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Abstract— A mobile robot we have developed is equipped with
sensors to measure range to landmarks and can simultaneously
localize itself as well as locate the landmarks. This modality is
useful in those cases where environmental conditions preclude
measurement of bearing (typically done optically) to landmarks.
Here we extend the paradigm to consider the case where the
landmarks (nodes of a sensor network) are able to measure
range to each other. We show how the two capabilities are
complimentary in being able to achieve a map of the landmarks
and to provide localization for the moving robot. We present
recent results with experiments on a robot operating in a
randomly arranged network of nodes that can communicate
via radio and range to each other using sonar. We find that
incorporation of inter-node measurements helps reduce drift in
positioning as well as leads to faster convergence of the map of
the nodes. We find that addition of a mobile node makes the
SLAM feasible in a sparsely connected network of nodes.

I. INTRODUCTION

A moving robot can be localized given a map of landmarks

and an onboard sensor to sense the landmarks. Conversely,

given accurate localization of the sensor, it is possible to

build a map of the landmarks. A question that has recently

intrigued our community is how well it is possible to do

both (localize and map) if neither exist a priori. Research in

Simultaneous Localization and Mapping (SLAM) makes one

of two assumptions. First, and commonly, that the moving

sensor can measure both range and bearing to landmarks in

its vicinity [1] or, that the moving sensor can detect only

bearing to the landmarks [2]. Recently, there has been some

attention to the complementary case, in which the moving

sensor can only detect range to landmarks. In this case the

“map” is the simply the location of the landmarks. Here

we consider an extension of range-only SLAM to the case

where the landmarks themselves are able to measure range to

each other in the hope of improving both localization of the

moving robot as well as the map of the landmarks.

Such a sensing modality could be very useful in the those

cases in which the environment precludes measurement of

bearing to landmarks such as underwater or inside buildings

where line of sight does not go very far. This is especially

the case if range can be measured through walls and common

objects as is possible via range from timing radio signals.

Emergency response, as with rescue operations in a burning

building is a particularly compelling application. In this

case, it is very important to be able to track firefighters in a

potentially dark and smoky environment. We envision a future

scenario in which firefighters sporadically deploy small and

simple nodes as they move around. An ad hoc network formed

between the nodes that localize themselves and the moving

firefighter. This function could be augmented by introducing

robots that could intelligently position themselves to add links

for localization and communication. In our system the nodes

act as ranging beacons to provide beacon-to-beacon range

within the network and therefore, in the context of this paper

the terms beacon and node will be used interchangeably.

Here we present early results towards accomplishing

such a scenario. We have developed algorithms specifically

targeted towards the case where the network of landmarks

(starting in an unknown configuration) is not completely

connected. That is, each beacon can range only to a few

other beacons. This is important because if the network is

fully connected it is possible to use well known methods

such as Multi-dimensional Scaling (MDS) [3] to determine

network topology. For a less connected network but with

enough connections to provide “rigidity” to the network, it

is still possible to determine the map of the network [4].

However, in practice rigidity is not easy to achieve and

measurement of ranges in between beacons of the network is

not sufficient to localize beacons unless there is a high degree

of connectivity in between beacons. We propose to introduce

a moving beacon (carried by human or robot) that adds edges

into the network and helps make the problem of determining

network topology, better conditioned. No external positioning

for the moving beacon is assumed although if a robot is used,

it is possible to use onboard sensors to measure heading

and distance travelled. As a complement, the network of

landmarks can help localize the moving beacon without drift.

In this paper we discuss results with a robot operating

among beacons that communicate with each other using radio

and measure range to other beacons using sonar. While ranging

with radio remains the eventual goal, practical implementa-

tions are not available yet. In the meanwhile, we use range

from sonar instead of radio, the difference between the two be-

ing that radio penetrates walls while sonar does not. In this pa-

per we compare five algorithms for localization and mapping.

