing time. In the image sequence, the first fame
is fixed. The bundle adjustment refines every frame thereafter
and the 3D feature poses along the sequence.

Here, we define another representation of the features,

~k _ _ . .
X, = [xf‘, y{‘, zf?]T, where the x- and y- entries contain the

1
normalized coordinates, and the z-entry contains the depth.
For features without depth, zf.‘ is set at a default value. Let
be the set of image frames in the sequence, and let /
be the first frame in the set. Upon initialization, all features

appear in the sequence are projected into {C!}, denoted as

Xﬁ, i € 4. Define 91] as the transform projecting Xf from
{C"} to {C7}, where j is a different frame in the sequence,
J € _Z\{l}. The bundle adjustment minimizes the following
function by adjusting the motion transform between each two

. . =1
consecutive frames and the coordinates of X,

min Z(Zj (Xi) — X{)TQ;/(Zj (Xf') - X{)’
i,j

ies, je Z\{}. (1)

Here, X l] represents the observation of feature i at frame j,
and .Qij is its information matrix. The first two entries on the

diagonal of Qi/ are given constant values representing the
feature tracking errors. If the depth is from the depth map
which is perceived by a time-of-fly sensor such as the lidar
in Fig. 2b, the 3rd entry is set at a fixed value determined
by the measurement noise of the sensor. If the depth map
is reconstructed by triangulation such as using the RGB-D
camerain Fig. 2a, orif the depth is from structure from motion
using the estimated motion, the 3rd entry is set to be inversely
proportional to the square of the depth. A zero value is used
for features with unknown depth. The information matrices
associated with the frame to frame poses are set to small
and negligible values, meaning that poses from the frame
to frame motion estimation only provide initial guess to the
bundle adjustment.

The bundle adjustment publishes refined motion trans-
forms at a low frequency. With the camera frame rate between
10-40Hz, the bundle adjustment runs at 0.25-1.0Hz. As
illustrated in Fig. 8, a transform integration step takes the
bundle adjustment output (blue segment) and combines it
with the high frequency frame to frame motion estimates
(orange segment). The result is integrated motion transforms
at the frame to frame motion frequency.

7 Experiments

The visual odometry is tested with author-collected data and
the KITTI benchmark datasets. It tracks Harris corners (Hart-
ley and Zisserman 2004) by the Kanade Lucas Tomasi (KLT)
method (Lucas and Kanade 1981). The program is imple-
mented in C++ language, on top of the robot operating system
(ROS) (Quigley et al. 2009) in Linux. The algorithms run on
a laptop computer with 2.5 GHz cores and 6 GB memory,
using around three cores for computation. The feature track-
ing and bundle adjustment (Sect. 6) take one core each, and
the frame to frame motion estimation (Sect. 5) and depth map
registration together consume another core.

7.1 Tests with author-collected datasets

We first conduct tests with author-collected datasets using
the two sensors in Fig. 2. The data is collected from four
types of environments shown in Fig. 9: a conference room, a
large lobby, a clustered road, and a flat lawn. The difficulty
increases over the tests as the environments are opener and
depth information changes from dense to sparse. We present
two images from each dataset, on the 2nd and 4th rows in
Fig. 9. The red areas indicate coverage of depth maps, from
the RGB-D camera (right figure) and the lidar (left figure).
Here, note that the depth map registers depth images from
the RGB-D camera or point clouds from the lidar at multiple
frames, and usually contains more information than that from

@ Springer

38

Auton Robot (2017) 41:31-43

—Fovis
5¢ ——DVO
——Our VO (RGB-D)
4r ——Our VO (Lidar) ||
30

25 ——Fovis
——DVO
20 ——O0urVO (RGB-D)||
——Qur VO (Lidar)
15}
£
N
10
5

4of —— Fovis
——DVO
——0ur VO (RGB-D)
30r ——0urVo(Lidar) ||
E 9|
N
10}

@

Fig. 9 Comparison of four methods using author-collected datasets:
Fovis, DVO, and two versions of our method using depth from an RGB-
D camera and a lidar. The environments are selected respectively from a
conference room (a, ¢, d), a large lobby (b, e, f), a clustered road (g, i, j),
and a flat lawn (h, k, 1). We present two images from each dataset. The

a single frame. With the RGB-D camera, the average amount
of imaged area covered by the depth map reduces from 94 to
23 % over the tests. The lidar has a longer detection range and
can provide more depth information in open environments.
The depth coverage changes from 89 to 47 % of the images.

