Intelligence Empowered Vertical Farming Systems

K.C. Ting, Ph.D., P.E. Professor and Head Department of Agricultural and Biological Engineering University of Illinois Urbana-Champaign, Illinois USA

kcting@illinois.edu

Wei Fang, Ph.D.

Professor and Chair

Department of Bio-Industrial Mechatronics Engineering

National Taiwan University

Taipei

Taiwan

weifang@ntu.edu.tw

Contents

- Automation, Culture, Environment, and Systems (ACESys) Model for Vertical Farming
- □ Intelligence Empowered Vertical Farming Systems
- **Challenges in Automation for Vertical Farming Systems**
- Challenges in Systems Informatics and Analysis for Vertical Farming Systems
- Concurrent Science, Engineering, and Technology (ConSEnT)
- Vertical Farming (Plant Factory) Academic and Commercial Development in Taiwan
- **U** Vertical Farming Key Technologies
- **Opportunities in Automation for Vertical Farming Systems**
- Opportunities in Systems Informatics and Analysis for Vertical Farming Systems

ACESys Core Competencies for Vertical Farming Systems

Intelligence Empowered Vertical Farming Systems

Intelligence Information needed Information processing

Mechatronics Manipulators (Generic or Specialized Mechanisms) End-effectors Control

Systems integration Fixed vs. flexible automation Component/subsystem interactions and compatibilities Single function/use vs. multiple function/use Local vs. global optimization

Automation [in addition to Mechanization]

Automation (machines equipped with human-like capabilities of information processing and task execution):

- **Perception**
- **Reasoning / Learning**
- **Communication**
- **Task planning / Execution**
- **Systems Integration**

Challenges in Automation for Vertical Farming Systems

- □ Making return on investment attractive
- Systems optimization by proper integration of Automation, Plant Culture, and Environment
- Balancing fixed automation and flexible automation (i.e. identifying appropriate level of necessary machine intelligence)
- ☐ Multiple use of machine or parts of machine
- Limited market demand and acceptance
- **Concern** for safety in operation
- Continuous improvement of research and development capabilities

Genesis Company Taiwan

Challenges in Systems Informatics and Analysis for Vertical Farming Systems

- **Top-Level vs. Process Level**
- **Expandability, Compatibility, and Adaptability**
- **System Abstraction**
- □ Targeted participants and audiences
- □ Validation
- □ Handling of heuristic, uncertain, and incomplete information
- **Deliverables**
- Coordination of activities (i.e. concurrent science, engineering, and technology, ConSEnT)

illinois.edu

J&D Restaurant

Taiwan

Partners and Interested Parties:

Research and educational institutions Governments Real estate developers and builders Construction companies HVAC industry **Electronics industry Supermarkets Restaurants Consumers Media Etc.**

Vertical Farming Key Technologies

Opportunities in Automation for Vertical Farming Systems

- Improve technology readiness level and economic viability of automated information gathering/processing and materials handling
- Build on past success of agricultural mechanization and modeling capabilities
- Utilize effective communication systems and computational platforms
- **Enhance market acceptance**
- □ Increase potential of spin-off technologies
- □ Facilitate implementation of emerging technologies

Opportunities in Systems Informatics and Analysis for Vertical Farming Systems

- Establish information protocols and analysis algorithms for vertical farming systems
- Develop a computerized environment for real-time information integration and analysis
- Produce unified and robust models of vertical farming components and entire system
- Perform studies at the system level to aid in design, operation, and research recommendations of vertical farming systems
- Implement the system informatics and analysis environment in a concurrent computational platform (e.g. ConSEnT); i.e. make things work better and together

kcting@illinois.edu

weifang@ntu.edu.tw