The first method extends the Kalman filter localization to esti-

mate the location of the beacons simultaneously, without any

prior knowledge of the beacon locations. In this case only the

measurements in between the moving beacons and the station-

ary beacons are used. The second method incorporates beacon-



to-beacon range measurements into the online Kalman filter

SLAM. The third method is an off-line batch method that takes

all the data from a run and produces the best estimate of the ro-

bot path as well as the beacons. The fourth method is an online

version that incrementally uses the robot as a virtual node to

create rigid submaps that can be solved with MDS and patched

together. We compare the five cases with data taken from a

roving robot operating in a partially cluttered environment.

II. RELATED WORK

Localization with landmarks known a priori has been well

known for centuries and has been used in robotics for a while

[5]. The extension to SLAM has been of much interest in

robotics because it offers the possibility of a robot operating

in an area that it has not encountered before. As mentioned

earlier, most work in SLAM assumes measurements that

provide both range and bearing to landmarks in the scene. The

advantage of such sensors is that single observations can be

considered as having a Gaussian distribution and can be readily

incorporated into a methods like Kalman filtering [1], [6].

An extension of these methods is use a particle filter to deal

with complexity and sensitivity to failure in data association

[7]. A different set of methods is used to deal with the case

where only bearings to landmarks are measured. This form of

SLAM, is often referred to as “Online Structure from Motion”

or “Visual Odometry”. Instead of a scanning laser range finder,

measurements are made using a moving camera where salient

features are tracked a cross an image sequence [8]. Principally,

the difference between the two forms is that the first deals

with distributions (of the sensor measurements and landmark

locations) in Euclidean space while Visual Odometry deals

with the projections of the landmarks on the image plane.

A. Range Only SLAM

Recent work has extended SLAM algorithms to deal with

the case that only range can be measured to landmarks. One

great advantage with using the sensors such as active radio or

sonar beacons is that the data-association problem that plagues

SLAM in general is solved trivially because measurements

are often tagged with the identity of the source of the signal.

Several research efforts have shown how radio beacons [9] and

sonar beacons [10] can be used to perform SLAM in outdoor

environments. In these cases, the linearization of a single

measurement as a Gaussian distribution is difficult because on

its own, a noisy range measurement is best thought of an an-

nular distribution. These methods go through an initial step to

approximately locate the landmarks. The basic idea is to store

the robot locations and measured ranges the first few times

the landmark is encountered and then obtain an estimate of

landmark position by intersecting circles on the plane. Once an

estimate of a new landmark is produced, the landmark is added

to the Kalman filter where its estimate is then improved along

with the estimates of the other (previously seen) landmarks.

A recent effort has shown the use of low cost RFID sensors

that provides very approximate information. RFID “tags” are

located in the environment within a 90 degree cone [11].

Since the tags have limited range, each measurement only

provides an indication (with varying probability) of where

the tag might be in a large area. An evidence grid is used

to accumulate the likelihood of tags existing in discrete cells

and as well to locate the robot. Another effort has sought to

localize a robot from existing wireless networks using signal

strength as an indication of range [12].

B. Incorporation of node-to-node range measurements

A natural extension to range-only SLAM work consists

of using a collection of beacons that can measure distances

between one another in addition to measuring robot-to-beacon

distances. In the case where every beacon can measure the

range to every other beacon, classical multidimensional scaling

algorithm (MDS) can solve the problem by constructing a

matrix that contains the point-to-point distances between every

pair of nodes (Euclidean distance matrix, EDM) and then

finding the relative locations algebraically [3]. MDS provides

a list of beacon coordinates that is unique to within an affine

transformation and a reflection. In the case where some of the

beacon-to-beacon distance measurements are unknown, it is

still possible to find a unique solution provided that the graph

with beacons as nodes and distance measurements as edges is

rigid as described in [13]. In one approach, missing elements

of the EDM have been filled in using nonlinear optimization

[14]. Alternatively, it is sometimes possible to solve neighbor-

hoods that have a complete or nearly complete EDM and then

patch the neighborhoods together [15]. Robust quadrilaterals

proposed in [4] make particularly good neighborhoods

because they are robust to flip ambiguities that can be caused

by measurement noise. The neighborhood patching approach

has been combined with the use of GPS enabled anchor nodes

to limit the propagation of neighborhood-matching error [16].