The camera frame rate is set at 30 Hz for both sensors. To
evenly distribute the features within the images, we separate

@ Springer

301 —Fovis
—DVO
25(| —0urvo (RGB-D)
20 ——OQur VO (Lidar)
E4s5
N
10
5_
0.
-30 20 -10 0 10
x (m)
(h)

(k) U]

red areas indicate availability of depth maps, from the RGB-D camera
(right figure) and the lidar (left figure). The depth information is sparser
from each test to the next as the environment becomes opener, result-
ing in the performance of Fovis and DVO reduces significantly. Our
methods relatively keep the accuracy in the tests (Color figure online)

an image into 3 x 5 identical subregions. Each subregion
provides maximally 30 features, giving maximally 450 fea-
tures in total. The method is compared to two popular RGB-D
visual odometry methods. Fovis estimates the motion of the
camera by tracking image features, and depth is associated
to the features from the depth images (Huang et al. 2011).
DVO is a dense tracking method that minimizes the photo-

Auton Robot (2017) 41:31-43

39

Table 1 Results using

author-collected data Environment Distance (m) Relative position error
Our VO Our VO
Fovis (%) DVO (%) (RGB-D) (%) (Lidar) (%)
Room 16 2.72 1.87 2.14 2.06
Lobby 56 5.56 8.36 1.84 1.79
Road 87 13.04 13.60 1.53 0.79
Lawn 86 Failed Failed 3.72 1.73

The error is measured at the end of a trajectory as a % of the distance traveled

metric error within the overall images (Kerl et al. 2013). Both
methods use data from the RGB-D camera. Our method is
separated into two versions, using the two sensors in Fig. 2,
respectively. The resulting trajectories are presented on the
Ist and 3rd rows in Fig. 9, and the accuracy is compared in
Table 1, using errors in 3D coordinates. Here, the camera
starts and stops at the same position, and the gap between
the two ends of a trajectory compared to the length of the
trajectory is considered the relative position error.

From these results, we conclude that all four methods
function similarly when depth information is sufficient (in
the room environment), while the relative error of DVO is
slightly lower than the other methods. However, as the depth
information becomes sparser, the performance of Fovis and
DVO reduces significantly. During the last two tests, Fovis
frequently pauses without giving odometry output due to
insufficient number of inlier features. DVO continuously gen-
erates output but drifts heavily. This is because both methods
use only imaged areas where depth is available, leaving large
amount of areas in the visual images being unused. On the
other hand, the two versions of our method are able to main-
tain accuracy in the tests, except that the relative error of the
RGB-D camera version is relatively large in the lawn envi-
ronment, because the depth is too sparse during the turning
on top of Fig. 9h.

7.2 Tests with KITTI benchmark datasets

The proposed method is further tested with the KITTI
datasets. The datasets are logged with sensors mounted on
the top of a passenger vehicle, in road driving scenarios. As
shown in Fig. 10, the vehicle is equipped with color stereo
cameras, monochrome stereo cameras, a 360° Velodyne laser
scanner, and a high accuracy GPS/INS for ground truth. Both
image and laser data are logged at 10Hz. The image resolu-
tion is around 1230 x 370 pixels, with 81° horizontal field
of view. Our method uses the imagery from the left mono-
chrome camera and the laser data, and tracks maximally 2400
features from 3 x 10 identical subregions in the images.
The datasets contain 11 tests with the GPS/INS ground
truth provided. The data covers mainly three types of envi-
ronments: “urban’ with buildings around, “country” on small

