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A robot team that assembles complex structures can benefit from its human team

members’ unique skill set to improve reliability and robustness.
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Reid Simmons, and Sanjiv Singh

ABSTRACT | Recent research in human–robot interaction has

investigated the concept of sliding, or adjustable, autonomy, a

mode of operation bridging the gap between explicit tele-

operation and complete robot autonomy. This work has largely

been in single-agent domainsVinvolving only one human and

one robotVand has not examined the issues that arise in

multiagent domains. We discuss the issues involved in adapting

Sliding Autonomy concepts to coordinated multiagent teams.

In our approach, remote human operators have the ability to

join, or leave, the team at will to assist the autonomous agents

with their tasks (or aspects of their tasks) while not disrupting

the team’s coordination. Agents model their own and the

human operator’s performance on subtasks to enable them to

determine when to request help from the operator. To validate

our approach, we present the results of two experiments. The

first evaluates the human/multirobot team’s performance

under four different collaboration strategies including com-

plete teleoperation, pure autonomy, and two distinct versions

of Sliding Autonomy. The second experiment compares a

variety of user interface configurations to investigate how

quickly a human operator can attain situational awareness

when asked to help. The results of these studies support our

belief that by incorporating a remote human operator into

multiagent teams, the team as a whole becomes more robust

and efficient.
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a blank e-mail to keywords@ieee.org to receive a list of

suggested keywords

I . INTRODUCTION

As expectations for robotic systems increase, it becomes

harder and harder to meet them with the capabilities of a
single robot. One approach is to use multiple simple robots

that work together to perform tasks that would require a

very complex single mechanism. These teams not only

bring a much broader spectrum of potential capabilities to

a task but also may be more robust in the face of errors and

uncertainty.

While it is envisioned that robot teams eventually will

be able to autonomously perform complex tasks, such as
large-scale assembly in remote environments, the current

state-of-the-art falls short of the necessary capabilities. In

particular, the number of contingencies that must be con-

sidered and provided for to make robots fully autonomous

in open and dynamic environments is prohibitively large.

On the other hand, pure teleoperated control of such ro-

bots is unlikely to be very efficient due to communication

delays, the large number of human operators required, and
the sensing and visualization problems inherent in any

teleoperation domain. Our goal is to develop a framework

within which a single human operator can oversee and

flexibly intervene in the operation of a team of largely

autonomous robots.

One scenario exemplifying this approach is the as-

sembly of large structures in hazardous environments,

such as orbital solar power arrays or Mars habitats. In such
environments, in-place human labor is either infeasible or

scarce and expensive, making less-fragile robots an attrac-

tive option. We have been examining how robots and
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ground-based humans can work together while assembling
large scale orbital structures, such as kilometer-wide solar

power arrays. We ultimately envision many teams of robots

working independently on different portions of the

structure, overseen by a small number of human operators

on Earth.

In order to develop the architectures, software capa-

bilities, and models needed for such an endeavor, we have

assembled a heterogeneous team of Earth-bound robots.
Our current scenario is the construction of a square frame

using four beams and four connectors (called Bnodes,[ see

Fig. 1). To (weakly) simulate space conditions, the nodes

are free to roll around. Thus, each node must be braced

against insertion forces before a beam can be inserted into

it. After each side of the square is completed, the next

beam must be procured and brought to the worksite. Het-

erogeneous teams are well suited to such construction
scenarios, where many different skills, and correspond-

ingly different hardware, are required. Our team consists

of an imprecise heavy-lift robot, a weaker but more precise

Mobile Manipulator, and a dedicated sensing robot

(Fig. 1).

Human operators bring their own unique set of skills

to the team. To make the most efficient use of the flexible

problem-solving skills of humans, a robot team should
operate mostly autonomously, getting help from a human

operator only when a problem arises that it cannot re-

solve by itself, or when human control provides signi-

ficant benefits. Sliding, or adjustable, autonomy is an

approach that has been developed to address this,

yielding more robust and efficient systems. Most work

in Sliding Autonomy has been limited to the control of

single robots. In this paper, we extend the concept to
heterogeneous multirobot teams and support the sliding

of autonomy at a much finer granularity than has been

previously reported.

One fundamental difference in applying Sliding Auto-

nomy to multiagent teams is that the human will not

always be aware of everything that is happening to all of

the agents; whereas, a human who is monitoring only a

single agent is able to keep abreast of all relevant devel-
opments. This lack of awareness gives rise to three major

issues that need to be addressed for multiagent Sliding

Autonomy.

Requesting help: Since the human cannot keep track of

all the robots in a multiagent team at all times, the

ability of an agent to ask for help is critical. By using

empirical performance models of both the autonomous
system and the human operator, knowledge of typical

human learning curves, and information about the

team’s state, the system can make reasonably accurate

predictions of how long a given task will take under

either human or robotic control. This, in turn, allows it

to make principled decisions about when to ask the

human for help.

Gaining situational awareness: Since the human is not
able to monitor all robots at once, or may be called away

to attend to another team, it is important that the

operator quickly gain situational awareness of a robot’s

workspace when help is requested. It is also important

that the autonomous system model how long this will

take (as discussed previously), in order to make prin-

cipled decisions about when to ask for help.

Maintaining coordination: During and after human
intervention, the components of the system that remain

under autonomous control must continue to operate

and maintain the interagent coordination necessary for

task completion. We address this issue by enabling

agents to monitor themselves and other agents as ap-

propriate for the current task, allowing them to remain

coordinated even when the operator is in control of one

of the agents. This allows the portion of the team still
under autonomous control to continue meaningful

operation while other agent(s) are under human

control.

We conducted two human-subject experiments to vali-

date our approach to Sliding Autonomy in the multiagent

domain. The first examined the performance of four

different modes of autonomy to determine the efficacy of
Sliding Autonomy. The second experiment investigated

how situational awareness is regained and how the com-

position of the user interface affects this acquisition.

The first experiment, which varied the degree of

human involvement in the task, consisted of performing

our construction task under four different human/robot

cooperation strategies: pure autonomy, System-Initiative

Fig. 1. Our three-agent team consists of Roving Eye (left), Mobile

Manipulator (right), and Crane (above structure; only black Crane

receptacles are visible). Here, they have completed assembly of

square. Crane is still bracing final node, while Mobile Manipulator

just disengaged from final beam.
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Sliding Autonomy (SISA), Mixed-Initiative Sliding Auton-
omy (MISA), and teleoperation. Pure autonomy does not

involve the human, consisting solely of autonomous be-

haviors and recovery actions. In contrast, during teleoper-

ation the human is in complete control of all aspects of all

the robots. Bridging the gap between these two extremes,

SISA allows the operator to intervene only when asked to

do so by the autonomous system; while in MISA, the

human can also intervene at any time of his own volition.
SISA is designed to approximate situations where the

operator is a scarce resource and must attend to multiple

robot teams or other tasks. MISA, on the other hand,

captures situations where humans can be more dedicated

to observing the team’s activities.

The results of this experiment indicate that the au-

tonomous system is consistently faster, but less reliable,

than a purely teleoperated approach. In both SISA and
MISA, the speed of assembly approaches that of the

autonomous system. While operator workload results

showed that the preference for either SISA or MISA is

very task- and user-dependent, the workload for the

human is clearly less than during pure teleoperation. We

conclude that our adaptation of Sliding Autonomy

improves the multiagent team’s reliability without com-

promising efficiency and that it can be easily reformulated
to meet the differing constraints of a variety of domains.

The second experiment studied how human operators

can best attain situational awareness in our scenario. The

experiment examined the types and amount of information

that should be maintained in order to minimize time to

achieve situational awareness, given that the operator was

attending a different task prior to the request for help. This

disattention assumption is particularly valid for multiagent
systems, as the human often will be assisting multiple

agents and will need to reachieve situational awareness

each time he moves his attention from one agent to ano-

ther. The results show that the interface designer can make

clear tradeoffs between the time to achieve situational

awareness and the quality of the resulting understanding.