More recently, approximating the distance between nodes

by the number of hops between them has been studied as a

means of eliminating the need for anchors [17].

One important distinction of our work is that we incorporate

moving beacons into the network localization formulation. By

including carefully chosen range and odometry measurements

from a beacon mounted on a mobile robot, we are able to

uniquely determine beacon locations in cases where the graph

composed of only fixed beacons is not rigid.

C. Hardware

Since hardware for ranging with radio through the walls

remains an elusive goal for which commercially available

equipment does not exist today, we have developed a sensor

network that uses radio to communicate data and ultrasonic

measurements to range in between beacons. These beacons

enable a low-cost means of omni-directional ranging, suitable

for localization in environments where GPS is not available.

Compared with similar ultrasonic based localization systems

such as the Cricket system [17] these beacons achieve a longer

ranging distance of up to 15 m with an accuracy of 2cm.

They are also more effective in detecting ultrasonic signals by

using four pairs of ultrasonic sensors, making it able to detect



ultrasonic signal from any direction and reducing the number

of beacons required by similar systems, which in turn leads

to an improved update rate of the distance measurements.

III. APPROACH

In this paper, we present a number of different range-only

SLAM methods that are intended to be used with an ad hoc

sensor network composed of a collection of range-finding

beacons. We consider two distinct cases. In the first, the robot

uses the network to measure the distances between itself and

the beacons that are in fixed but unknown locations. In the

second case, the robot also has access to beacon-to-beacon

distance measurements taken by the network. In both cases,

the objective is to maintain an estimate of robot position while

simultanesouly estimating the positions of all of the beacons.

A. Robot-to-Beacon Measurements

Here, we present the basic theory of Kalman filters as

applied to the problem of localization and SLAM for the case

where only robot to beacon measurements are available.

1) Localization: Let the robot state (position and

orientation) at time k be represented by the state vector

qk = [xk, yk, θk]T (see Fig. 1). The dynamics of the wheeled

robot used in the experiments are best described by the

following set of nonlinear equations:

qk+1 =




xk + △Dk cos(θk)
yk + △Dk sin(θk)

θk + △θk



 + νk = f(q̂k, uk) + νk, (1)

where νk is a noise vector, △Dk is the odometric distance

traveled, and △θk is the orientation change. For every new

control input vector, u(k) = [△Dk,△θk]T , that is received,

the estimates of robot state and error covariance are propagated

using the extended Kalman filter (EKF) prediction equations.

The range measurement received at time k is modeled by:

r̂k =
√

(xk − xb)2 + (yk − yb)2 + ηk (2)

where, r̂k is the estimate of the range from the beacon to the

current state, (xb, yb) is the location of the beacon from which

the measurement was received and ηk is zero mean Gaussian

noise. The measurement is linearized and incorporated into the

state and covariance estimates using the EKF update equations.

Fig. 1. Robot state and system setup.

2) SLAM: The Kalman filter localization formalism can

readily be extended to the problem of SLAM, provided that

initial estimates of the beacon locations are known. When no

prior knowledge exists, it is necessary to perform some type

of batch process to initialize beacon locations, which are then

refined within the filter.

To extend the formalism to perform SLAM, we need only

to include position estimates of each beacon in the state

vector. Thus we get,

qk =
[

xk, yk, θk, xb1, yb1, ... xbn, ybn

]T
(3)

where n is the number of initialized beacons at time k. The

motion model for the first three states is given by ( 1). The

beacons do not move, so the motion model for the remaining

states is trivial. The measurement model is the same as that

stated in ( 2) with xb and yb replaced by xbi and ybi when

the measurement is received from the ith beacon.