Velodyne HDL-64E Laserscanner

Point Gray Flea 2
Video Cameras _SINg

Fig. 10 a Vehicle used by the KITTI benchmark for data logging.
The vehicle is mounted with color stereo cameras, monochrome stereo
cameras, a Velodyne lidar, and a high accuracy GPS/INS for ground
truth acquisition. Our method uses data from a single camera and the
Velodyne lidar for motion estimation. b shows a zoomed in view of the
sensors (Color figure online)

roads with vegetations in the scene, and “highway” where
roads are wide and the surrounding environment is relatively
clean. Figure 11 presents sample results from the three envi-
ronments. On the top row, the results of the proposed method
are compared to the ground truth, with and without using the
bundle adjustment introduced in Sect. 6. On the middle and
bottom rows, an image and the corresponding laser point
cloud is presented from each of the three datasets, respec-
tively. The points are color coded by depth. The complete test
results with the 11 datasets are listed in Table 2. The three
tests from left to right in Fig. 11 are respectively datasets 0,
3, and 1 in the table. Here, the accuracy is measured by aver-
aging relative translation and rotation errors using segments
at 100m, 200m, ..., 800m lengthes, based on 3D coordinates.

We analyze the results using the overall 11 datasets in
Fig. 12. On the first row, we show translation errors as per-
centages of the traveled distances. We plot the errors with
respect to the lengthes of the data segments in Fig. 12a, the
linear speed of the vehicle in Fig. 12b, and the angular speed
in Fig. 12c. On the second row, we present the corresponding
rotation errors with respect the three terms.

And on the third row, we show distributions of the data
used in calculation of the errors. Looking at the left col-
umn, we can obversely see that the translation and rotation
errors are decreasing functions of the segment lengthes. We
explain this as an effect of high frequency noise in the visual

@ Springer

40

Auton Robot (2017) 41:31-43

500 —— Ground truth 300 I—Grotlmd truth ' 0 ——Ground truth
—— VO without BA ——VO without BA ——VO without BA ||
400} —— VO with BA 200 — (O with BA ——VO with BA
. 300F {1 ~ 4001
£ £ 100 £
N N N
200 -800+
100}] 0
-1200+
Ll 100k s s ‘ . J
-300 -200 -100 O 100 200 300 0 100 200 300 400 500 0 500 1000 1500
x (m) x {m) x {m)
(a) (b) (©

Fig. 11 Sample results of the proposed method using the KITTI
datasets. The datasets are chosen from three types of environments:
urban, country, and highway from left to right. In a—c, we compare
results of the method with and without the bundle adjustment, to the
GPS/INS ground truth. The black dots are the starting points. An image

is shown from each dataset to illustrate the three environments, in d—f,
and the corresponding laser point cloud in g—i. The points are coded by
depth, where red color indicates near objects and blue color indicates
far objects (Color figure online)

Table 2 Configurations and

results of the KITTI datasets Data Configuration Error
no. Distance (m) Environment Trans. (%) Rotation (°/s)
0 3714 Urban 1.05 0.0029
1 4268 Highway 1.87 0.0026
2 5075 Urban + country 0.93 0.0038
3 563 Country 0.99 0.0043
4 397 Country 1.23 0.0048
5 2223 Urban 1.04 0.0034
6 1239 Urban 0.96 0.0029
7 695 Urban 1.16 0.0043
8 3225 Urban + country 1.24 0.0047
9 1717 Urban + country 1.17 0.0035
10 919 Urban + country 1.14 0.0064

The translation error is calculated using segments of a trajectory at 100, 200,..., 800 m lengthes, as an
averaged % of the segment lengthes based on 3D coordinates

odometry output and ground truth. Using the middle row,
we perceive a trend that the translation error is an increas-
ing function of the linear speed, however, the rotation error
is an decreasing function. The exception is in the left-most
part of Fig. 12b, which can possibly be caused by sparsity
of data as indicated in the corresponding part of Fig. 12h.