In general, accuracy (i.e., quality of understanding) in-

creases as more data is available to the subject. However,
the time needed to attain situational awareness is not a

monotonic function of the amount, nor type, of informa-

tion available. Instead, our experiment showed that there

is a clear point at which the time taken to absorb additional

information outweighs the corresponding decrease in

response time. The results from these two experiments

bolster our contention that Sliding Autonomy can be an

effective approach to robust control of multirobot teams.

II . RELATED WORK

A. Multiagent Robotic Assembly
The most common deployed multiagent assembly

systems are in factories, where multiple industrial robots

are involved in the assembly of a product. A system of four
industrial robots arranged around a conveyor network for

material handling is described in [1]. The setup is typical of

industrial applications, with stationary robots and inter-

robot interactions limited to scheduling of shared re-

sources (such as the conveyor system or temporary storage

areas). Since time is of significant concern in factory

settings, such industrial applications typically are managed

by a static central controller. In contrast, our system is
comprised of multiple mobile and stationary robots with

only high-level central control of the team’s overall tasks.

They must flexibly coordinate their motions in order to

complete the assembly task and adapt to a dynamic, un-

certain environment; this requires close coordination

between various combinations of heterogeneous robots,

often involving more than one robot simultaneously mani-

pulating the structure.
Coordinated assembly performed by teams of mobile

robots is of prime interest to the space community.

Stroupe et al. [2] use the CAMPOUT architecture to co-

ordinate robots with purely behavior-based strategies to

perform very tightly coupled tasks, similar to ours. Two

homogeneous robots collaboratively carry a beam and po-

sition it with respect to an existing structure with sub-

centimeter accuracy. Their agents jointly manipulate the
beam, coordinating their motions through force/torque

sensors in the manipulators. Throughout the task, the two

agents perform symmetric versions of the same task. In

contrast, our (very) heterogeneous team manipulates mul-

tiple objects to complete a larger, more complex structure,

involving multiple interacting tasks with slightly greater

docking tolerances. Although no two of our agents simul-

taneously manipulate the same rigid body, we use only a
single sensor (a stereo camera pair on our dedicated

sensing agent), which renders this sort of rigid interagent

physical coupling infeasible.

B. Human–Robot Interaction
Recently, there has been significant interest in al-

lowing human collaboration with robots in assembly

scenarios. The COBOT project [3], [4] seeks to make ma-
nually operated machines more intelligent by providing

guidance so that the operator does not have to provide fine

guidance control. Typically, the human provides the force

input, while the system steers the mechanism into the

right place. The roles of the human operator and the sys-

tem are clear and unvarying and both human and the

system must operate simultaneously in order to accom-

plish the task.
NASA’s ASRO project [5] developed a mobile robot to

assist a space-suited human by carrying tools, helping to

manipulate objects, and providing sensor information.

While the robot was physically working alongside the

astronaut, it was teleoperated by a remote operator in

verbal communication with the astronaut. Unlike the

complete teleoperation used in ASRO, our system allows
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the remote user to take control of parts of the assembly
task while leaving the remainder active under robotic

control. In addition, the human and robots in our scenario

cannot directly interact physically since, unlike [3]–[5],

they are not collocated.

A system closely related to our approach to human–

robot interaction is presented by Fong et al. [6], in which

the robot and the user participate in a dialogue. The robot

can ask the operator to help with localization or to clarify
sensor readings. The operator also can make queries of the

robot. However, that framework assumes that the robot

will always perform the task: the operator’s role is only to

provide the robot with any state information it is lacking.

In contrast, our approach makes the operator an equal

partner in the team, able to assume control of tasks or

subtasks as appropriate.

C. Sliding, or Adjustable, Autonomy
Our use of the term Sliding Autonomy corresponds

with the term Adjustable Autonomy as presented by

Dorais et al. [7].1 This paper provides several future ex-

amples in which Sliding Autonomy is essential for space

operations where demands on the operator must be

carefully selected and minimized, such as making the

most efficient use of astronaut time during a manned
mission to Mars.

Using a roving eye and a fixed manipulator,

Kortenkamp et al. [8] developed and tested a

software infrastructure that allows for sliding

control of a robot manipulator. The task involved

a pick-and-place operation during which Sliding

Autonomy allowed the operator to recover from

visual servoing errors, participate in high-level
planning, and teleoperate the manipulator to

complete tasks beyond its autonomous capabili-

ties. Our paper extends this with a more complex

assembly task that involves a team of robots and a

finer granularity of Sliding Autonomy.

Nielsen et al. [9] present a system of three identical

robots performing topological map building with the help

of a human. The operator’s involvement ranges from
teleoperation and landmark selection, to higher level

directional commands, to the selection of regions of in-

terest. With increasing robot autonomy, operator workload

tended to decrease, but performance was best with maxi-

mum human involvement (i.e., pure teleoperation). In

contrast to our system, the operator is constantly engaged

and in control of the level of autonomy; the autonomous

component never explicitly requests assistance.
Scerri has proposed an architecture for Sliding Auto-

nomy applied to a daily scheduler [10]. This autonomous

system attempts to resolve timing conflicts (missed
meetings, group discussions, personal conflicts, etc.)

among some set of team members. Members are able to

affect the system’s autonomy adjustment strategies by

indicating their intent to attend gatherings or willingness

to perform tasks.

Maheswaran et al. [11] describe a system of personal

assistant agents that can operate under either user-based

or agent-based autonomy. The entity in control (either
an agent or a human) explicitly reasons about whether

and when to transfer decision-making control to another

entity (another agent or human). While our system

currently does not allow control to be transferred from

one robot to another, our approach to Sliding Autonomy

allows much finer transfer of control between robot and

human, as components of each task (such as monitoring

and execution) may be transferred independently.

D. Situational Awareness
Over the years, there has been a large body of research

on helping human operators maintain situational aware-

ness. A significant amount of the initial research in this

area focused on helping pilots maintain situational

awareness while flying [12], [13]. The focus has shifted

in more recent research to studying how human operators
can maintain situational awareness while teleoperating

robots, such as those in the search and rescue domain [12].

This work is most relevant to systems where the operator is

in constant contact with the system. In our domain,

however, the operator may have periods where he is not in

contact with the system; thus, we are also interested in

helping the operator repeatedly attain situational aware-

ness after being out of contact with the system.
Goodrich et al. [14] also study situational awareness in

situations where the operator may not be in constant

contact with the system. Their work examines the

effectiveness of an operator when controlling a robot at

different levels of autonomy, given increasing inattention

to the robot. Their levels of autonomy include full

autonomy, provision of goals by the human, provision of

waypoints by the human, and safeguarded teleoperation. It
attempts to facilitate such awareness by designing a usable

interface for the operator. This is similar to our system,

where the operator sometimes multitasks between inter-

action episodes, effectively ignoring the robots for that

Our approach to Sliding
Autonomy allows much finer
transfer of control between
robot and human.

1Although Dorais et al. use BAdjustable Autonomy[ in the same sense
as we use BSliding Autonomy,[ we feel that the term Adjustable
Autonomy carries the connotation that the level of autonomy has been set
at a fixed value prior to execution, as opposed to dynamically sliding back
and forth during the course of execution.
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period of time. They postulate a series of effectiveness/

neglect curves characterizing the different levels of au-

tonomy but do not present any experimental results in the
cited work.

III . CONTEXT: SCENARIO, HARDWARE,
AND ARCHITECTURE

A. Scenario
One area of robotics research is large-scale robotic

assembly. Robots are especially useful in areas where

humans are not well adapted, particularly hazardous

environments, such as space, the Moon, or Mars. Building
one robot complex enough to handle the entire construc-

tion task on its own is often either very difficult or impo-

ssible, especially for larger scale assemblies. Our approach

is to use multiple heterogeneous robots that coordinate

with one another to complete the task. While this in-

creases complexity due to the necessary coordination [15],

it also allows for more flexibility during task execution, as

well as simpler and more manageable hardware.

