
The Robotics Institute
Carnegie Mellon University

5000 Forbes Avenue
Pittsburgh, PA 15213

May 1998

© 1998 Carnegie Mellon University

Precise Image Segmentation for
Forest Inventory

Jeffrey Byrne and Sanjiv Singh

CMU-RI-TR-98-14

ii

iii

Abstract
This paper presents a portable vision system for forest surveying that can estimate the
diameter of a target tree with a single “point and click”. Of specific interest is the tex-
ture segmentation algorithm used for accurately determining the boundaries of the tar-
get tree in a forest. This segmentation is challenging because the target may be
occluding other, almost identical looking trees, creating an obscure edge. To compen-
sate for this possibility, we have created an algorithm sensitive to small texture
changes which uses both the co-occurrence matrix and the Mahalanobis metric to first
find a window that must contain the target texture edge. Then, the edge is precisely
localized in this window using a novel method based on co-occurrence matrix differ-
ences. Using this algorithm, given no structured shadows, we have been able to
achieve consistent accuracies of +/- 1 inch, or less than 5% error, in both simulated
tests and a field trial.

iv

v

Table of Contents
1.0 Introduction ..1

1.1 Research Problem .. 1
1.2 Summary ..3

2.0 Image Segmentation ...4
2.1 Related Work ..5

2.1.1 Texture Measurement ..6
2.1.2 The Co-occurrence Matrix ..7
2.1.3 Texture Comparison ..8
2.1.4 The Mahalanobis Metric ...9

2.2 Texture Segmentation Algorithm ...10
2.2.1 Preprocessing - Gray Level Reduction ... 11
2.2.2 Training ...11
2.2.3 Mahalanobis Difference Computation ..12
2.2.4 Adaptive Mahalanobis Difference Computation13
2.2.5 Edge Localization ... 14
2.2.6 Edge Finding by Linear Regression ..16
2.2.7 Complete Segmentation ..16

3.0 System Design ...18
3.1 Design Criteria ..18
3.2 Related Work ..18
3.3 Candidate Solutions .. 19

3.3.1 Scanning Laser Rangefinder ... 19
3.3.2 Spot Laser Rangefinder ...19
3.3.3 Full Frame Stereo ..19
3.3.4 Line Scan Stereo ... 19
3.3.5 Laser/Camera Hybrid ..20

3.4 Comparison of Candidate Designs ...20
3.5 Proposed Solution .. 20

4.0 Results ... 22
4.1 Simulated Environments ..22

4.1.1 Radically Different Backgrounds ..22
4.1.2 Occlusions ...23
4.1.3 Shadows .. 24

4.2 Field Results ...25
5.0 Conclusions ...28
6.0 References ...30

vi

1

1. Introduction

Product inventory is an especially hard problem in commercial forestry. Deciding if a new piece

of forest is worth buying, or measuring the growth on currently owned land requires special inven-

tories calledsurvey runs. The ultimate goal of a survey run is to determine the total harvestable

wood volume in a survey area. To do this, a surveyor must first measure the height and diameter

at approximately chest level of a sample set of trees in the survey area. Subsequent analysis then

extrapolates this data to represent the total harvestable wood volume.

Currently, tree diameter and height measurements are made by trained surveyors relying only on

experience and simple optical devices. Estimates from experts suggest that due to the subjective

nature of these methods, inventory on a per-area basis can vary up to 25% from the true value.

While some commercially available instruments now provide better height estimation accuracy

than conventional methods, diameter estimation using such instruments remains relatively slow

and difficult to use. Automating this task offers the potential of improving accuracy, providing

real time data logging and analysis, growth-rate feedback early in the product cycle, and reducing

labor. In this report, we describe the design and testing of a system created to automate the pro-

cess of diameter estimation.

1.1. The Research Problem

Diameter estimation is largely a problem of image segmentation. As shown in Figure 1, assuming

a cylindrical model, diameter (D) can be estimated from the range to target (R) and the angle sub-

tended by the target orangular size (α).

Range measurement is a well understood problem and can be done using conventional methods

such as lasers or various image processing techniques. Angular size measurement, however, is

not as straightforward since the exact location of the target in a scene must be known. This loca-

tion can be found by segmenting an image of the scene into target and background.

Figure 1: Diameter estimation parameters

Cylinder Cross Section

D

D
2R

α
2
---sin()

1 α
2
---sin–

-----------------------=R

Equation 1

Sensorα

2

Depending on the sensor used, segmentation can be performed on either range or reflectance

images. Range sensors are attractive since it is relatively straightforward to determine shape

directly from sensed data and segmentation is generally easier. However, range sensors require

moving parts and can be expensive. In contrast, segmentation of reflectance images, though com-

putationally more challenging, holds the promise of a low cost system with no moving parts. For

these reasons we propose to base the angular size measurement on reflectance image segmenta-

tion.

Image segmentation of natural scenes is complicated by several issues. First, lighting cannot be

easily controlled. Shadows cast by objects blocking ambient light are common and can poten-

tially obscure the target edge. Second, objects in nature are rarely planar. Variations in shape can

change the look of the target, making segmentation more difficult. Third, partial occlusions can

obscure the edge boundary. This is true for a general outdoor scene, but it is especially true for

what can be described as anhomogeneous scene. An homogeneous scene contains many almost

identical objects at various locations. A partial occlusion in such a scene makes the edge finding

especially difficult since the occluded object and the target look quite similar (Figure 2c). Seg-

mentation must be sensitive to such boundaries as well as obvious boundaries as in the more typi-

cal case shown in Figure 2b.

Therefore, the research problem present in non-contact diameter estimation is creating a robust

image segmentation algorithm that will find the correct target edge even in the presence of shad-

ows, non-planarity and very similar looking occlusions. In addition, diameter estimation accu-

racy is directly dependent on how accurately the target edges are found, so this algorithm must

also accurately localize the target edge boundary.

Figure 2: Tree image segmentation. (a) Raw image (b) Simple segmentation (c) Close up of
segmentation in case of partial occlusion of a tree behind the target tree

3

1.2. Summary

This report describes the design and testing of a system to perform non-contact diameter estima-

tion, focusing on the computer vision algorithm created to handle the outdoor segmentation issues

present in a forest scene. Chapter 2 describes this algorithm in detail along with background on

similar segmentation systems and research done in image segmentation using texture. Chapter 3

describes the design of a system used to perform this task. Five possible solutions are explored,

and from these, it is shown that a spot laser boresighted with a camera best meets the design goals.