@ Springer

It is understandable that the translation error increases as
the vehicle drivers faster. Our explanation of the fact that
the rotation error decreases accordingly is that most rota-
tions happen when the vehicle drives slowly, and the vehicle
drives mostly straight at high speeds. In the right column, we
see both translation and rotation errors as increasing func-

Auton Robot (2017) 41:31-43 41
1.2
c c 2 c 1.4
28 44 28 2R
28 2819 2812
T = T = =
Eo 1 =e 1 E a
100 200 300 400 500 600 700 800 5 10 15 20 ! 5 10 15
Segment length (m) Linear speed (m/s) Angular speed (deg/s)
(@) (b) (©
. x10” . 8><10’3 . x10®
£ € ' ' E 8 ‘ ‘ ,
§p° §9 ¢ §% 6
82 4 2T 4 ez
25 25, 25 4
- = - 2
¢ %00 200 300 400 500 600 700 800 ¢ 5 10 15 20 ¢ 5 10 15
Segment length (m) Linear speed (m/s) Angular speed (deg/s)
(d) (e) ®
g 015 % 03 g 03
@ a 8
£ 01 £ 02 £ 02
g g S 0.1
5005 § 01 50
0 1 2 3 4 5 6 7 8 0 5 7 9 11 13 15 17 19 21 23 0 1 3 5 7 9 11 13 15 17 19
Segment length (m) Linear speed (m/s) Angular speed (deg/s)
(2 (h) (@

Fig. 12 Analysis of accuracy with the KITTI datasets. On the top and
middle rows, we show translation and rotation errors, by averaging
errors in the 11 datasets listed in Table 2. The translation errors are
represented as fractions of the distance traveled, using data segments in

oo
--------------1

-
1
1
1

SRl

w/BA w/oBA w/BA w/oBA w/BA w/o BA
Urban Country Highway

Relative translation error (%)
w
-

-

Fig. 13 Comparison of relative translation errors in urban, country, and
highway environments, tested with the KITTI datasets. In each environ-
ment, we compare errors with and without the bundle adjustment. The
black, blue, and red lines indicate 100, 75 %, and median of the errors
(Color figure online)

tions of the angular speed (again, with an exception in the
left most part of Fig. 12c, possibly due to sparsity of data),
indicating that the motion estimation is less accurate when
more turnings occur.

Further, to inspect the effect of the bundle adjustment, we
compare accuracy of the results in the three environments.
The 11 datasets are manually separated into segments and
labeled with an environment type. For each environment,
the visual odometry is tested with and without the bundle
adjustment. Figure 13 shows the distributions of the relative

100, 200,..., 800 m lengthes based on 3D coordinates. On the bottom
row, we present distributions of the data used in calculation of the errors.
In the left, middle, and right columns, the errors are shown with respect
to the segment length, linear speed, and angular speed, respectively

errors. Overall, the bundle adjustment helps reduce the mean
errors by 0.3-0.7 %, and seems to be more effective in urban
and country scenes than on highways, partially because the
feature quality is lower in the highway scenes.

Finally, we compare results using the top 5 ranked meth-
ods on the KITTI odometry benchmark! in Table 3. This
is using datasets 11-21 where the GPS/INS ground truth is
not provided. By uploading results to the benchmark server,
the accuracy and ranking are automatically calculated. Our
method, namely DEMO, is ranked #4 among the overall eval-
uated methods by the benchmark, irrespective of sensing
modality. In comparison, the #1 ranked method, V-LOAM
(Zhang and Singh 2015), uses the same frame to frame
motion estimation with DEMO. However, instead of using a
bundle adjustment step for refining motion estimates, a scan
matching step is used. Hence, a higher accuracy is achieved.
The #2 ranked method, LOAM (Zhang and Singh 2014) does
not use vision and completely relies on scan matching. The
#3 method, CV4X (reference unavailable yet), and the #5
method, MFI (Badino and Kanade 2013, 2011), are both
stereo visual odometry methods. In particular, CV4X relies
on GPU for feature matching while motion estimation runs
on CPU. Carefully comparing the five methods, we find that
the rotation accuracy of DEMO is lower than the other four. It
is understandable that scan matching (V-LOAM and LOAM)
based methods deliver low rotation drift because the error of
a laser scanner is irrespective of the distance measured and

1 www.cvlibs.net/datasets/kitti/eval_odometry.php.