The construction task used in our experiments involves

four beams and four planarly compliant nodes that are

assembled together into a square structure [Fig. 2(a)]. In a
rough attempt at simulating conditions in space, the nodes

are supported by casters that roll easily along the floor. A

node must be braced before the end of a beam can be

inserted into it; otherwise, the insertion forces can cause

the node to roll away.

This task decomposes naturally into subtasks that can

be completed by heterogeneous agents filling three

different roles: an agent that provides information about
the state of the world [the Roving Eye, Fig. 3(a)], an agent

that braces the nodes during docking [the Crane,

Fig. 3(b)], and an agent that does the manipulation and

insertion of the beams into the nodes [the Mobile

Manipulator, Fig. 3(c)].

To assemble one side of the square, the Crane first

braces a node so that the Mobile Manipulator can insert

one end of a beam into it. The Crane and Roving Eye then
reposition to the other end of the beam, where the Crane

braces another node while the Mobile Manipulator

completes the node–beam–node subassembly. Once the

Fig. 2. (a) Fully assembled four-beam structure. (b) View of beam being inserted into node. (c) Close-up of node being braced by the Crane.

Fig. 3. Three robots used to build our square structure: (a) Roving Eye, (b) Crane, and (c) Mobile Manipulator.
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beam is securely docked, the Mobile Manipulator releases

it and moves to the next side of the square in order to

receive the next beam and continue. This process repeats

four times until the complete square is assembled.
Running autonomously, the three robots can complete

each side of the structure in 7.3 min, on average. The

success rate per side for completely autonomous assembly

is 75%. These statistics are from a set of 24 data points.

B. Hardware
Our Roving Eye [Fig. 3(a)] is Xavier [16], a synchro-

drive robot built on an RWI B24 base and equipped with a
stereo camera pair mounted on a pan-tilt unit. The Roving

Eye’s cameras are the team’s only extrinsic sensorsVthe

Crane and the Mobile Manipulator rely on the camera data

in order to complete their tasks. By using an independent

sensing agent such as this, we avoid conflicts that arise

when an agent has multiple duties. For instance, cameras

mounted on the Mobile Manipulator might become

obscured when it is carrying a beam, forcing the robot to
compromise between manipulation and sensing, and

inevitably resulting in suboptimal performance.

Because it is not our focus of research, we simplified

the vision problem by attaching fiducials (bar codes) to all

important objects. The Roving Eye uses the fiducials to

identify and locate the objects in the workspace relevant to

the task at hand. Sample fiducials can be seen on the side

and wrist of the Mobile Manipulator [Fig. 3(c)].
The Crane [Fig. 3(b)] is a NIST-built RoboCrane [17]

and consists of a 6-degree-of-freedom (DOF) inverted

Stewart platform carrying a simple mechanism that we

designed to allow the bracing of our nodes. The bracing

mechanism is a hollow square that can be lowered onto

the top of a node, effectively preventing the node from

moving [Fig. 2(c)]. We chose the RoboCrane because it
is strong enough to immobilize the nodes against sizable

insertion forces without impinging upon the workspace

of either the Mobile Manipulator or Roving Eye. This

vertical bracing lessens the interference problems that

often occur when multiple robots are moving in a tight,

shared workspace.

The Mobile Manipulator [Fig. 3(c)] consists of a

Metrica/TRACLabs 5-DOF anthropomorphic arm [18]

mounted on the front of an RWI ATRV-2 skid-steered

base. The arm has an electromagnet on its end effector that

attaches to a metal plate fastened to the underside of each

beam, allowing the Mobile Manipulator to grasp and

release the beams.

C. Architecture
We developed the Syndicate architecture to support

the closely coupled coordination between the robotic

agents required to complete the assembly scenario. One of

Syndicate’s core features that eases this coordination is its

support of a three-layered approach. Each layer is

associated with a different task granularity and level of

abstraction about the world and may communicate with

the layers immediately above and below it. In general,

higher and more abstract layers command lower, more

reactive, layers, while the lower layers provide the data

needed by the higher level decision process (Fig. 4).

Fig. 4. Syndicate architecture. Note that each layer may communicate directly with all other layers at same level of abstraction; all links are

not depicted for reasons of clarity (for instance, Agent 1’s behavioral layer may communicate directly with Agent 3’s). Our current

implementation includes executive and behavioral layers.
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Although the Syndicate architecture supports three
layers of abstraction, our current implementation only

encompasses two. The bottom-most is the behavioral layer,

which deals with fine-grained stateless control of the

robots. This layer, which is based on the Skill Manager

[19], acts as the interface between the controllers/hard-

ware and the executive layer. Thus, it views the world at a

small temporal granularity, concerning itself with the

hardware and environmental details that higher layers
abstract away. By doing so, it is able to react very quickly to

changes in the world.

The executive layer is responsible for building and

maintaining the agents’ hierarchical task trees, thus

managing all of the stateful task-level aspects of the

system [20]. A task is loosely defined as an abstraction of

one element of the scenario that requires state and/or may

be decomposed into atomic behaviors in order to satisfy a
goal. Many of the tasks rely on data passed up from the

behavioral layer to decide when to change state; these

changes are then propagated back down to the behavioral

layer in order to manipulate the physical world. This

relationship illustrates a secondary objective of the

executive layer: configuring the behavioral layer based on

the current state of the task tree. The top-level planning

layer is not yet implemented in our system. Instead, the
executive layer contains a fixed task ordering for a given

scenario. We are currently investigating different ap-

proaches to building a planning layer for Syndicate, which

will likely include both planning and scheduling aspects,

such as those used in [21].

In addition to communication between the layers of a

single agent, Syndicate supports communication between

agents at each abstraction layer. This gives agents the
ability to directly coordinate multiagent tasks with other

agents at all levels of the hierarchy. For example, in the

executive layer, we want to ensure that the Roving Eye does

not move to the next corner until the Mobile Manipulator

is finished with the current beam-node docking operation,

since the Mobile Manipulator depends on the raw position

data provided by the Roving Eye to complete the docking.

To accomplish this, Syndicate enables the executive layer
on one agent to constrain its task execution with respect to

a task on the other agent, in this case, sequencing two tasks

that run on different agents. Coordination at the behavioral

level is also required by many tasks. For instance, to dock a

beam into a node, the Mobile Manipulator’s behavioral

layer must communicate with the Roving Eye’s in order to

receive raw position information, forming a distributed

visual servoing loop [22]. Although our planning layer is
not yet implemented, an example of coordination at that

level can be seen in the FIRE project [21], where

communication between peer planning layers is used for

auction-based task assignment.

The Syndicate architecture provides a framework upon

which we can build to support concepts such as Sliding

Autonomy in complex multiagent scenarios.

IV. SLIDING AUTONOMY FOR
MULTIAGENT TEAMS

Even with closely coupled coordination, it is nearly impos-
sible to prevent errors from occurring in complex multi-

agent tasks such as our construction scenario. Because of

the complexity and uncertainty involved in such domains,

even a highly specific well-programmed robotic team can

sometimes fail when operating autonomously. One common

way to compensate for this possibility is to use pure tele-

operation. In this mode, a human operator controls each of

the robots during all of its tasks. Both teleoperation and
pure autonomy have been shown to have distinct strengths

and weaknesses. In general, teleoperation is slower, but

more reliable, while full autonomy is faster, but less robust

[23]. Additionally, communication latency, prevalent in

space-based applications, make pure teleoperation difficult

and tedious. The goal of Sliding Autonomy is to allow

human–robot teams to move smoothly along the spectrum

from teleoperation to autonomy, making appropriate use of
the differing capabilities of team members in order to out-

perform both pure teleoperation and pure autonomy.