Beacon locations are initialized in an online method, such

that initially there are no known beacons. We employ an ap-

proach similar to [18] that utilizes a two-dimensional probabil-

ity grid to provide initial estimates of the beacon locations. The

probability grid for each beacon is created using a “voting”

scheme where pairs of prior range measurements from the

given beacon “vote” for solutions that fit the pair. After gen-

erating this probability grid, the cell with the greatest number

of votes contains (with high probability) the true beacon loca-

tion. Once a subset of beacons is initialized, robot odometry

measurements and range measurements from all initialized

beacons are used to maintain a full state estimate (both robot

and beacon locations) via EKF predition and update steps.

B. Adding Beacon-to-Beacon Measurements

We now turn to the case where beacon-to-beacon range

measurements are available in addition to the robot-to-beacon

measurements used in the previous section. If each beacon can

obtain measurements to enough of its neighbors, then it is the-

oretically possible to build a map using only beacon-to-beacon

measurements. This notion of a self localizing sensor network

is appealing and has received some attention in the recent

literature. However, we have discovered that practical consid-

erations such as limited maximum beacon range, obstacles that

block line-of-sight, and sensor blind spots make it extremely

difficult to achieve the level of interconnectivity necessary to

perform self localization. To see why, consider Fig. 2a, which

shows the range measurements available at the beginning of

an experiment in a seven-node sensor network in a moderately

cluttered environment. Note that nodes 24 and 29 can each get

range measurements to only one neighbor, so clearly the avail-

able data is not sufficient to uniquely determine the positions

of those nodes. In fact, most of the self-localization techniques

described in the literature require cliques (fully interconnected

subgraphs) of degree four or higher. As Fig. 2a shows, there is

not a single clique of degree four before the robots begins its

motion. For this reason, we have chosen to investigate means

to incorporate beacon-to-beacon measurements into the SLAM

problem rather than striving for self-localization. We present
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Fig. 2. This figure shows how adding virtual nodes can make the self-localization problem solvable. (a) depicts the graph at the beginning of the experiment.
No cliques exist at this point, so it is impossible to localize any of the beacons. (b) the first clique appears at the third robot corner. (c) at the fourth corner,
nine more cliques are created. (d) at the seventh corner, there is enough information in the graph to uniquely localize every beacon.

three methods: two that extend the Kalman-filter-based SLAM

algorithm presented in the previous section and one that uses

ideas from the area of self-localizing networks to incremen-

tally build a map by treating locations where the robot receives

robot-to-beacon measurements as a virtual beacon locations.

1) Extending SLAM: One approach to incorporating

beacon-to-beacon measurements into the localization and

mapping algorithm is to simply use those measurements to

update the states of the beacons that create the measurement.

This can be done with a simple extension to the EKF

SLAM method that uses the robot-to-beacon measurements

as discussed in the previous section. All that is required is a

modified measurement model that includes beacon-to-beacon

as well as robot-to-beacon measurements. The estimation

process then proceeds via a standard application of the EKF.

Additionally, beacon-to-beacon measurements can be incorpo-

rated into the initialization step in a straightforward manner.

2) Improving the SLAM Map: A second method of incor-

porating the beacon-to-beacon measurements into the SLAM

solution is to use post processing step to improve the map that

results from a SLAM run. This can be posed as an optimization

problem where the cost function is the Mahalanobis distance

from the SLAM map added to the sum of the squares of

beacon-to-beacon range measurement innovations. Let (q̂, P )
denote the Kalman filter SLAM estimate at the end of a run,

where P is the Kalman covariance matrix for the state q̂. Let

(q̂M , PM ) denote the portions of the q̂ and P that correspond

to the beacon locations, and let qM
i be the part of the state that

corresponds to the (x, y) location of the ith beacon. Define the

set of available beacon-to-beacon distance measurements to

be R where rij ∈ R denotes the range measurement between

beacons i and j. Finally, let σ2
b be the covariance of the error

in the range measurements. Then we can improve the SLAM

map by finding the qM that minimizes the cost function

J(qM ) = (qM − q̂M )T P−1

M (qM − q̂M )

+
∑

rij∈R

(rij − ‖qM
i − qM

j ‖)2

σ2
b

.