Chapter 4 shows that in both simulated environments and an actual survey run, this system can

achieve high accuracies. Finally, Chapter 5 gives conclusions about overall performance and rec-

ommendations for improvements.

4

2. Image Segmentation

As shown in Figure 1, diameter estimation requires range to target (R) and angular size (α). Sec-

tion 1.1 argues that the most cost effective method of measuring angular size is by accurately seg-

menting a reflectance image into target and background. However, this segmentation is not trivial

since a target tree is non-planar, and is quite similar looking to other trees nearby. This chapter

will focus on the computer vision algorithm created to perform this segmentation.

Good image segmentation relies on extracting the most significant differences between image

regions, and in most natural settings, these significant differences are color and texture. In a for-

est, texture may be a better segmentation basis since color is fairly constant from tree to tree of the

same species while texture changes significantly.

In general, image textures can be broken into three categories, periodic, nearly periodic or random

[5]. Periodic textures, such as a crystalline lattice from electron microscopy, have a regular, com-

pletely deterministic pattern. Nearly periodic textures, such as the stitches in a sweater, are close

to being periodic, but have added noise. Random textures, such as pebbles on a beach, have reg-

ularity only in a statistical sense. Most commonly occurring natural textures, including tree bark,

are random.

An algorithm that will segment target tree texture from background texture must be sensitive to

random texture, must not be confused by a non-planar surface, and must accurately localize the

texture boundary even when this boundary is obscured, given an occluded tree as in Figure 2c.

Many researchers have created general algorithms for texture segmentation, including such meth-

ods as active contours or snakes, Bayesian inference and region growing. These algorithms work

well, but most are created to be used on planar textures [9][13], such as those found in the Brodatz

set. Also, many algorithms that can reliably locate regions of differing texture do not always

accurately localize texture boundaries, especially when presented with an obscured edge

[6][12][14].

Therefore, a new algorithm must be created that can compensate for a non planar surface, find tex-

ture boundaries accurately even when presented with an obscured edge, and be optimized for use

in a forest setting. To create this algorithm, similar outdoor segmentation systems are first

explored to gain insight into the problem. This is followed by a discussion on current research in

texture segmentation to find methods best suited to this application.

5

2.1. Related Work

Many researchers have successfully created outdoor vision systems. One interesting system

developed by Ollis and Stentz navigated an industrial alfalfa harvester by following the cut/uncut

crop line in a field. To do this, a color image was taken of a field, and a best fit step function was

computed for each image scan line using the fisher linear discriminant in RGB space [11]. Figure

3 shows the results obtained in a field using this method as well as the line found between com-

pacted and uncompacted garbage using texture as a discriminant instead of color. This problem is

surprisingly similar to the forest segmentation problem since both break an image into two

regions, (cut/uncut vs. tree/background), and both segment along roughly vertical boundaries.

However, this method uses a best fit step function which assumes that the region boundary is

always clear, and in a forest an occluded tree many obscure the edge.

Even though this algorithm is not directly applicable, this system does add insight to the design of

robust outdoor vision systems. Most importantly, Ollis and Stentz found it necessary to perform a

shadow removal step in order to compensate for ambient lighting changes. This problem is

present with many outdoor vision systems and may influence results in a forest.

Researchers have also done work to develop methods of image segmentation using texture. In

general, texture segmentation algorithms must first measure texture in a region then compare this

texture to the texture in other regions to test for similarity. Both texture measurement and texture

comparison methods will be explored in the next section to find a method best suited for use in

Figure 3: Segmentation using (a) color for finding the edge of cut crop (b) texture for finding the
line between compacted and uncompacted garbage. The white line shows the result of the

segmentation algorithm. Results due to Mark Ollis

6

this application.

2.1.1. Texture Measurement

In general, texture measurement can be broken into five categories: spectral, multiscale, model

based, structural and statistical methods [10]. Spectral methods such as the short-term fourier

transform (STFT) or 2D power spectrum analysis measure the localized frequency content of an

image. This method is particularly well suited, and is typically used for, the segmentation of

images containing planar, periodic textures [9]. Since most naturally occurring natural textures

are random and not periodic, this method may not be the best choice.

Multiscale methods, such as wavelet analysis, also measure the localized frequency content of a

signal, but, to achieve optimum space/frequency resolution, the window function varies with fre-

quency instead of remaining a constant size. Again, this method is typically used for the segmen-

tation of periodic or nearly periodic textures. Rubner and Tomasi have successfully applied this

method to random textures [12], but their method unfortunately discards boundary areas as con-

taining insufficient texture for segmentation. Since boundary areas are the ultimate goal of this

segmentation, this method is again not the best candidate.

Model based methods, such as Markov random fields, use many samples of a texture to create a

general statistical model, where segmentation is done by checking how well new textures fit the

model. This method has been successfully used in the segmentation of natural scenes, but com-

mon problems with this approach are the time and number of texture samples required for model

creation [13]. This method is a possible choice since it has been proven to work with natural tex-

tures, however, the complexity and speed of the computation must be taken into account as nega-

tive factors.

Structural methods, such as the texton model proposed by Voorhees and Poggio [13], extract tex-

ture primitives or macrotextures, such as blobs of similar color or shape, from an image. The den-

sity and other first order properties like width or length may then be used to group similar looking

regions. This method and has been successfully applied to the segmentation of naturally occur-

ring textures, and is a candidate for use here.

Finally, statistical methods, such as the co-occurrence matrix proposed by Haralick et al. [4],

extract microtextures such as local gray levels pairs to determine the texture of a region. This

method has been widely used and can be applied to random textures. Therefore, it would seem

7

that the most promising methods of texture segmentation for this problem are structural methods

and statistical methods, both of which have been successfully applied to naturally occurring ran-

dom textures. The co-occurrence matrix, a statistical method, was chosen because it is an intui-

tive measure of texture, and is straightforward to compute.