Sliding Autonomy for multirobot teams, however, has

complications not found in single-robot systems. In

general, we have found that there are three ways in which

multiagent Sliding Autonomy is more demanding than the

single-agent version: 1) deciding when to ask for help, as

the human is not guaranteed to be monitoring any one
robot at any given time; 2) providing situational awareness

of the requesting robot’s workspace when the operator is

asked to help; and 3) maintaining coordination of the team

as a whole when the human is controlling one of the

robotic agents.

A. Our Approach to Sliding Autonomy
Our approach to Sliding Autonomy uses mixed-

initiative interactions to orchestrate the collaboration be-

tween the human operator and the robotic agents. These

interactions consist of either the human or the autono-

mous system deciding who is in control of different aspects

of the task. The goal of these interactions is to optimize
metrics such as efficiency and robustness, measured by

time elapsed and likelihood of success, respectively.

We introduce the notion of Btask switching[ to im-

plement these types of interactions. Nearly every task in

the executive layer decomposes into separate Bmonitor[
and Baction[ components, each of which is itself a task that

may be controlled by either the human or the autonomous

system. The monitoring component of a task is responsible
for detecting failures and determining when the task has

been completed. The action component interacts with the

robot controllers via the behavioral layer to perform the

desired actions. While the majority of tasks are split in this

fashion, some nonleaf nodes of the task tree that are

merely responsible for creating other tasks, and so have no

obvious action/monitor split, are not divided.
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This methodology yields significant flexibility. For
example, the autonomous system is often able to perform

a task where its sensing capabilities are not sufficient to

reliably determine when the task is completed. In such a

case, the human can be assigned the monitoring portion of

the task, in order to ensure it is reliably executed. An

example is the docking task carried out by the Mobile

Manipulator. While the autonomous system is quite

proficient at completing the task, the final clearance be-
tween beam and node is on the same order of magnitude

as the noise in the Roving Eye’s sensing system, on

occasion making it difficult for the autonomous system to

determine when the docking is complete. The human

operator can look for additional clues in the video feed

and often can make a more reliable determination of

when the docking has successfully completed or has be-

come stuck.
On the other hand, the action subtask may be given to

the human if the autonomous system detects that it is

having problems or believes the operator will be able to

perform it more efficiently. In such a case, the human is

asked to complete execution, while the system monitors

his progress. A prime example of this is the search task

carried out by the Roving Eye when it loses sight of a

fiducial of interest. Humans are better suited to the action
component of this task, as they can decide where to move

the camera based on their understanding of the workspace,

as opposed to the blind grid-based search pattern the

autonomous system uses. However, it is not obvious to

the human when the system has detected a fiducial,

since the human’s vision is so much different than that

used by the Roving Eye. Thus, in this instance, the au-

tonomous monitoring component can work side by side
with the human to complete the search task.

Regardless of whether a task is switched by the oper-

ator intervention or the autonomous system, it interacts as

needed with the behavioral layer to switch all necessary

low-level components to the appropriate operational

mode. This provides fine-grained control over operations,

as the human can assume control of very specific portions

of the system, while leaving the remainder under auto-
nomous control. For instance, if the user were to take

control of the visual search task on the Roving Eye, which

looks for fiducials in the environment, the pan-tilt unit

would be placed under human control, while control of the

Roving Eye’s base and responsibility for determining when

the search was successful would remain under autonomous

control. At the completion of a task, all affected behaviors

are returned to the operational mode in which they were
prior to the switch.

This approach to Sliding Autonomy still leaves open

the questions of when to switch and who decides to do so.

In order to investigate how best to structure these inter-

actions, we have experimented with two different ap-

proaches, which span the control spectrum, but vary in

how tasks may be switched. System-Initiative Sliding

Autonomy (SISA) enables the robot team to ask the human
for assistance but does not allow the human operator to

interrupt the robots. SISA models situations where the

human operator is multitasking and attending to other

responsibilities while the robots attempt to operate auto-

nomously, so the human has no ongoing knowledge of

what is occurring in the robots’ workspace. The operator’s

attention is needed only when the team decides that the

human is better suited for the execution of some task or
when an individual robot has encountered an error con-

dition from which it does not believe it can recover on its

own. While facilitating multitasking may raise the produc-

tivity of the overall system, the time it takes users to regain

situational awareness of the robots’ workspace when asked

to help cannot be disregarded (Section IV-B). We hypo-

thesize that SISA is the best fit when human resources are

scarce and the autonomous system is reasonably proficient
at error detection.

We also investigated Mixed-Initiative Sliding Autono-

my (MISA). Here, while the robotic team members still

can ask for help, the human operator also has the option of

interrupting the system to take control of a task or

subtask’s action and/or monitoring component. While this

has the potential to increase robustness, since the human

operator can intervene before a robot makes a fatal error,
such gains are realized only if the human actively monitors

the progress of the robotic team.

The next three sections describe our approaches to

dealing with the three aspects that are endemic to multi-

agent Sliding Autonomy: requesting help, gaining situa-

tional awareness, and maintaining coordination.

B. Requesting Help: System and User Modeling
In many Sliding Autonomy systems, only the human

operator is able to change the control of tasks. In general,

this is adequate for single-robot applications, since a

human operator generally is more than capable of mo-

nitoring the status and progress of a single robotic agent

and can take over either if he feels he would do a better job

than the robot or if the robot is entering into a dangerous
situation. As the number of robots increases, however, it

becomes harder and harder for a single operator to keep

track of the status of all agents. One way of addressing this

problem is to allow the robots to switch the control of tasks

to the human by asking for assistance as appropriate. Thus,

a robot in trouble can request help from the human,

instead of waiting for the operator to realize that there is a

problem.
We have developed an approach that enables the

autonomous system to make reasoned decisions about

when to switch control of tasks based on current conditions

and the specific operator available. These decisions are

made when tasks are initially launched as well as when a

failure is perceived. If the operator has shown he is usu-

ally better than the autonomous system, the task will be
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assigned to him immediately. Alternatively, the system

may try to perform the task itself but later decide to hand

control to the human if it believes it is unable to complete

the task. Such decisions need to be made in both SISA and

MISA modes, as the system may request help with a task in

either case.

While these task allocation decisions could be made via
an arbitrary set of heuristics (such as Btry twice autono-

mously, then cede control to the human[), such a strategy

is potentially suboptimal, since no heuristic is able to

address all exceptional cases. Instead, by building em-

pirical performance models of both the autonomous

system and the human operators, we have developed a

principled approach to making such decisions that allows

the autonomous system to reason about expected task
duration and agent reliability to decide who should per-

form what task.

The decision problem can be phrased as a comparison

between the expected time to complete the task if the

human makes the next attempt and the expected time if

the autonomous system does so. In order to make this

comparison, we evaluate two decision treesVone where

the human performs the task under consideration and one
where the autonomous system controls the task. An ex-

ample of a tree associated with the autonomous system

making the next attempt is diagrammed in Fig. 5.

There are three components to this recursive predic-

tion: the probability of success for a given party’s attempt

at accomplishing the task in question, the expected time to

complete the attempt given success, and the expected time

given failure. In Fig. 5, these correspond to the probability
of branch (a), timespan (b), and timespan (c), respectively.

To estimate these values, we use prior observations of

execution time, conditioned on the failures which have

occurred during this instance of the task. The number of

preceding failures is roughly equivalent to the current level

of the decision tree and is used because a failure is em-

pirically a good predictor of future failures (at least within

our scenario). In addition, we condition our expected time
calculations on the outcome of the attempt, as failures often

take significantly longer than successful attempts. Since our

models are updated during task execution and are

maintained on a per-operator basis, the system’s decisions

will dynamically change in response to the operator’s cur-

rent performance and will depend on the specific operator

available.