@ Springer

www.cvlibs.net/datasets/kitti/eval_odometry.php

42

Auton Robot (2017) 41:31-43

Table 3 Configurations and

results of the top five ranked Rank Method Configuration Error
method on the KITTI odometry Trans. (%) Rotation (°/s)
benchmark

1 V-LOAM Monocular +laser 0.75 0.0018

2 LOAM Laser 0.88 0.0022

3 Cv4x Stereo 1.09 0.0029

4 DEMO Monocular +laser 1.14 0.0049

5 MFI Stereo 1.30 0.0030

The errors are calculated in the same way as Table 2, but by the benchmark server using datasets 11-21
where the ground truth is not provided. Our method is ranked #4 among the overall evaluated methods

distanced points help correct rotation error when matching
the laser points. The hypothesis that stereo methods outper-
form DEMO is that stereo cameras (with horizontal baseline)
provide tighter constrains in yaw rotation estimation as one
feature is seen by both cameras in a stereo pair but by only a
monocular camera in DEMO.

8 Conclusion and future work

The scenario of insufficiency in depth information is com-
mon for RGB-D cameras and lidars which have limited
ranges. Without sufficient depth, solving the visual odom-
etry is hard. Our method handles the problem by exploring
both visual features whose depth is available and unknown.
The depth is associated to the features in two ways, from
a depth map and by triangulation using the previously esti-
mated motion. Further, a bundle adjustment is implemented
which refines the frame to frame motion estimates. The
method is tested with author-collected data using two sen-
sors and the KITTI benchmark datasets. The results are
compared to popular visual odometry methods, and the accu-
racy is comparable to state of the art stereo visual odometry
methods.

The method is currently tested with depth information
from RGB-D cameras and lidars. In the future, we will try to
utilize depth provided by stereo cameras, and possibly extend
the scope of our method to stereo visual odometry.

Acknowledgements The paper is based upon work supported by the
National Science Foundation under Grant No. IIS-1328930. Special
thanks are given to S. Scherer, M. Bergerman, D. Huber, S. Nuske, Z.
Fang, and D. Maturana for their insightful inputs.

Compliance with Ethical Statement

Conflict of Interest All authors are affiliated with Carnegie Mellon
University. Author Michael Kaess was affiliated with Massachusetts
Institute of Technology within the last three years. Michael Kaess also
serves as an associate editor for IEEE Transactions on Robotics. Author
Sanjiv Singh is the editor in chief of Journal of Field Robotics.

Funding This study is funded by National Science Foundation (Grant
No. IIS-1328930).

@ Springer

References

Andersen, R. (2008). Modern methods for robust regression.Sage Uni-
versity paper series on quantitative applications in the social
sciences.

Badino, H., & Kanade, T. (2011). A head-wearable short-baseline stereo
system for the simultaneous estimation of structure and motion. In
IAPR conference on machine vision application, Nara.

Badino, A.Y.H., & Kanade, T. (2013). Visual odometry by multi-
frame feature integration. In Workshop on computer vision for
autonomous driving (collocated with ICCV 2013), Sydney.

Corke, P., Strelow, D., & Singh, S. (2004). Omnidirectional visual
odometry for a planetary rover. In Proceedings of the IEEE/RSJ
international conference on intelligent robots and systems, Sendai
(pp- 149-171).

de Berg, M., M., Cheong, O., van Kreveld, M., & Overmars, M. (2008).
Computation geometry: Algorithms and applications (3rd ed.).
New York: Springer.

Dryanovski, I., Valenti, R., Xiao, J. (2013). Fast visual odometry and
mapping from RGB-D data. In IEEFE international conference on
robotics and automation (ICRA), Karlsruhe.

Engel, J., Sturm, J., Cremers, D. (2013). Semi-dense visual odome-
try for a monocular camera. In /EEE international conference on
computer vision (ICCV), Sydney.

Engelhard, N., Endres, F., Hess, J., Sturm, J., & Burgard, W. (2011).
Real-time 3D visual SLAM with a hand-held RGB-D camera. In
RGB-D Workshop on 3D perception in robotics at the European
robotics forum, Vasteras.

Forster, C., Pizzoli, M., & Scaramuzza, D. (2014). SVO: Fast semi-
direct monocular visual odometry. In /IEEE international confer-
ence on robotics and automation (ICRA), Hong Kong.