2.1.2. The Co-occurrence Matrix

The co-occurrence matrix can be described as "a matrix conveniently representing the occur-

rences of pairs of gray levels of pixels, that are separated by a certain distance and lie in a certain

direction (angle) in an image." [4]

Given an imageI with m different gray levels, two pixels,i1 andi2 in I can be represented by:

wherex is the row location,y is the column location, andi is the gray value of the pixel. Letd be

the distance that separates these two pixels, whered = 1 means neighboring pixels, andd = 2

means pixels separated by one pixel and so forth. Finally, letθ be the angle along which the pairs

of pixels lie, typically 0, 45, 90, and 135 degrees.

The co-occurrence matrix is anmxm square matrix. Supposeik andi j are two gray values sepa-

rated by a distanced along the angleθ in the original image. Also suppose that these gray values

occur in this configuration ofd andθ N times in the imageI. The co-occurrence matrix is there-

fore themxm matrix such that

Co-occurrence entries exist for each combination of gray value in the image, and a new co-occur-

rence matrix exists for each different choice ofd andθ.

This is best described by a simple example. Using the 5x5 image in Figure 4, the co-occurrence

matrix P901 is computed. As shown, this simple image has only 4 distinct gray levels, so the co-

occurrence matrix is 4x4. For every vertical gray level pair (vertical because we are computing

θ = 90), the number of instantiations of this pair is counted up in the entire image, and this number

recorded in the co-occurrence matrix at the index corresponding to the 2 gray levels. As a side

note, since the gray levels range from [0->(m-1)], the indices of the co-occurrence matrix must

run from [1->m]. So, the number 3 at P901(4,3) means that gray level (4-1 = 3) was found above

i1 = I(x1, y1) i2 = I(x2, y2)

Pθd ik i j(,) N=

8

or below gray level (3-1=2) three times as shown in the figure. This is repeated for every relevant

pixel pair.

The co-occurrence matrix itself may be used as a measure of texture, or statistics based on the co-

occurrence matrix may be computed to give a scalar texture measurement. Haralick et. al [4] pro-

posed 10 such statistics, such as entropy, correlation, energy, contrast, and homogeneity which are

computed from the co-occurrence matrix as shown in Figure 5.

For a more detailed explanation of the co-occurrence matrix please see the following references

[4][8].

2.1.3. Texture Comparison

Once the texture of two regions has been measured, these textures must be compared to determine

if they are similar enough to be the same texture or different enough to be separate. Once this

decision has been made on all regions, the result is a segmented image. Some examples of com-

Figure 4: Co-occurrence Matrix Example

Figure 5: Co-occurrence based statistics

5x5 Original Image
Gray Levels 0-3

0 1 2 1 0
3 2 13 2
0 13 2 1
1 12 2 3
3 3 23 0

0 1 1 3
1 1 4 5
1 4 2 3
3 53 0

P901 =I =

4x4 Co-occurrence Matrix for
θ = 90 and d = 1

Entropy Pθd i j,() Pθd i j,()log
ij
∑=

Correlation
i µx–() j µy–()

σxσy
-------------------------------------- Pθd i j,()()

ij
∑=

Energy P
ij
∑

2
θd i j,()=

Homogeneity
Pθd i j,()
1 i j–+

ij
∑=

µx k Pθd k l,()〈 〉
kl
∑=

σx
2

k µx–()2

k
∑ Pθd k l,()

l
∑=

µy l Pθd k l,()〈 〉
kl
∑=

σy
2

l µy–()2

k
∑ Pθd k l,()

l
∑=

1 i j k l, , , m≤ ≤

Contrast i j–()2
Pθd i j,()

ij
∑=

9

parison methods include the Kolmogorov-Smirnov statistic, Mahalanobis metric, Bayes classifi-

ers, Euclidean metric and the Fisher linear discriminant.

Of the above methods we selected a non-linear distance vector comparison since the segmentation

for this application is only between target and non-target. One promising method, the Mahalano-

bis metric, will be considered in more detail.

2.1.4. The Mahalanobis Metric

Generally, the Mahalanobis metric is a non-linear distance vector measurement that compares a

two vectors and returns a scalar similarity measure, where a small value implies vector similarity

and a large value implies vector difference. In the context of image processing, the Mahalanobis

metric can be used to compare "feature vectors" from different regions, where similar feature vec-

tors correspond to similar image regions.

A feature is a scalar measurement of some attribute of a specific region. Some examples of image

features include the mean gray value intensity of a region, standard deviation of gray values, or

possibly the texture measurements based on the co-occurrence matrix described in Figure 5. If a

single region has more than one feature, they are collectively called a feature vector.

Given two regions in an image, suppose each has a corresponding feature vector that has been

computed. A simple linear distance vector measurement, such as the Euclidean metric, would

compare these two regions by computing the mean of each feature vector, then subtracting to pro-

duce a scalar result. This metric works well under certain conditions, but does not accurately

measure similarity when the features are highly correlated or badly scaled. The Mahalanobis

metric is able to compensate for such limitations by using a feature co-variance matrix to compen-

sate for highly correlated features, and a mean vector to produce a standardized distance measure

giving scale invariance.

The equation to compute the Mahalanobis metricr given a set of feature vectors with mean vector

m, a new feature vectorx, and the feature co-variance matrixC is shown in Figure 6. The deriva-

tion and justification for this metric is outside the scope of this paper, but the following gives a

good tutorial on the subject [3].

Now that methods of measuring and comparing texture have been chosen, the algorithm which

uses these two calculations to segment an image may be described.

10

2.2. Texture Segmentation Algorithm

This section will describe the image segmentation algorithm created to split a captured image into

target tree and background. As described, this information can be used to computed the angular

size of the target, and this information plus the range to the target will return a diameter estimate.

To begin, some observations can help clarify the problem. Figure 7 shows a typical tree in a forest

with the following observations:

• Edge types: Tree trunks are nearly vertical with continuous edges. Therefore, texture
changes from target to background will be abrupt, allowing segmentation results defin-
ing the tree edge to be horizontal or to have large discontinuities to be discarded.

• Bark texture:Tree bark has a particular random texture to it which is fairly consistent
along the trunk center, yet is fundamentally different from the background and other
trees of the same type further away.

• Non-planar shape:Since a tree is not a planar surface but rather an approximate cylin-
der, the bark texture changes slightly from perspective shift approaching the edge as it
curves around the trunk.