By conditioning execution time on previous
failures, we turn what was a multimodal distribu-

tion into a set of (more or less) unimodal

distributions, which greatly eases the calculation

of expected time. We estimate how long it will

take to complete a task directly from these

distributions

EðtsjFr¼ i; Fh ¼ jÞ¼min
EðtrjFr¼ i; Fh ¼ jÞ
EðthjFh ¼ j; Fr¼ iÞ

� �
(1)

EðtrjFr¼ i; Fh ¼ jÞ¼ PðSrjFr ¼ iÞEðtrjSr; Fr¼ iÞ
þ ð1 � PðSrjFr¼ iÞð Þ

� Eðtrj:Sr; Fr¼ iÞð
þ EðtsjFr¼ i þ 1; Fh ¼ jÞÞÞ (2)

PðSrjFr¼ fr þ 1Þ¼ 1:0 (3)

EðtrjSr; Fr¼ fr þ 1Þ¼ EðtrjSr; Fr¼ frÞ (4)

where

EðtsjFr ¼ i; Fh ¼ jÞ Expected time to complete the task,

given i preceding autonomous failures

and j preceding human failures. For
i ¼ j ¼ 0, this corresponds to the

expected time of the entire decision

tree (timespan (d) in Fig. 5).

EðtrjFr ¼ i; Fh ¼ jÞ Expected time to complete the task if

the autonomous system performs the

next attempt, given i preceding fail-

ures. This is the expected time of one

subtree of the decision tree, such as
the expanded subtree depicted in

Fig. 5.

PðSrjFr ¼ iÞ Probability of the autonomous system

successfully completing the task, gi-

ven i preceding failures. This corre-

sponds to the probability of branch (a)

in Fig. 5.

EðtrjSr; Fr ¼ iÞ Expected value of the distribution
formed by all data points in which

the task was successfully completed by

the autonomous system with i preced-

ing failures (timespan (b) in Fig. 5).

fr Maximum number of preceding fail-

ures by the autonomous system that

have occurred in practice. fr þ fh is the

maximum depth of the decision tree.
The minimization in (1) represents the decision about

whether to assign the next attempt to the human or the

autonomous system. Equation (2) weights the time taken

to succeed and the time taken to fail plus the remainder of

the decision tree by the probability of success or failure,

respectively. While the decision tree could, in theory,

continue indefinitely, our model contains a finite amount

If the operator has shown he is
usually better than the

autonomous system, the task
will be assigned to him

immediately.
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of data. Equations (3) and (4) represent the optimistic

assumption that once we have passed beyond the bound-

aries of our data we will always succeed. This assumption

serves to terminate (2)’s recursion by setting the prob-

ability of failure to zero. In the presence of reasonably

sized datasets, the effect of this assumption on the final

predicted time is minimal, since the cumulative proba-

bility of reaching this base case is quite low. Also, note that
the equations for EðthÞ (the expected time given that

the human performs the next attempt) are identical to

(2)–(4); merely exchange the r and h subscripts.

The expected time of an attempt given the controller

and its outcome (EðthjSh; Fh ¼ iÞ, Eðthj:Sh; Fh ¼ iÞ,
EðtrjSr; Fr ¼ iÞ, or Eðtrj:Sr; Fr ¼ iÞ) is treated as a sample

from a static distribution. This distribution is formed

from all prior execution time observations that match this
combination of success and preceding failures. Since it is

nearly always unimodal, the expected value of such a

sample is merely the mean of the component data points.

However, this simple model does not apply in the case of

a novice human. Since the operator is still learning, it is

more appropriate to model EðthÞ by predicting the next

point on the operator’s learning curve. We have

previously conducted experiments to determine a rea-
sonable model for this curve and how best to use it as a

predictor of the human’s performance [24]. According to

our data, a logarithmic curve fitted to the available data

was a more accurate predictor of future performance than

linear, exponential, or quadratic fits. The fit of this curve

is updated, on a task-by-task basis, as more data is ac-

quired about an operator’s performance during a run.

Unfortunately, it is not clear how to independently
predict the time taken to succeed and the time taken to

fail while learning, so we simply calculate EðthjFh ¼ jÞ as

the next point on the learning curve, as long as we

believe the user is a novice. Once the operator’s per-

formance has leveled off (generally after 15–20 attempts

on a particular task), we assume he is an expert and

switch to using the static distribution assumption with
the asymptoted data.

Branch points in the decision tree are caused by the

start of the task or the failure of an attempt. There are two

varieties of failures: physical and temporal. Physical

failures are caused by erroneous states detected by the

autonomous system or the human that force the control-

ling party to back off and try again. For instance, if the

Roving Eye completes a visual search of its environment
without finding all of its target fiducials, its search task

fails. The servoing task responsible for docking a beam into

a node fails if it manages to wedge the beam against the

node at an angle such that docking cannot proceed without

resetting. On the other hand, temporal failures occur when

the human or autonomous system’s attempt extends past a

threshold. The threshold is generally m þ c 	 �, where m is

the mean of the observed execution times, c is a tunable
parameter, and � is the variance of the observations for the

party in question. Because human operators rarely, if ever,

voluntarily relinquish control, temporal failures are the

autonomous system’s primary method for requesting the

return of control.

There are currently three weaknesses with the way in

which the user models are evaluated and interpreted by the

system that curtail their usefulness. If the system’s
calculations show that the human is better at a certain

subtask and assigns control to him, there is currently no

way for the operator to successfully hand control back to

the system. Any attempt to do so would result in the sys-

tem reevaluating its decision, very likely coming to the

same conclusion and passing control right back to the

human. Unless the estimates of human and autonomous

performance are very close, it will take a significant
number of such exchanges to change the system’s decision.

We are considering a number of solutions to this problem,

including allowing the operator to force the autonomous

system to perform the next attempt or allowing the

operator to indicate he is entirely unwilling to perform the

task. Secondly, giving up control over a subtask is currently

counted as a failure for the party that was in control, and

timing of the other party’s attempt starts immediately
following the switch. Thus, failures close to the end of a

subtask often lead to overly optimistic performance scores

for the new controller because it/he can quickly complete

the remainder of the task and move on. One potential

solution is to condition our expected time calculations on

the failures of both parties (e.g., instead of EðtrjSr; Fr ¼ iÞ,
we would calculate EðtrjSr; Fr ¼ i; Fh ¼ jÞ). Finally, the

autonomous system does not yet track the operator’s
current workload and may request assistance with multiple

simultaneous tasks from a single operator. Because the

model does not incorporate the operator’s inability to

attend to more than one task at a time, this can introduce

significant inefficiencies, as the autonomous system waits

for the human to handle each of the tasks. The obvious

solution to this problem is to track the operator’s current

Fig. 5. Decision trees that are evaluated by user modeling system.

(a) Probability of success: PðSr jFr ¼ iÞ (2). (b) Expected time taken to

succeed: Eðtr jSr ;Fr ¼ iÞ (2). (c) Expected time to fail: Eðtr j:Sr ;Fr ¼ iÞ (2).

(d) Expected time of entire decision tree: EðtsjFr ¼ i; Fh ¼ jÞ (1).
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task queue and include his expected time to service the
queue when calculating the expected time to complete the

task under consideration if the human performs the next

attempt.

While currently we are simply comparing task execu-

tion times, we have considered using a full cost model in

order to incorporate varying labor costs, the amortized cost

of hardware, continuing expenses associated with tele-

operation or autonomous control of the robots, the cost of
repairs, etc. The specific cost function would be highly

dependent on the particular domain in question but would

be parameterized at a minimum by EðthÞ and EðtrÞ as well

as domain-specific price or cost parameters. This is an area

for future work.

C. Operator Situational Awareness
Another important issue in Sliding Autonomy is

attaining operator situational awareness. This is particu-

larly critical in multiagent domains. In the single-agent

domain, the operator needs to monitor only a single robot
and workspace. Even if he does lose situational awareness

due to attending to other tasks, it is easier for the operator

to remember the state of the system and use that to assist

him in attaining situational awareness the next time he is

asked for help. In the multiagent domain, there are many

robots with the ability to ask for help. Not only is there a

potentially longer time before an operator assists a robot a

second time, but the operator also has more than likely
provided assistance to other robots in the interim, further

degrading situational awareness.