3) Self-Localization with Virtual Nodes: Consider a robot

moving through the environment that receives a measurement

at a particular location. We can imagine placing an immobile

virtual node at that location and including that virtual node

together with the corresponding measurement as part of the

beacon network. The distances between virtual nodes placed in

sequence can be estimated using robot odometry, and these dis-

tances can be included as edges in the network as well. Virtual

nodes placed at robot locations where two or more range mea-

surements are likely to “rigidify” the network by increasing the

likelihood of the existence of the fully-connected cliques that

are necessary for self-localization. Specifically, in our experi-

ments, the robot was able to receive multiple range measure-

ments at each corner due to the fact that it executed the corners

by turning in place. As a result, we propose a method of map-

ping the beacon network that adds the robot corners as virtual

nodes then uses self-localization techniques to solve the map.

For example, at the beginning of the experiment (Fig. 2a)

the graph that results from the available data has no cliques of

degree four or greater, making it impossible to uniquely deter-

mine the positions of any of the nodes. When the robot turns

the third corner, the first fully connected clique appears (Fig.

2b). Multidimensional scaling (MDS) is used to determine the

relative locations of the clique nodes. Note that this clique con-

tains three virtual nodes, including the robot starting location.

Two of the nodes together with robot odometry data are suffi-

cient to uniquely determine the global position and orientation

of the clique. Additionally, the three virtual nodes can be used

together to determine the correct handedness of the clique, al-

lowing us to resolve the flip ambiguity. As a result, the location

of beacon 31 is uniquely determined and added to the map.

As the robot proceeds through subsequent corners, new

virtual nodes and ranges are added to the graph. At each

corner, the graph is searched for new cliques. When it

is possible to resolve the ambiguities in orientation and

handedness, new cliques are patched into the existing map

by minimizing the sum-of-squares distances between shared

nodes. Fig. 2c shows that nine more cliques of degree four



are created and merged into the map at the fourth corner.

As the robot proceeds through the map, more and more

cliques are generated and patched in until eventually all of

the beacons are mapped. Fig. 2d shows the state of the graph

when the robot reaches the seventh corner in our example, at

which point enough cliques have been generated to provide

a unique solution for all of the beacon locations.

IV. EXPERIMENT

We have developed sensor network that uses radio to

communicate data and ultrasonic measurements to range in

between beacons. Each beacon consists of a microcontroller,

a radio transceiver and four pairs of ultrasonic sensors (See

Fig. 4) [19]. Using ultrasound pulses to measure the distances

between each other, each beacon in turn sends out a radio

signal followed by an ultrasonic pulse train. Other beacons

that receive both signals convert the time difference between

receiving the radio signal and the ultrasonic signal to a

distance measurement by multiplying with the speed of sound.

The beacons automatically formulate an ad hoc multi-hop

wireless network to share the range information. They employ

a distributed architecture in which every beacon will have all

the distance measurements for all the beacons in the network,

eliminating the requirement of a central node for the coordi-

nation. Every beacon can be both sender and receiver. The

beacons coordinate the pinging sequence such that ultrasonic

pulses from multiple beacons do not interfere with one another.

A. Noise Characteristics

In our ultrasonic-based ranging system, there are mainly

two kinds of noises that affect the performance of the range es-

timation. One is the multipath effects caused by the reflections

of the ultrasonic pulses, yielding false results when they are

captured by an ultrasonic transducer. To reduce the multipath

effects and also achieve 360 degree ranging capability, our

ranging sensor uses four pairs of ultrasonic transducers facing

four directions. The first ultrasonic transducer that captures

a valid ultrasonic signal will inform the sensor to ignore the

ultrasonic signals captured by any of the other three ultrasonic

transducers, which are probably caused by the multipath

effects. Another kind of noise comes from the beacon wrongly

correlating the RF data from one sender with the ultrasonic

pulses from other sources, ultrasonic pulses sent out by

another sensor, environmental noise, etc. In our approach, we

have implemented a sentry-based scheduling scheme such

that in every time slot, only one beacon in the system can

sends out ultrasonic pulses so that the ultrasonic pulses sent

out by the beacons will not interfere with each other.