Geiger, A., Lenz, P., & Urtasun, R. (2012). Are we ready for autonomous
driving? The kitti vision benchmark suite. In /EEE conference on
computer vision and pattern recognition (pp. 3354-3361).

Geiger, A., Ziegler, J.,& Stiller, C. (2011). Stereoscan: Dense3D recon-
struction in real-time. In IEEE intelligentvehicles symposium,
Baden-Baden.

Geiger, A., Lenz, P, Stiller, C., & Urtasun, R. (2013). Vision meets
robotics: The KITTI dataset. International Journal of Robotics
Research, 32, 1229-1235.

Hartley, R., & Zisserman, A. (2004). Multiple view geometry in com-
puter vision. New York: Cambridge University Press.

Henry, P., Krainin, M., Herbst, E., Ren, X., & Fox, D. (2012). RGB-D
mapping: Using kinect-style depth cameras for dense 3D modeling
of indoor environments. The International Journal of Robotics
Research, 31(5), 647-663.

Howard, A. (2008). Real-time stereo visual odometry for autonomous
ground vehicles. In /EEE international conference on intelligent
robots and systems, Nice.

Auton Robot (2017) 41:31-43

43

Hu, G., Huang, S., Zhao, L., Alempijevic, A., & Dissanayake, G. (2012)
A robust RGB-D slam algorithm. In /EEE/RSJ international con-
ference on intelligent robots and systems, Vilamoura.

Huang, A., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D.,
& Roy, N. (2011). Visual odometry and mapping for autonomous
flight using an RGB-D camera. In International symposium on
robotics research (ISRR), Flagstaff.

Kaess, M., Johannsson, H., Roberts, R., Ila, V., Leonard, J., & Dellaert,
F. (2012). iISAM2: Incremental smoothing and mapping using the
Bayes tree. International Journal of Robotics Research, 31, 217—
236.

Kerl, C., Sturm, J., & Cremers, D. (2013). Robust odometry estimation
for RGB-D cameras. In IEEE international conference on robotics
and automation, Karlsruhe.

Klein, G., & Murray, D. (2007). Parallel tracking amd mapping for small
AR workspaces. In Proceedings of the international symposium on
mixed and augmented reality, Nara (pp. 1-10).

Konolige, K., Agrawal, M., & Sol, J. (2011). Large-scale visual odom-
etry for rough terrain. Robotics Research, 66, 201-212.

Lucas, B.,& Kanade, T. (1981). An iterative image registration tech-
nique with an application to stereo vision. In Proceedings of
imaging understanding workshop (pp. 121-130).

Maimone, M., Cheng, Y., & Matthies, L. (2007). Two years of visual
odometry on the mars exploration rovers. Journal of Field Robot-
ics, 24(2), 169-186.

Murray, R. M., Li, Z., & Sastry, S. S. (1994). A mathematical introduc-
tion to robotic manipulation. Boca Raton: CRC Press.

Newcombe, R., Davison, A., Izadi, S., Kohli, P., Hilliges, O., Shotton,
J., Molyneaux, D., Hodges, S., Kim, D., & Fitzgibbon, A. (2011).
KinectFusion: Real-time dense surface mapping and tracking. In
IEEE international symposium on mixed and augmented reality
(pp. 127-136).

Newcombe, R.A., Lovegrove, S.J.,& Davison, A.J. (2011). DTAM:
Dense tracking and mapping in real-time. In /EEE International
Conference on Computer Vision, 2011, (pp. 2320-2327).

Nister, D., Naroditsky, O., & Bergen, J. (2006). Visual odometry for
ground vechicle applications. Journal of Field Robotics, 23(1),
3-20.

Paz, L., Pinies, P., & Tardos, J. (2008). Large-scale 6-DOF SLAM with
stereo-in-hand. IEEE Transactions on Robotics, 24(5), 946-957.

Quigley, M., Gerkey, B., Conley, K., Faust, J., Foote, T., Leibs, J.,
Berger, E., Wheeler, R., & Ng, A. (2009). ROS: An open-source
robot operating system. In Workshop on open source software (col-
located with ICRA 2009), Kobe.