Our approach is to maintain a buffer of information of

the state of the robots’ workspace(s), including both

synthesized and raw video views, and show these buffers to

the operator when he is asked to assist the system. By

viewing these buffers, the operator can more quickly gain

situational awareness of the pertinent workspace and more
efficiently assist the robots in their task than he could from

viewing just the current state of the system.

However, what types of information and how much

should be shown remain open questions. There is an

obvious tradeoff between performance and reliability;

having more information and a larger buffer typically

leads to a more accurate assessment but increases how

long it takes to attain situational awareness. Section VI
describes an experiment we performed to help quantify

this tradeoff.

D. Maintaining Interagent Coordination
The third issue that arises while adapting Sliding Auto-

nomy to the multiagent domain is how best to maintain

interagent coordination of the robot team while one or

more of its members is under operator control. We address

this by enabling the robots to monitor the progress of their

own and other related tasks through monitoring subtasks,

updating the execution of their tasks accordingly. For ex-

ample, consider a situation from our scenario in which the
operator is asked to brace a node with the Crane. While the

operator is performing this task, the Roving Eye continues

to monitor the location of the Crane and recognizes when

the operator has finished. Once the Roving Eye determines

that the operator has performed the bracing, the system

automatically continues with the tasks that depended on

the completion of the bracing task: the Mobile Manipu-

lator approaches the node with the beam, the Roving Eye
changes its focus to the tip of the beam, and the Crane

stays where it is in order to continue bracing the node.

This approach allows the team to remain coordinated

during a human intervention, as long as the human does

not deviate too greatly from the system’s plan (e.g., per-

forming tasks in an unexpected order). Since the existing

monitoring capabilities primarily monitor for task com-

pletion, the human can take whatever course he wishes to
complete the task at hand when in control of the action

component of a task, and the rest of the agents under

autonomous control will remain coordinated. However, if

the human decides to accomplish additional tasks first,

undo previous work, or make arbitrary modifications to the

plan, the current system will lose coordination. Open

research questions in this area include the development of

action recognition, plan prediction, and cooperative plan
generation capabilities for the autonomous system.

E. Summary of Multiagent Extensions to
Sliding Autonomy

To summarize, we have extended the traditional

single-agent Sliding Autonomy approach to multiagent

teams. In the course of our work, we have discovered

three primary differences between performing Sliding
Autonomy with single agents and multiple agents: 1) Due

to the human’s inability to simultaneously monitor all of

the agents in the team, the autonomous system must

reason about when to request help and cannot rely on the

human to step in. This increases the importance of

detecting that an error has occurred and makes user mod-

els a necessity. 2) In addition, the human’s inability to

monitor all of the agents simultaneously results in a loss of
situational awareness between requests for help. Conse-

quently, the human must first attain situational awareness

before assisting the robotic team, a step that typically

does not need to occur in single-agent Sliding Autonomy.

3) Finally, the multiagent autonomous system must

maintain interagent coordination, even when one agent

is under the control of the human.

We have conducted an experiment to compare the
effects of teleoperation, MISA, SISA, and pure autonomy

control strategies on robustness and efficiency and report

on the results next. In addition, we carried out an ex-

periment to determine how different interfaces affect the

human’s ability to attain situational awareness and

quantify how long he takes to do so, which can be used

to refine the user model.
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V. MULTIAGENT SLIDING
AUTONOMY EXPERIMENT

This experiment investigated the effects of mixing full

system autonomy with teleoperation on the overall effi-

ciency and robustness of our multiagent system.

A. Methodology
For this paper, expert users of the system performed a

number of trials for each mode of interaction with the

system. We had initially hoped to use operators unfamil-

iar with the project but found that the time needed for

novices to become proficient with the system was ex-

cessive: after 14 h of training, the novice users were still

slower than experts by a factor of three. Since we needed
our subjects to be roughly on par with the performance of

the autonomous system in order to obtain meaningful

results, we changed the study to employ two project

members as subjects.

During an earlier pilot study, we determined that the

time taken for the system to complete a node–beam–node

subassembly was independent of the side of the structure

by using a double-sided t-test with a 0.95 confidence
threshold. Therefore, our unit of analysis was a one-

beam subassembly, as detailed in Section III-A. Each

subject performed this assembly task 12 times in teleop-

eration mode, 16 times in SISA, and 20 times in MISA.

The 48 trials were performed in random order. Together

with 24 runs of the autonomous system, that gives a

total of 120 datapoints.

In order to create a semirealistic teleoperation ex-
perience, the subject sat at a workstation facing away from

the robots and the workspace. She was able to see only the

raw video output from one of the Roving Eye’s cameras and

the output of a visualization tool, which displays depth

information relevant to the current task (see Fig. 6), as

provided by the Roving Eye. Control input was provided

through a BSpace Mouse[ [25], a puck-like device designed

for three–dimensional (3-D) CAD work which allows the
user to push, pull, and twist a knob similar to a hockey

puck to provide full 6-DOF control.

During teleoperation runs, subjects logged which sub-

task of the overall assembly they were working on in

order to enable timing, as autonomous monitoring/timing

was not available during pure teleoperation. This selec-

tion was used to extract timing information for each user

to initialize her user model for the Sliding Autonomy

trials. For sliding and full autonomy, the timing infor-
mation was logged automatically by the system. At the

end of each run, the subject completed a NASA-TLX sur-

vey [26] to assess her perceived workload while control-

ling the robots. This survey takes into account factors

such as mental, temporal, and physical demand, as well as

effort and frustration.

In order to emphasize the difference in initiative be-

tween the two Sliding Autonomy modes, the users
performed a distractor task while using SISA. The screen

of their workstation and the video feed from the Roving

Eye were turned off. The only feedback available was audio

cues asking for help. During MISA, the users were not

presented with a distractor task, instead they actively and

constantly followed the system’s progress. They were told

to exercise their ability to proactively take over control

whenever they saw the opportunity to complete a subtask
faster than the system.

B. Results
Table 1 summarizes our hypotheses about the effects of

introducing Sliding Autonomy into our system on three

relevant metrics. With the exception of several cells high-

lighted in bold in Tables 2 and 3, the results we obtained

agreed with our expectations. For instance, teleoperation
(729–911 s) took 1.5–2 times as long as any of the modes

involving autonomy (437–492 s). The times and TLX

results of failed runs were not included in the results.

Both users generally followed the hypothesized trend

that the success rate would increase as human involvement

increased; pure autonomy was the worst at 75%, followed

by SISA, MISA, and finally teleoperation, which had an

average 96% success rate. Note that the users did not give
up on the failed teleoperation runs; instead, the system

reached a point of terminal failure.

Fig. 6. Screen shots of visualization tools used for controlling robots. From left to right: bird’s eye overview of workspace, closeup used

during beam docking, another closeup used during node bracing, and raw video feed provided by the Roving Eye.
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Not surprisingly, due to the subjective nature of the

NASA-TLX workload survey, the actual values varied

strongly between users; although, trends were consistent.

Teleoperation had, by far, the highest workload, approx-

imately twice that of the Sliding Autonomy cases (the

right-most column of Tables 2 and 3).

Comparing our two users side by side with the au-

tonomous system, we note a completion time comparable
with that of the autonomous system for both forms of

Sliding Autonomy and a much longer completion time for

teleoperation [Fig. 7(a)]. Additionally, the teleoperation

time to completion shows differences between the two

users. In Fig. 7(b) we see an upwards trend of the success

rate proportional to the amount of human involvement

during the assembly task. Finally, Fig. 7(c) shows that

trends in the perceived workload measured by the TLX

survey are not consistent between the two usersVthe

second user found SISA to be frustrating, while the first

reported a low workload. The autonomous system is

omitted from this chart since no human operator was

involved and hence there is no reported workload.