Our experiments have shown that our beacons significantly

reduce these noises, and accurately and reliably estimate range

between each other. From the four experiments, we collected

20,014 inter-beacon range estimations by the beacons. Out of

these estimations, we observed only 6 error estimations.

To evaluate the precision of the system, we analyze the

ranging performance between two beacons, and compare

it with the range measurement using a tape measure. The

result is illustrated in Fig. 3. This shows that the sensors

accurately estimate the distance between the two beacons,

and the difference between the average range estimation and

the manually surveyed range measurement is 0.04 m (under

ideal circumstances, where there are no muti-path effects on

the sensors, the range error is approximately 0.02 m).
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Fig. 3. Histograms of a typical set of range measurements between two
sensor beacons. The surveyed range measurement between the two beacons,
measured using tape measure, is 6.65 m. The observed shift in the histogram
is due to multi-path within the environment and errors in manual surveying.
This level of accuracy is constant across ranges from 2 m to 15 m.

We then examine the performance of the range estimations

by the beacons as a function of displacement by comparing

the range estimations between pairs of beacons to their true

ranges. We see that most of the beacons can accurately and

reliably estimate ranges between each other with a standard

deviation of less than 0.04 m. Range measurements between

21 pairs of beacons, with measurements ranging from 2 m to

10 m, mostly had errors less than 0.05 m. In the case of one

of the beacon pairs we observed a standard deviation of 0.4

m. Closer experimentation shows that out of 341 range mea-

surements between these two beacons, 335 of them are close

to the true range of 7.75 m, and 6 of them are close to 5.15 m.

In our application, such gross errors can be easily filtered out.

B. Experiments Conducted

We carried out our experiments on a Pioneer 1 robot from

ActivMedia. It is equipped with a beacon placed on top of

the robot at about 1 ft above the floor (See Fig. 4). The robot

was controlled by an operator who drove the robot using a

wireless link. The robot was driven around within a large

indoor area with partial clutter. There was no ground truth

available for the exact path taken by the robot, however, the

robot’s intended path was surveyed. The true robot path differs

somewhat from the intended path, however, it is close enough

for the purposes of judging the validity of the localization and

SLAM algorithm. In addition to the beacon that was placed

on the robot, several other beacons were placed around the

environment on top of boxes, 1 ft above the floor. The locations

of these beacons were accurately surveyed to allow proper

evaluation of the accuracy of our SLAM mapping results.

V. RESULTS

For each of the five methods described above, the mean

absolute cross track error (XTE), standard deviation and

the RMS error in the resulting maps (beacon locations) are

presented in Table I.



Fig. 4. Robot used for our experiments shown along with a range sensing
beacon mounted on top. The robot has wheel encoders that measure distance
traveled and estimate heading. Neither estimate is good but the heading
estimate is particularly poor.
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A. Localization with Robot-to-Beacon Measurements

Here we present the results of performing localization on

a dataset acquired by driving a robot through a cluttered

environment (See Fig. 5). The numerical errors shown in

Table I (Column 1) represent the error of the estimated path

when compared with the “intended” travel path. This therefore

implies that the magnitude of the error terms represent only

an exaggerated approximation of the real errors. However,

even without an accurate ground truthing system to help

calculate the path errors, the localization results that we

present here can be used to judge the improvements and

accuracy of the SLAM results we will present next.