• System orientation: The user is responsible for picking the target tree, setting up the unit
a reasonable distance away, and orienting the system so that the target is approximately
in the center of the image. Therefore, it is known that the center of the image corre-
sponds to the approximate center of the target. This gives the algorithm a training set to
learn what the target looks like.

• Background - occlusions of other trees: If the background behind the target was always
sky or grass, then this would be a trivial problem. However, it is likely that this edge will
be obscured by another tree further away, yet right behind the target tree. The algorithm
must correctly find the weak texture edge between the target and the occluded tree and
not the strong edge between the occluded tree and the background.

Using these observations, Figure 8 outlines in detail the algorithm used to segment an image into

target tree and background using texture information.

This example, albeit trivial since the background is strikingly different from the target, is useful to

describe the algorithm. More difficult cases are considered later. Each step shown in Figure 8

Figure 6: Mahalanobis Metric Equation

r x m–()′ C 1–() x m–()=

11

will now be described in detail.

2.2.1. Preprocessing - Gray level reduction

Once the image is captured, the image is preprocessed to reduce the number of gray levels from

256 to 24. Since the co-occurrence matrix is a square matrix the same size as the number of gray

levels in the image, reducing the number of gray levels both speeds up image processing and helps

with edge localization. Visually, this image looks the same as the captured image, but the infor-

mation content is different. The reason for this step will be described in more detail in section

2.2.5.

2.2.2. Training - Compute statistics from a known tree set

As described previously, before the image is captured, the user orients the unit so that the target

tree is in the center of the image. There are two reasons for this. First, angular size computation

becomes less accurate due to lense distortion when the tree is not in the image center. Second,

using the range to the tree along with a rough idea of the different diameters to be surveyed, a nar-

row vertical slice can be taken out of the center of the image and confidently be labeled “tree”.

This vertical slice can be used as a tree texture training set.

Next, for each 32x32 region in this narrow vertical strip, the P901 and P01 co-occurrence matrices

are computed, and for each, the following statistics are found: energy, correlation, entropy, homo-

geneity, and contrast. Also, the mean intensity and range (difference between the maximum and

minimum intensity) of the region are computed, creating a set of length 14 feature vectors. As a

Figure 7: Typical Survey Tree showing target tree properties

Distinctive

Abrupt, vertical edges

Texture differences

Image center = Tree center

Slight texture change near edges

12

side note, all computations are done on 32x32 windows of the image, because through experimen-

tation, this was the smallest region to still retain essential tree textures. This set is then used to

compute the mean vector (m) and the feature co-variance matrix (C) used in later Mahalanobis

metric calculations.

2.2.3. Mahalanobis Difference Computation

Starting in the tree center, two side by side 32x32 windows are extracted from the region of inter-

est, and the same features extracted from the training set are computed for each. The Mahalano-

bis metric is used to compare the texture in each of these windows to the training set, and since

both windows are near the tree center and contain only tree texture, the Mahalanobis metric result

Figure 8: Edge Finding Algorithm

Preprocessing:
Gray level reduction

Training: Compute Statistics
from known tree set

Choose a Region of Interest
to process

Found window containing

Close-up of texture edge window

Centered Target Image

Repeat for left edge. Repeat for all non-overlapping

Mahalanobis Difference
Calculationtexture edge

Adaptive Mahalanobis Difference Threshold

regions
Segment region using the

co-occurrence matrix and find
best fit line

13

for each will be some small value, meaning the textures are similar. The difference between the

two, hereafter called theMahalanobis difference is recorded. Since the Mahalanobis metric

results for each window is a small value, the Mahalanobis difference is close to zero.

The Mahalanobis difference is used because, as observed, the tree is not a planar surface, rather,

the texture changes slightly near the edges. If the texture near the edge was to be directly com-

pared to the training set in the tree center, the Mahalanobis metric would call this difference sig-

nificant. To compensate for this, the Mahalanobis difference compares the texture of the

outermost window relative to the innermost window, thereby giving a localized texture measure-

ment. Since both windows are small, texture changes caused by perspective shift are compen-

sated for since the texture change is contained in both windows.

These side by side windows are shifted by one pixel away from the tree center and the Mahalano-

bis difference calculation is repeated and recorded. This continues until eventually, the outermost

window will contain background information as well as tree information as the window is shifted

off the tree, which will make the Mahalanobis difference become non zero. Once the Mahalano-

bis difference crosses an empirically defined absolute threshold, the outermost window cannot

possibly contain only tree information anymore, so the computation is stopped.

2.2.4. Adaptive Mahalanobis Difference Threshold

Since the Mahalanobis difference computation was stopped, it is known that at some point the

outermost window began containing non-tree texture information. The goal of the adaptive

threshold is to find the value of the Mahalanobis difference corresponding to the first significant

texture difference between the two windows.

The Mahalanobis difference histogram shows a cluster of small values and scattered larger values.

The small values correspond to places where both windows were still on the tree, and the differ-

ence in texture between the two was negligible, and the larger values correspond to the places

where the outermost window contains non-tree texture and is different than the innermost window

which contains only tree information. Through experimentation, it was discovered that using a

fixed bin size of 10, then looking for the first empty bin past the cluster near zero was a reliable

method of determining the threshold. The computed threshold is shown in the histogram in Fig-

ure 8 as a vertical dotted line.

This method works because of the use of the Mahalanobis difference and the observation that tar-

14

get to background texture changes are abrupt. Because the texture comparison is localized, the

difference values will all be close to zero until the first hint of background is found, then since the

texture change is abrupt, the difference will quickly and strongly shoot away from zero. This

makes a dramatic gap in the histogram between the small values and the large values so the first

empty bin is a good threshold to choose. Therefore, the first window pair with a mahalanobis dif-

ference greater than the computed adaptive threshold is the first with a significant texture differ-

ence.

2.2.5. Edge Localization

Figure 8 shows that once the adaptive Mahalanobis difference threshold has been crossed, a pair

of windows exist such that the innermost ortree window contains only tree texture, and the outer-

most oredge window contains both tree and significant background information. The tree/back-

ground boundary must be somewhere in the edge window, but the exact location is not known.

This location can be computed directly from the co-occurrence matrix by determining which pixel

pairs in the edge window are causing the texture difference.

Texture at the most basic level is simply a specific layout of pixel values, and one way to describe

this layout is by computing which gray levels occur next to each other and how often using the co-

occurrence matrix. The co-occurrence matrix can then be thought of as containing a set of pixel

pairs that describe that texture.