Rusinkiewicz, S.,& Levoy, M. (2001). Efficient variants of the ICP algo-
rithm. In Third international conference on 3D digital imaging and
modeling (3DIM), Quebec City.

Sattler, T., Leibe, B., & Kobbelt, L. (2011). Fast image-based local-
ization using direct 2D-to-3D matching. In IEEE international
conference on computer vision (ICCV), Barcelona.

Scaramuzza, D. (2011). l-point-ransac structure from motion for
vehicle-mounted cameras by exploiting non-holonomic con-
straints. International Journal of Computer Vision, 95, 74-85.

Sturm, J., Bylow, E., Kerl, C., Kahl, F.,& Cremer, D. (2013). Densetrack-
ing and mapping with a quadrocopter. In Unmanned aerialvehicle
in geomatics (UAV-g), Rostock.

Vogiatzis, G., & Hernandez, C. (2011). Video-based, real-time multi-
view stereo. Image and Vision Computing, 29(7), 434-441.
Weiss, S., Achtelik, M., Lynen, S., Achtelik, M., Kneip, L., Chli, M.,
et al. (2013). Monocular vision for long-term micro aerial vehicle
state estimation: A compendium. Journal of Field Robotics, 30(5),

803-831.

Whelan, T., Johannsson, H., Kaess, M., Leonard, J.,& McDonald,
J. (2013). Robust real-time visual odometry for dense RGB-
D mapping. In IEEE international conference on robotics and
automation, Karlsruhe.

Zhang, J., Kaess, M., & Singh, S. (2014). Real-time depth enhanced
monocular odometry. In /EEE/RSJ international conference on
intelligent robots and systems (IROS), Chicago.

Zhang, J.,& Singh, S. (2014). LOAM: Lidar odometry and mapping
in real-time. In Robotics: Science and systems conference (RSS),
Berkeley.

Zhang, J.,& Singh, S. (2015). Visual-lidar odometry and mapping:
Low-drift, robust, and fast. In Submitted to IEEE international
conference on robotics and automation (ICRA), Seattle.

Ji Zhang is a Ph.D. candi-

'3 date at the Robotics Institute of

K Carnegie Mellon University. His

" research interest is focused on

J robot navigation, perception and

localization, lidar mapping, and
computer vision.

Michael Kaess received the
M.S. and Ph.D. degrees in Com-
puter Science from the Geor-
gia Institute of Technology in
2002 and 2008, respectively. He
was a postdoctoral associate and
research scientist at the Massa-
chusetts Institute of Technology
(MIT) from 2008 to 2013. He is
now an Assistant Research Pro-
fessor at the Robotics Institute,
Carnegie Mellon University. His
research interests include nav-
igation, localization, mapping
and efficient inference. He is cur-
rently an associate editor for the IEEE Transactions on Robotics.

Sanjiv Singh is a Research Pro-
fessor at the Robotics Insti-
tute with a courtesy appoint-
ment in Mechanical Engineer-
ing. He is the founding editor
of the Journal of Field Robot-
ics. His research relates to the
operation of robots in natural
and in some cases, extreme envi-
ronments. His recent work has
two main themes: perception in
natural and dynamic environ-
ments and multi-agent coordina-
tion. Currently, he leads efforts in
collision avoidance for air vehi-
cles (near earth and between aircraft) and ground vehicles using novel
sensors that can look through obscurants. Another research area seeks
to provide accurate tracking and situational awareness in dynamic envi-
ronments, such as those encountered in search and rescue, using radio
signals to compute location. This research seeks to assist emergency
response personnel in their operations.

@ Springer

	A real-time method for depth enhanced visual odometry
	Abstract
	1 Introduction
	2 Related work
	3 Notations and task description
	4 System overview
	4.1 Sensor hardware
	4.2 Software system overview

	5 Frame to frame motion estimation
	5.1 Mathematical derivation
	5.2 Motion estimation algorithm
	5.3 Feature depth association

	6 Bundle adjustment
	7 Experiments
	7.1 Tests with author-collected datasets
	7.2 Tests with KITTI benchmark datasets

	8 Conclusion and future work
	Acknowledgements
	References