B. SLAM with Robot-to-Beacon Measurements

The results that were acquired from performing SLAM on

the dataset are presented in Fig. 6. A simple affine transform

(AT) is performed on the final beacon locations estimates in

order to re-align the locally accurate solution into a global

coordinate frame. From the SLAM output, we are able to

extract an estimate of the network topology. The map that

was acquired from SLAM can then be fed back into the

localization algorithm to generate numerical errors that could

reasonably be compared to the results from performing

localization on the “true”/surveyed beacon locations. As can

be observed from the numerical results, Table I (Column 2),

the SLAM algorithm provides an accurate network topology
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Fig. 6. Kalman filter SLAM results used to perform localization (on the
same dataset). The location of the beacons is completely unknown at the start
of SLAM. The path and beacon estimates shown include an affine transform
that re-aligned the local solution into a global coordinate frame.
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Fig. 7. Kalman filter SLAM (with inter-beacon measurements) results used
to perform localization (on the same dataset). The location of the beacons is
completely unknown at the start of SLAM. The path and beacon estimates
shown are after an affine transform that re-aligns the local solution into a
global coordinate frame.

that produce comparable results in localization.

C. SLAM with Beacon-to-Beacon Measurements

The results for the case where we modified the simpler

Kalman filter SLAM algorithm to incorporate the inter-beacon

measurements within its online estimation process is shown

in Fig. 7. The estimated path and beacon locations have been

affine transformed to align the locally accurate solution into a

global map for proper evaluation. Upon acquiring the beacon

locations from the SLAM algorithm, we then feed the resultant

map into the localization algorithm to acquire numerical

results that can be compared with the results from the other

methods presented in this paper (See Table I, Column 3).

D. Improving the Map from SLAM

We now turn to the results of performing an optimization on

the network map by the SLAM algorithm using only the robot

to beacon range measurements. By observing the result of this

approach, we can evaluate the benefits of post-processing the

data with performing an “online” estimation to incorporate

the inter-beacon measurements with data from real sensors.

After having performed the batch process on the map from

the Kalman filter SLAM algorithm, we then again fed the

resultant map into the localization algorithm to generate the

results presented in Fig. 8 and Table I (Column 4).
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Fig. 8. The results from performing localization on the map from Kalman
filter SLAM after the offline optimization step. The map from Kalman filter
SLAM is used as initial conditions for the optimization process.
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Fig. 9. Results from Kalman filter SLAM, with beacons initialized through
the self-localization method with virtual nodes. The path and beacon estimates
shown include an affine transform that re-aligns the local solution into a global
coordinate frame. The sudden jumps seen in the Kalman filter result is an
artifact that can be observed when the filter switches its behavior to not only
use to odometric information but also any range measurements it receives
from any initialized beacon.

E. SLAM using Self-Localization with Virtual Nodes (VIR. N.)

As partially completed maps are generated (using the

self-localization method with virtual nodes), the locations

of the beacons are initialized into the Kalman filter SLAM

algorithm, which then refines their estimates to produce a

final map of the network (See Fig. 9). This resultant map

is again fed into the localization algorithm to generate the

numerical errors, Table I (Column 5), that can be compared

with the results of the other approaches.

VI. SUMMARY

We have compared five methods on localization and

mapping using sensors that are able to measure range. We

show how the basic SLAM algorithm is able to locate the map

of the nodes to the point that localization from that point on

produces results that are on par with localization with exactly

surveyed nodes. Experimental results validate the hypothesis

TABLE I

THE MEAN ABS. (µ) CROSS TRACK ERROR (XTE), STANDARD DEVIATION

(σ) AND RMS ERROR OF VARIOUS METHODS (IN METERS).

LOC. SLAM1 SLAM2 IMP. MAP VIR. N.

XTE
µ

σ

0.143

0.110

0.189

0.160

0.184

0.148

0.160

0.139

0.189

0.161

RMS – 0.177 0.171 0.124 0.224

that incorporation of inter-node measurements helps reduce

drift as well as helps the map of the nodes converge faster

(Figure 6 and 7). We show that a batch method that incor-

porates all (robot-node and inter-node) range measurements

produces the best results in network localization as well as

robot localization. The final method demonstrates that mobile

beacons can make the network self-localization problem

tractable in situations where node-to-node connectivity is low.

This method is not as accurate as the others, but it is more

amenable to distributed implementation on the sensor network.
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