These sets can then be directly compared. Given two sets describing tree texture, typically these

sets will strongly overlap, since they contain many of the same elements. The opposite is true

given two sets describing different texture, such as tree and background. Similarly, given one set

describing tree texture and another made of a union of tree texture and background, the sets will

only partially overlap due to the one texture both have in common.

This idea leads towards a simple method of finding texture boundaries. The co-occurrence matrix

for the tree window is the set of pixel pairs describing tree texture. The co-occurrence matrix for

the edge window is the set of pixel pairs containing both tree pixel pairs and background, or is a

union of the tree set and the background set. The texture boundary is therefore the line in the edge

window best separating all the tree set elements from all the background elements.

An example of this method is shown in Figure 9. Here, the co-occurrence matrices for both the

tree and edge windows are shown in image form. The set of pixel pairs describing tree texture is

15

clustered in the center corresponding to slowly varying, moderately dark pixels. The set describ-

ing the edge window contains elements also clustered in the center caused by the tree texture, yet

with others spread towards the bottom right caused by the additional bright background

Next, subtract the two sets and keep only the positive results. Intuitively, removing all tree set ele-

ments from a union of background set and tree set must leave only background set. Here, the

edge window contains elements from the background set and the tree set, while the tree window

contains elements only from the tree set. Subtracting the two co-occurrence matrices, leaves the

positive difference result in Figure 9. As shown, the elements left are clustered mostly in the bot-

tom corner, which corresponds to background. The tree set has been successfully removed.

Each element left in the positive difference matrix corresponds to the number of times a specific

pixel pair contributes to background texture. For each of these pixel pairs, the edge window is

searched starting on the outermost side where the background should be, and when this pixel pair

is found, it is labeled background. Once the correct number of this pair has been found in the

edge window, the search is repeated for the next pair in the positive difference matrix, and so on.

To increase the accuracy of the segmentation, this process is repeated for an orthogonal co-occur-

rence matrix (P01 -> P901), and the two results are compared. Places where both results agree on

background location are entered into a final result as white, and places where the two results dis-

agree are entered randomly as black or white. This final result is then 3x3 median filtered to

remove noise, creating the segmented binary region shown. The best fit line between labeled

Figure 9: Edge Localization

Co-occurrence Matrix for

Positive Difference Matrix

Co-occurrence Matrix for

Σ

tree window

edge window

+

-

Find all these pixel pairs
in edge window, working inwards

Binarized region after
median filter

16

white and unlabeled black pixel pairs is the texture boundary.

This method works because of gray level reduction. If all 256 gray values are used, two samples

from the same texture may not have many exactly overlapping elements due to the thousands of

possible gray level combinations. Reducing the number of gray levels does not significantly

reduce the information present in the image, yet increases the overlap of elements of the same set,

allowing the set subtraction to work.

The case above shows this method works with an obvious background of grass and sky, where the

intensity difference between foreground and background is dramatic. However, this method will

also work if the background is not at a radically different intensity, as is the case with an occluded

tree. The co-occurrence matrix for the edge window, which contains tree and occluded tree infor-

mation, will have entries clustered in the center, butin different amounts than that of the tree win-

dow co-occurrence matrix due to the different texture added by the occlusion. The positive

difference then corresponds to those pixels pairs contributed only by the occluded tree texture,

allowing the algorithm to segment as previously described.

2.2.6. Edge Finding by Linear Regression

Once the edge window has been segmented and the corresponding binary window created, the

final step in the edge localization is for a best fit line for the texture boundary to be computed

using linear regression. In order to make sure the results are repeatable, the edge localization pro-

cedure is repeated three times, where each time the window pair is shifted by one pixel away from

the tree center. If the texture boundary line passes through the window midline at a point within

+/- 1 pixel for all three, the boundary is said to be found.

2.2.7. Complete Segmentation

This method is repeated for the left edge of the current region of interest, then for each remaining

non-overlapping region, giving a complete tree segmentation. Once the edges have been com-

puted, the final step is the global removal of outliers. To compensate for the chance that a single

region contains a gross edge finding mistake, the entire tree is segmented, and the resulting tree

edge is checked for continuity. If any edge location, when connected to either neighbor, creates a

line with a slope greater than +/- 1, this edge location is removed. A slope of +/-1 corresponds to a

tree that is leaning greater than 45 degrees from vertical, which in timber applications is rare.

This chapter describes a straightforward method of finding tree edges from a camera image. The

17

next chapter will describe the system design necessary to create a fully functional system.

18

3. System Design

In this chapter we present the criteria used to evaluate alternate designs for a system that will mea-

sure tree diameters. We discuss candidate configurations and sensing modalities and end with a

design of a system that was used in our experiments.

3.1. Design Criteria

This system will mainly be used as a survey tool for forestry workers in the field, so the most

important design goals are portability, ruggedness, ease of use and accuracy. The surveyor should

be able to carry the system out to the forest, point it at a tree, and simply click a button to return a

diameter estimate. Specifically, the following design goals have been outlined:

• Semi-Autonomy: The user carries the system to the forest and orients it properly towards
the target, but the diameter estimation requires no human intervention. The system
should have a "point and click" feel.

• Portability and Ruggedness: The system must be light and compact enough to carry for
miles through dense forest, and must be able to withstand standard tool treatment.

• Price: The design should maximize performance vs. cost.

• Ease of Use: The system should not require any complex setup, allowing the user to
quickly move from tree to tree.

• Accuracy: Diameter estimates must be accurate to within +/- 1 inch, a typical survey
goal.

3.2. Related Work

No researchers have attempted pre-harvest diameter estimation, but there has been work done on

trees after harvest. Brodie, Reid and Hanson created a computer vision system that could be set

up at a highway weigh station to measure the cross sectional area of logs stacked on a flatbed

truck. This was done by setting a camera a known distance from the truck, then fitting circles to a

picture of the cut log ends using the Hough Transform [1]. The segmentation of logs on a truck is

not as difficult as the segmentation of trees in a forest since the forest adds a confusing back-

ground, making isolating the target difficult. However, one interesting result obtained was that the

diameter estimation error under a circular cross sectional model was less than 5%. This shows

that the cylindrical model assumption posed in Figure 1 is reasonable.