The histograms of User 1’s performance (Fig. 8) show
again that the autonomous modes are much faster than

teleoperation. The fastest run time was recorded under

autonomous operation at just over 300 s. At the same time,

a large portion of the teleoperation runs took over 800 s,

much longer than the slowest run during an autonomy

trial.

Table 1 Expected Results for Sliding Autonomy Performance

Table 2 Results for User 1. Discrepancies Compared to Expected Results are Highlighted in Bold

Table 3 Results for User 2. Discrepancies Compared to the Expected Results are Highlighted in Bold

Fig. 7. Comparison of our two subjects’ independent runs and fully autonomous system. Completion time and success rate generally follow

our expectations, but perception of workload is very task and user dependent.
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C. Discussion
When comparing the two extremes of the autonomy

spectrum (pure autonomy and complete teleoperation), it

is clear that there is an inherent tradeoff of speed against

robustness. If we were willing to allow an increase of

50%–100% in the time needed to complete the

structure, we could achieve near perfect reliability by

simply allowing the human to teleoperate everything.
However, our workload data indicate that in addition to

the significantly increased time to complete the assembly,

operators would swiftly become mentally overloaded in

addition to being unable to multitask during assembly.

Our experimental results suggest that this dilemma

can be resolved by employing some form of Sliding

Autonomy. As is shown in Fig. 7, adding any amount of

autonomy reduces the completion time to a level com-
parable with the purely autonomous approach, while

adding any amount of human involvement increases the

reliability of the overall system. Sliding Autonomy sits in

the intersection of these two trends. It combines the low

completion time advantage of autonomous operation with

the increased success rate due to human involvement.

The increase in system reliability when Sliding Auton-

omy is used can be attributed to the operator’s intuition

and ability to quickly understand problematic conditions
and then initiate recovery measures to help the system

avoid failure conditions. In addition, there is a clear

benefit to introducing Sliding Autonomy from a workload

perspective. Since the system still performs the tasks it is

skilled at autonomously, the perceived workload reported

by our users was significantly lower than during pure

teleoperation.

The subjective nature of the TLX scores does not allow
a direct user-to-user comparison, but we can make

Fig. 8. Histograms comparing User 1’s performance when using different Sliding Autonomy modes. Horizontal axis marks completion time in

seconds, and height of bars shows number of experimental runs for each time interval.
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statements about trends in the data. We expected SISA to
have the lowest workload because the user has to work

with the system only when asked for help. However, there

are at least two factors that are not captured well within

the TLX framework: boredom and the frequency of in-

terruption by the system. Both of these are directly linked

to the specific user’s ability to perform the task at hand.

For example, a relatively strong user will likely be asked for

help with many tasks, to the point where she is called back
to help with the next task almost as soon as she returns to

her distractor task from assisting the team. On the other

hand, a relatively weak user will not be asked for help very

much; she may be called to help only a few times during a

15-min experimental run. Depending on the individual

user, this could be interpreted either as a relaxing situation

with low workload or as a frustrating situation where the

individual has to be on call for the system but is never
asked to do anything. On the other hand, an experienced

user may be frustrated due to being constantly interrupted

by the system asking for help. This frustration is likely

responsible for high workload results such as the data

shown for User 2 in Fig. 7.

The multimodal grouping of the completion time

results shown in the histograms in Fig. 8 corresponds to

assembly attempts with varying degrees of success. The
left-most group represents smooth runs without any

failures, and subsequent groups indicate increasing num-

bers of autonomous or operator errors and/or near-failure

conditions.

There are three discrepancies between our hypotheses

and our actual results: User 2’s workload, User 1’s mean

time to completion in the MISA and SISA cases, and User

1’s success rate under SISA (the bolded entries in Tables 2
and 3). The high workload of User 2 can be explained by

the subjective nature of the TLX survey, as discussed. User

1 took longer on average to complete the task under MISA

than SISA (although there is not a statistically significant

difference between the means). This may be due to an

overeager operator intervening in cases where the auto-

nomous system is, in fact, more efficient, resulting in an

overall decrease in efficiency. Finally, User 1’s success rate
under SISA is not superior to the autonomous system’s.

Success rate improvement between pure autonomy and

SISA is dependent upon the autonomous system’s ability to

discern failures with which it requires assistance; if few

discernible failures occur, little gain will be realized by

applying SISA.

Our experiment shows that adding a human agent to a

multirobot team via a Sliding Autonomy framework com-
bines the advantages of autonomous robot operation with

the reliability of teleoperation at a mental workload level

tolerable by the operator. The amount of attention the

operator pays to our task (i.e., SISA versus MISA) has no

measurable effect on the time to task completion com-

pared to fully autonomous operation, but it does manifest

itself in overall system robustness: the greater the op-

erator’s involvement in the team’s operation, the higher
the success rate.

The choice between forms of Sliding Autonomy (SISA

or MISA) depends heavily on the system as a whole. If the

operators are comparable in skill level with the auto-

nomous system, the system is able to perform significant

portions of the task on its own, and the system is able to

detect the existence of an error reliably, then the humans

can productively multitask when operating under SISA. In
a situation involving many robot teams, SISA may be pref-

erable to MISA, as its slightly lower success rate is out-

weighed by the ability of a few operators to simultaneously

oversee a number of teams. The additional time required

to attain situational awareness can be minimized by

selecting the most effective user interface (see Section VI).

For comparatively weak human operators, a similar

multitasking argument holds, but a higher degree of auto-
nomy is required of the system since the operator’s ability

to help can be rather limited. For very skilled humans,

however, their abilities often lead to them being contin-

uously asked for help. Switching between different teams

performing different tasks very often and rapidly is more

confusing and stressful to the operator than helpful to any

team. Instead, for strong operators, a MISA setting is often

preferable to SISA, despite the same requests for help,
since it allows the human more control over her workload.

Additionally, if the autonomous system were unable to

detect most failures, MISA would be the preferred method

in all cases in order to compensate for the autonomous

system’s lack of reliability.

VI. SITUATIONAL AWARENESS
EXPERIMENT

In addition to experimentally evaluating the differences

between our different approaches to multiagent Sliding

Autonomy, we also conducted an experiment to test how

well users attain situational awareness in our robotic sys-

tem. In order to help the operator gain situational aware-

ness more quickly, we maintain a buffer containing the

state of the system over the last n seconds, which can be
replayed to the operator when the system asks for help.

Two natural questions arise: BWhat kinds of information

should be included in the buffer?[ and BHow much data

should it save?[. To help answer these questions, we tested

how quickly users attained situational awareness of our

system when using various combinations of displays and

data buffer lengths. In addition to guiding the design of

operator interfaces, this experiment provides the informa-
tion needed to account for the time necessary to gain si-

tuational awareness in the system’s model of the human

(Section IV-B).

A. Methodology
The experiment tested four different combinations of

information streams. The first was simply a video feed
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from one of the Roving Eye’s cameras (Fig. 9.2). The se-
cond was the Roving Eye video along with the synthesized

Btechnical drawing[-style visualizer (Figs. 6 and 9.1),

showing the relative positions of the beam and node from

above and the front of the beam. The third was the Roving

Eye video along with two other video feedsVone from a

fisheye camera placed on top of the Crane, looking down

(Fig. 9.4), and one from an external camera placed outside

the robot workspace, looking towards the structure
(Fig. 9.3). Finally, the fourth combination included all

four of the previous elements.

We also varied the length of the data feed that was

presented to the subjects. The four possible lengths were 0

(still shot), 5, 10, and 20 s. This, in combination with the

four different displays, yielded a total of 16 different test

conditions.

During each trial, each of the 32 subjects was shown the
data buffer from an attempted docking and was asked to

identify through a dialog (Fig. 9.5) why the robot requested

help. The experimental procedure was a combination of

training and testing. The subject’s training began with

reading a written overview of the task and hardware at

hand, with the experimenter answering any questions. The

subject was then shown one example of each of the seven

types of errors via the graphical interface (Fig. 9), using the
maximal data and 20-s playback condition.