19

3.3. Candidate Solutions

As shown in Figure 1, diameter can be estimated from the distance to the target (D) and the angu-

lar size of the target (α). There are many different methods of measuring these two quantities

including active ranging using scanning or spot lasers, cameras and hybrids of the two. These

methods will be explored to find the best feature combination.

3.3.1. Scanning Laser Rangefinder

A scanning laser rangefinder uses a constantly moving mirror to scan a laser beam across a scene,

recording the range to each point. This range map can then be used for scene segmentation by

grouping regions of similar range, and splitting regions at abrupt range boundaries. This method

has been widely used for accurate 3D measurement, object recognition and localization, however,

due to the complexity of the mirror actuation, these lasers are expensive and very delicate.

3.3.2. Spot Laser Rangefinder

Unlike the scanning laser, a spot laser rangefinder returns the range to a single point, and does not

have any moving parts. Scene segmentation using this method can be done by mounting the laser

on a tripod with a yaw rotational encoder, where the user would be required to sweep the laser

across the scene, giving a slice of range data similar to that returned by the scanning laser. This

method is promising in its simplicity, however, one design criteria is a "point and click" interface,

which this method violates. Even if a motor was added to do the sweeping, the system would still

violate the design criteria since a unit with moving parts would not be as robust as without.

3.3.3. Full-Frame Stereo

Full frame stereo vision can segment a scene by using a technique similar to human eyesight,

where range to a target is computed using images from two cameras a fixed distance and orienta-

tion from each other. Once the range to each point is known, like the scanning laser, large jumps

in range plus additional image clues can be used to segment the scene. The benefits of stereo are

that the cameras used are inexpensive and robust, however, the cameras must be a fixed, calibrated

distance away from each other at all times, making a bulky system. Also, the range measurement

is not as accurate as that of a laser due to possible parallax errors.

3.3.4. Line Scan Stereo

Line-scan stereo is similar to full frame stereo only the cameras capture a single, high resolution

20

scan line of the scene. Since the edges of the tree are perpendicular to the scan line, this method

seems to be promising since line scan cameras are much cheaper than high resolution full frame

cameras. However, calibration of the unit is more demanding than for full frame, and the other

drawbacks of stereo still remain.

3.3.5. Laser/Camera Hybrid

Finally, hybrids use various combinations of lasers and imaging. One method employs a spot

laser, which returns the range to one specific point, boresighted with a camera to take an image of

the scene. This method is similar to commercial products that exist to aid in surveying [2]. These

products combine a rifle scope with a spot laser where diameter estimation is done by measuring

range to the target with the spot laser then requiring the user to measure angular size by looking

through the scope and finding the tree. In contrast, a laser/camera hybrid automates the angular

size measurement by segmenting a captured image into similar looking regions. This method

combines the low cost and physical robustness of computer vision with the accuracy of laser rang-

ing all in a tight portable package.

3.4. Comparison of Candidate Designs

3.5. Proposed Solution

Table 1 shows that the most promising solution is a laser/camera hybrid. Figure 10 shows a block

diagram of the proposed system. Here, a spot laser rangefinder is boresighted with a high resolu-

tion, monochrome camera. The user is responsible for carrying the unit out to the survey area and

facing it towards the target tree. The spot laser then returns the range to the target (R), while the

camera captures a current image. The algorithm described in chapter two can be used to find the

Design
Portability/
Robustness

Performance
vs. Price

Ease of Use Accuracy Conclusion

Scanning Laser Low Low High High X

Spot Laser Medium High Low High X

Full-Frame Stereo Low Medium Medium Medium X

Line-Scan Stereo Low Medium Medium Medium X

Hybrid High Medium High High Best Choice

Table 1: Comparison between sensing modalities

21

edges of the target tree in the image, then this measurement can be combined with physical cam-

era constants as shown in Figure 11 to compute angular size. Equation 1 can then be used to esti-

mate diameter.

Now that a system design has been described, this system can be applied to both simulated and

real situations to verify actual performance.

Figure 10: Prototype System

Figure 11: Angular size equation for reflectance images

CCD

Laser
Rangefinder

Camera

Target Tree

Range (R)

Tripod

Spot

Angular Size (α)

α β w()
W

-----------= = Horizontal Angular Field of View of the CCD Camera (constant)
α = Angular size of the target tree
β
W = Horizontal Resolution of the CCD camera in pixels (constant)
w = Computed Width of the tree in pixelsEquation 2

22

4. Results

Since the accuracy of this system is dependent on the edge finding capability of the algorithm,

testing must be done to determine how well the algorithm works. First, the algorithm was tested

using simulated images. Instead of finding every different type of edge in the field, a set of simu-

lated edges was created by replacing the background in a sample target image with the back-

ground to be tested. Next, the entire system was tested in a field trial. The results of each will be

presented and described.

4.1. Simulated Environments

In creating these simulated edges, two notes must first be addressed. First, only completely verti-

cal edges have been simulated. So, even though the algorithm can find non-vertical edges, since

one step in the algorithm is finding the best fit line to the segmentation result, these edges were

left out for clarity of the display results.

Second, the system goals require the diameter estimation accuracy to be within 1 inch. Since

these simulation images do not have an associated measured range, there must be a conversion

between diameter estimation accuracy in inches and segmentation accuracy in pixels. Using an

average range measurement of 3 meters, and the hardware parameters described in previous sec-

tions, equations 1 and 2 convert an error of +/- 1 inch diameter estimation error into +/- 10 pixels

of segmentation error. So, on average, the algorithm must be able to find the tree edges within

+/- 5 pixels on each side.

The types of edges found in a real setting can be split into three groups: radically different back-

grounds, occlusions and shadows. Each of these groups will be described in detail, and the results

of the algorithm on simulated examples of the edge type will be shown.

4.1.1. Radically different backgrounds

Radically different backgrounds cover all cases where the edge between the tree in the foreground

and the background has a large texture or intensity jump, making the texture edge location obvi-

ous. Figure 12 shows three examples of obvious backgrounds, including a completely white

background, a background with the same mean intensity as the target, and a background with the

same mean and standard deviation as the target. The results show that the segmentation is consis-

tently accurate to within +/- 1 pixel. In practice, this case is by far the most common type of edge

23

found, since the edge boundary in a forest is often between the target and the sky, leaves, or grass

in the background.

4.1.2. Occlusions

Occlusions cover all cases where another tree is in the background, and the texture edge is not

immediately obvious. Figure 13 shows five simulated occlusions, where the target tree on the left

side of each image is a fixed distanceR from the camera, and the occluded tree is a relative dis-

tancek*R from the camera (wherek is a real number greater than 1). The simulated occlusions

were created by taking a window of tree data, then reducing this window size by first convolving

the window with an appropriate low pass filter to remove possible aliasing effects, then sampling

the window both vertically and horizontally.

Figure 13 shows that the correct edge can be found up until the occluded tree is a distance of

1.4*R from the camera. At this point, even humans have some trouble finding the texture edge

because the occluded tree simply looks too much like the target for good segmentation. So, the

algorithm incorrectly finds the outside edge in this case. However, it must be noted that this sim-

ulation was made as difficult as possible by making the mean intensity of the occlusion the same

as the target, which in a real setting, will not typically happen. Also, in practice, due to limited

depth of field of the camera, the occluded tree will be blurred, making the segmentation easier.

A second, more difficult scenario occurs when the target almost fully occludes the background

tree, and there is only a small amount of occlusion information present. If in a typical image, the

target takes up approximately 30% of the horizontal resolution, and a typical occlusion like those

in Figure 13 take up 6-8%, an occlusion with limited information takes up only 2% or less of the

horizontal resolution. Figure 14 shows examples of this case. The first image shows the correct

segmentation of an occluded region containing the same mean and standard deviation as the target

taking up only 0.8% of the total horizontal resolution. The second and third images show correct

Figure 12: Radically Different Backgrounds

Original Image BG : White BG: Same mean as the tree

Segmentation Region

Gray = Segmentation Result Error :0 Pixels Error: +1 Pixel
Error: 0 Pixels

BG: Same mean and standard
deviation as the tree

24

segmentation for tree occlusions at different distances. However, the last image shows that when

the occlusion is closer than2*R, and there is less than 1.5% of the occlusion information present,

there is simply not enough information for correct segmentation, and the white background is

chosen.

The reason for this is that as an occlusion gets closer to the target, texture elements in the image

get bigger due to the occlusion being closer to the camera. If the region containing the occlusion

information is not big enough to capture these texture elements, then there is simply not enough

information for correct segmentation. Therefore, the closer an occlusion is the more information

is needed.

4.1.3. Shadows

The final class of texture edges is due to shadows. Forest scenes will always have shadows

Figure 13: Occlusions

Figure 14: Occlusions with limited texture information

Distance to occlusion: 2*R
Error: +3 Pixels

Distance to occlusion: 1.7*R
Error: -1 Pixel

Distance to occlusion:1.4*R
Error: >5 Pixels

Distance to occlusion:3.3*R
Error:-1 Pixel

Distance to occlusion:2.5*R
Error: -3 Pixels

Region with same mean and
standard deviation as target

Error: 0 Pixels

Coverage: 0.8%
Distance to Occlusion:3.3*R

Error: +1 Pixel

Coverage: 1.6%
Distance to Occlusion:2*R

Error: +2 Pixels
Coverage: 0.8%

Distance to Occlusion:2*R

Error: > 5 PixelsCoverage: 0.8%

25

because of leaves and branches in the canopy blocking the ambient light. If the shadows are ran-

dom yet fairly uniform along the trunk, like those caused by leaves, the shadows simply look like

another type of texture. Problems arise when shadows are structured and mimic a vertical edge,

like those cast by thick branches. Figure 15 shows three possible shadow situations.

The first image in Figure 15 shows a shadow being cast near the center. Since the shadow occurs

within the training set, the algorithm can correctly compensate for it. But, if the shadow is right

near the edge, as in the second image, this intensity shift will fool the algorithm into seeing this as

a close occlusion situation. Finally, the third case shows a situation where a shadow is causing an

intensity gradient near the edge. The algorithm is optimized to look for abrupt, vertical edges, so

a gradient fools it into latching onto the first strong edge it can find which is a branch in the back-

ground.

Using abrupt changes in intensity to signal texture boundaries is both a strength and a drawback

of this algorithm. Since some of the statistics used in measuring texture are not invariant to linear

gray level transformations (i.e. energy, mean), the algorithm can trigger on abrupt intensity

changes, which in many cases can aid in segmentation. However, the cases in Figure 15 show

that shadows on the trunk can be harmful as well, since intensity changes do not always mean tex-

ture changes.

4.2. Field Results

Next, the system was taken out into a forest to collect actual data. The following are the results of

a survey run consisting of 10 trees taken in a single afternoon. Care was taken to not help out the

algorithm by placing the camera so that there were no occlusions. Instead, the camera was placed

randomly, mimicking the images that would be taken by a surveyor.

In order to give a ground truth to the results of the system, an accuracy verification step, shown in

Figure 15: Shadows

Shadow: Within training set
Error: 0 Pixels

Shadow: Only at tree edge
Error: > 5 Pixels

Shadow: Gradient at tree edge
Error: > 5 Pixels

26

Figure 16 with dotted lines, was added. Here, a tape measure was used to measure the circumfer-

ence of the trunk at breast height, which was then converted to a diameter by assuming a circular

cross section.

As is shown in Table 2, the diameter estimation error is within the required specification of one

inch for all trials. One caveat to these results is that the afternoon this system was test run hap-

pened to be overcast, which did not produce shadows like those in section 4.1.3. Therefore,

Figure 16: Field Test - Estimation Accuracy Verification

Image Number Range Width in Pixels True Diameter Est. Diameter Estimation Error

1 3.05m 190 0.62m 0.6297m +0.97cm

2 3.10m 151 0.48m 0.4975m +1.75cm

3 3.4m 101 0.35m 0.3552m +0.52cm

4 5.25m 125 0.68m 0.6876m +0.76cm

5 6.30m 100 0.66m 0.6513m -0.87cm

6 3.00m 119 0.37m 0.3728m +0.28cm

7 4.25m 111 0.50m 0.4906m -0.94cm

8 3.65m 140 0.54m 0.5398m -0.02cm

9 4.95m 139 0.71m 0.7265m +1.65cm

10 4.70m 108 0.55m 0.5270m -2.30cm

Table 2: Field Test Results

Images 1-10

Range Measurements

True Circumference
Measurements

Segmentation Results

Diameter Estimation Error Diameter
Estimate

27

while not a rigorous test, the field results show that this system is accurate under randomly occur-

ring natural conditions.