After training, the subjects began the actual experi-

ment. They were instructed to play a video game in be-

tween trials to simulate multitasking. Each user was tested

on four of the 16 conditions, performing six trials per

condition. We applied Latin squares to both the data feed

and length effects to account for ordering and practice

effects. A Latin square is a statistical technique that allows

experimenters to test effects while controlling for two
other known sources of variation (here, intersubject vari-

ability and ordering effects).

B. Results
During this experiment, we recorded the time that

elapsed between the beginning of playback and when the

user chose which error she believed had occurred. We also

recorded her response to allow analysis of user accuracy.
Users were not allowed to choose a response until they had

watched the entire playback clip. Also, although users

were able to change their answer, we only considered the

data collected from their final responses. We used a uni-

variate ANOVA test to analyze this data.

The data show that in our scenario, with respect to

response time, the best display and data feed length com-

bination is the Roving Eye video plus visualizer, viewed for
between 5–10 s [Fig. 10(a)], as this combination had the

shortest average response time. Considering solely data

feed length, significant differences were found between

0- and 5-, 0- and 10-, 5- and 20-, and 10- and 20-s play-

backs. If instead we consider the composition of the dis-

play, significance was found between the Roving Eye and

the Roving Eye plus other videos displays, the Roving Eye

and all displays, the Roving Eye plus videos and Roving
Eye plus visualizer displays, and the Roving Eye plus vi-

sualizer and all displays.

With respect to accuracy, the best data feed condition

is that with the longest (20 s) data feed length [Fig. 10(b)].

Similarly, the display that had the highest accuracy was the

Roving Eye video plus other videos [Fig. 10(b)], although it

is not significantly different from the all displays con-

dition. Considering data feed length, significance was

Fig. 9. Subject interface for situational awareness experiment, including three video streams [Roving Eye’s cameras (2), external camera (3),

and Crane-mounted camera (4)], synthesized view of beam and node (1), and error categorization input dialog (5).
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found between 0- and 10-, 0- and 20-, and 5- and 20-s
playbacks. Significance in display composition was found

between the Roving Eye and Roving Eye plus videos dis-

plays, as well as the Roving Eye and all displays.

C. Discussion
If response time is the only metric under consideration,

the results are clearVthe best conditions were the Roving

Eye video alone or the Roving Eye video plus visualizer,
with 5–10 s of playback. We believe that this is because as

more raw videos are added, the mental overhead required

to process, interpret, and merge the available information

increases, resulting in slower response times. The inclu-

sion of the more abstract visualizer view does not signi-

ficantly increase user response time. We believe this to be

due to it requiring less mental overhead but have no direct

proof of this. Similarly, we believe that a 5–10-s playback
was the best range because with longer data feed lengths

the amount of meaningful information the user can pro-

cess and remember plateaus, making the extra informa-

tion relatively less useful (when only considering response

time) in the decision-making process.

The accuracy measures, however, suggest a slightly

different story. When considering this metric, the longer

the data feed playback, the more accurate the users’ ans-
wers become. This is most likely because users can make a

more informed decision, even though they take longer to

respond in order to process the additional information.

The same argument applies to the display condition.

Although the extra videos require more time to process,

they allow users to make more informed decisions, leading

to higher accuracy.

From this experiment, we can make some recommen-
dations about attaining situational awareness in systems

such as ours that involve a remote human as part of a

multiagent team. There is clearly a tradeoff between

accuracy and response time; in general, the most accurate

conditions were those that had the longest response time.

This effect, however, may decrease as users become more

expert. The information they derive from the data feed

may plateau earlier. Thus, a follow-up to this experiment
should use expert users as subjects and examine whether

the accuracy trends still hold or if they begin to correlate

with the response time results. Either way, a choice needs

to be made between efficiency and accuracy. If timing is

critical, then it might be worthwhile to accept a lower

accuracy in order to encourage the operator to respond

more quickly; similarly, if accuracy is more important,

then users should be given as much information as pos-
sible, and sufficient time to process and merge the infor-

mation, in order to allow them to make more informed

decisions. It is important to keep in mind, however, that

our measures of time did not include actual task execution,

instead only measuring the time taken to determine what

should be done. Since a misdiagnosis may lead to wasted

recovery effort, it is quite possible that classification errors

can affect the speed of the system to a greater extent than
these results indicate, increasing the importance of accu-

rate classification.

VII. FUTURE WORK

Determining how to proceed when the human relinquishes

control of a task remains an open research question. If the

Fig. 10. Effects of available information and data feed length on (a) how long subjects took to choose an error and (b) how accurate their

decisions were. Note that ordering differs between two figures, although shading is consistent.
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human returns control after completing the assigned task
(and only the assigned task), it is straightforward: our

current system is able to monitor the task’s completion and

continue with the tasks that were dependent upon it.

However, the human may instead perform additional or

different tasks than those that the system expected. In

addition to deducing the human’s goals and tracking the

arbitrary effects her actions may have on the structure,

the system needs to be able to replan to accomplish the
scenario’s goals from whatever state the human leaves the

system in when she relinquishes control.

Our current scenario encompasses a relatively complex

task, but contains minimal coordinated manipulation of a

single object by multiple manipulator robots. Our earlier

work involved a much simpler task but required extensive

coordinated manipulation [27]. We are now moving to a

new scenario that combines a significantly more complex
assembly with a need for this type of coordinated mani-

pulation. Addressing both these issues while using Sliding

Autonomy in a multiagent setting should uncover many

new issues, for example, deciding how best to coordinate

tightly coupled manipulation between a human and robot,

instead of between two robots. Additionally, we are

looking into adding additional robots with overlapping

capabilities to the team. With these additional robots, the
planning problem will become much more interesting, as a

wider variety of solutions to the scenario will be possible.

Their overlapping capabilities will also allow the robots to

ask each other for help in addition to, or instead of, asking

the human. This additional step will allow the human to be

treated as simply another agent in the system, just one with

a slightly different skill set.

VIII. CONCLUSION

We have presented various issues involved with extending

Sliding Autonomy into a multiagent domain. One of the

main challenges is allowing the robots to ask for help, since

the human is not always guaranteed to be paying attention

to each robot at any given time. We make this possible by

incorporating user models into our system that allow the
robotic agents to make informed and reasonable decisions

about when to request the operator’s assistance. Experi-

mental data showed that this way of incorporating a human
into a multirobot team combines the advantages of autono-

mous robot operation with the reliability of teleoperation,

resulting in a more efficient and robust system as a whole.

By allowing the system to ask the operator for help, we

also introduce the question of how to best enable operators

to quickly gain situational awareness of the robot’s work-

space and state so that they can provide assistance more

quickly and effectively. To this end, we conducted an
experiment testing different operator displays and play-

back times to find out which combination resulted in the

most efficient interaction. Based on the results, we feel

that a human operator in our system will be able to quickly

gain situational awareness and assist any robotic team

member that asks for help, whether or not the operator

had previously been paying attention to the situation.

In order to allow interagent coordination even when a
human is controlling some task, we allow the robotic team

members to monitor their and other team members’ prog-

ress as related to their current task. This allows the robots

to continue with their respective tasks even when their

team members are being controlled by an operator or are

waiting for an operator response. In other words, a team

member can use its knowledge of the other agents’ actions

to ensure that its tasks remain coordinated. Our experi-
ments have shown that this is an effective way of main-

taining task coordination while using Sliding Autonomy.

Overall, we have shown some shortcomings of con-

trolling large-scale construction systems through both full

autonomy and complete teleoperation. We have demon-

strated that by allowing humans to work as team members

via Sliding Autonomy in a multiagent system, a blend of

complementary skills and abilities emerges that increases
the system’s overall robustness and efficiency. h
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