28

5. Conclusions

A system has been designed that can reliably estimate the diameter of a target tree simply by car-

rying the unit into the forest and orienting it properly in front of the trunk. This solution combines

a spot laser rangefinder to measure range with a monochrome camera which can measure angular

size if a captured image can be segmented into target tree and background.

A new segmentation algorithm was presented that can both compensate for a non-planar target

tree and can successfully segment when presented with occlusions of similar looking trees in the

background. This algorithm uses the concept of the Mahalanobis difference to compensate for the

non-planar surface of the tree and correctly find a small window that must contain the tree edge.

Then, the exact edge location in this small window is found by using information already in the

co-occurrence matrix for this window.

The system has been shown to work reliably in the field and with many different simulated back-

grounds. But, as described, this system has trouble in three cases. First, and least problematic,

section 4.1.2. shows that the algorithm has trouble finding a texture edge when presented with a

very close occlusion. At this point, even humans have some trouble finding this edge, so it is not

surprising that the edge finding algorithm does too. However, trees on a plantation are regularly

spaced and naturally occurring trees have a rough inter-tree spacing due to competition for sun-

light. So, to ensure correct segmentation, the user can be constrained to keep the system roughly

within this inter-tree distance. This will cause the occluded tree to be at least as far from the target

as the target is from the camera (i.e.2*R), which according to the simulated results, is distinguish-

able. So, even though the algorithm fails on cases closer than2*R, it does not have to happen in

practice.

Second, section 4.1.2. also shows the failure to find texture edges given a lack of sufficient occlu-

sion information. In the case where a background tree is almost fully occluded, and only a narrow

region of occlusion information is present, there is often not enough texture information for reli-

able segmentation. If an occlusion is at a distance2*R, at least 1.6% horizontal resolution cover-

age is necessary for accurate segmentation. Therefore, it is reasonable to require the user to set up

the unit even closer to the target than required for close occlusions. This means that less occlu-

sion information is needed for correct segmentation, and if a mistake is made, the difference

between the target edge and the occlusion edge is so small to be within the 1 inch error criteria.

Also, these tests were done without taking limited depth of field of the camera into account. In

29

practice, the occluded trees will be blurred making the segmentation easier, and requiring less

occlusion information than shown in the worst case simulation.

Finally, section 4.1.3. describes the effects of certain shadows on system performance. Natural

scenes do not have reliable lighting, so for true robustness, the system should be able to work in

any lighting conditions. But, as shown, if there are shadows cast near the edge of the tree, the tex-

ture edge caused by the shadow will typically be chosen over the true tree edge. One possible

solution is to use a strobe flash when taking the scene image, which will remove all shadowing

effects as well as help illuminate the target. Another solution, presented by Ollis and Stentz, is a

method of shadow removal by using information from a color camera to compensate for the dif-

ference in spectral power distribution between light illuminating the shadowed and unshadowed

regions [11]. It is possible that this method could be applied here.

To summarize, this system has shown to be accurate and reliable if the system is set up so that

occlusions are at a distance of2*R or greater from the target and there are no structured shadows

outside the training set. The first requirement is quite acceptable since typical forests have an

average inter-tree distance set by nature. If the unit is set anywhere within this inter-tree distance,

then the2*R requirement is easily met. However, this system, like other outdoor vision systems,

is hampered by poor lighting. One way to deal with shadows is to use a strobe flash, or to use a

color camera and implement the Ollis-Stentz shadow compensation.

30

6. References

[1] J. Brodie, C. Hansen, and J. Reid, "Size Assesment of Stacked Logs via the Hough Trans-
form", Transactions of the ASAE. Vol. 37(1):303-310

[2] Criterion and Impulse Survey Lasers, Laser Technology Inc., 7070 South Tucson Way,
Englewood, CO 80112

[3] R. Duda and P. Hart,Pattern Classification and Scene Analysis, Stanford Research Insti-
tute, Menlo Park, CA, Jon Wiley and Sons, New York, 1973, pp 27-30

[4] R.M. Haralick, K. Shanmugam, and I. Dinstein, "Texture Features for Image Classifica-
tion". IEEE Transactions on Systems, Man, and Cybernetics, Vol. SMC-3, No. 6, 1973, pp.
610-621

[5] B.K.P. Horn,Robot Vision, Cambridge MA, MIT Press, New York, McGraw Hill 1986, pg
140.

[6] M. Kass, A. Witkin, D. Terzopoulos, "Snakes: Active Contour Models",International Jour-
nal of Computer Vision, 1988, pp 321-331

[7] C. Kervrann and F. Heitz, "A Markov random field model based approach to unsupervised
texture segmentation using local and global spatial statistics", Technical Report 752,
IRISA, Campus Universitaire de Beaulieu, August 1993

[8] H. Kreyszig, "Descriptors for Textures", Technical Report, University of Toronto, Depart-
ment of Computer Science, RBCV-TR-90-33, July 1990

[9] J. Krumm and S. Shafer, "Segmenting textured 3D surfaces using the space/frequency rep-
resentation",Spatial Vision, Vol. 8, No. 2 pp. 281-308 (1994)

[10] S. Livens, P. Scheunders, G. Van de Wouwer and D. Van Dyck, "Wavelets for Texture Anal-
ysis: An Overview", Technical Report, VisieLab, Department of Physics, RUCA University
of Antwerp, April 1997

[11] M. Ollis, A. Stentz, "Vision-Based Perception for an Automated Harvester",Proceedings
of IEEE/RSJ International Conference on Intelligent Robotic Systems (IROS ’97)

[12] Y. Rubner, C. Tomasi, "Coalescing Texture Descriptors",Proceedings of ARPA Image
Understanding Workshop, February 1996

[13] H. Voorhees and T. Poggio, "Computing texture boundaries from images",Nature 333,
364-367

[14] S.C Zhu, T.S. Lee, A.L. Yuille, "Region Competition: Unifying Snakes, Region Growing,
Energy/Bayes/MDL for Multi-band Image Segmentation",Proceedings of the Fifth Inter-
national Conference in Computer Vision (ICCV ’95), pp 416-425

