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1 Introduction

This paper provides an overview of recent progress in the automation related to earthmoving sys-
tems. While a previous survey [28] has comprehensively examined various aspects of earthmov-
ing automation, here we discuss recent representative ideas and systems.

The discussion is divided based on the cycle of operation for any autonomous machine: sensing,
planning, and execution. First, an automated machine must sense its own state and the world
around it. Next it must use this information along with a description of a goal to be achieved to
plan the next action to be taken. In some cases the mapping from sensing to action is direct, and,
can take the form of a pre-determined control law. In other cases, deliberation, or the use of mod-
els is necessary. Finally, the action must be executed via the mechanism.

This paper starts with a brief summary of sensing technologies as they pertain to earthmoving.
Next, it examines the various models used to determine control laws, or, as tools for deliberative
planners. Of specific interest are models of machines and their interaction with the earth, an area
that has seen some recent activity. Planning and discussed next and in conclusion a three recent
systems are discussed.

2 Sensing

Environmental sensing is how earthmoving machines are aware of the world around them. This is
particularly important in those cases where the machine must decide where to dig or to evaluate
how much material has been transferred. Such sensing is also important to ensure that an earth-
mover doesn't collide into objects in the environment. Most often environmental sensing seeks to
measure shape and this is done outdoors by the use of range imagery fronstereoofision

ladar or radar.

Stereo vision provides dense range imagery and can be inexpensive to implement. However, range
imagery requires good optical texture in images which generally means that even lighting is nec-
essary. Corke et al describe a stereo vision system that operates in underground mines to deter-
mine the shape of piles of ore (Figure 1) [6]. Radar is immune to a large range of environmental
conditions and works well for detecting large objects but its large beam size produces only coarse
localization for the targets that it does detect [16]. A practical scanning radar with a beamwidth
narrow enough to be used for imaging remains elusive.



Figure 1 Depth from stereo (top) left and right images from stereo cameras. (bottom) disparity image
computed. Range is computed by triangulation.

Ladar has the ability to detect small obstacles because of small beam divergence but generally
requires mechanical scanning. One solution is to use a 2-D scanning ladar that has a scanning pat-
tern similar to that of a television [12]. Such systems are not only very expensive but require accu-
rate measurement of vehicle motion during the scan to properly register range data. In addition,
the raster scan method requires high accelerations and decelerations of a mirror. Instead a popular
configuration that has emerged is one that has one continuous rotating axis like a light house. The
whole spinning mechanism is rotated around an orthogonal axis to provide a large view of the
environment. Figure 2 shows two commercial laser scanners that achieve cm level accuracy. In
some cases, a single axis scanner is mounted in such a way that the motion of the earthmover pro-
vides the second axis. This approach has been used successfully in [6] and in [30]. Figure 3 shows

Figure 2 Ranging laser scanners from Riegl Electrooptick. (left) single axis (right) two axis.

a false colored range image from the dual axis laser range scanner. For earthmoving such range
maps can be used to construct high fidelity representations of terrain such as shown in Figure 4.
These representations are precise enough to be able to determine volume of soil excavated by a
single bucket by differencing terrain maps as shown in the example in Figure 4 [4][8][31].

One reason that laser scanners have been slow to be accepted in earthmoving applications is
because most implementations do not address problems of dust penetration or a partially occluded
(i.e. dirty) exit window. Recently two different time-of-flight scanning ladar systems have become



Figure 3 360 degree range panorama from two axis scanning laser range sensor.

Figure 4 Terrain map of loose soil created from multiple laser scans [31]. Such an elevation map is a two
dimensional grid with an elevation value at each cell. Subsequent scans are differenced to provide an estimate
of soil removed, in this case by a wheel loader bucket.

available that are impervious to ambient dust conditions [30]. The first uses a “last-pulse” tech-
nique that observes the waveform of the returned light and rejects early returns that can arise from
internal reflections off of a dirty exit window, or from a dust cloud obscuring the target.In general,
the next-to-last pulse returns are due to dust in the scene and are indicative of what a normal “first
pulse” rangefinder would see. For instance, in Figure 5 (left), a first pulse rangefinder would
detect the dirty exit window and would be unable to “see” the target.
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Figure 5 Last pulse (left) and trailing edge (trailing) detection of target when target is obscured in dust

cloud.



Even if the window were clean, the first pulse unit would still “see” the dust cloud instead of the
target. Since reflections off the exit window are rejected with the last pulse technique, the unit can
be environmentally sealed using an inexpensive transparent cover that does not have to be opti-
cally perfect or clean. Another advantage is that the laser system can also report when multiple
returns occur, giving a warning that dust is present. This is important because overall ranging reli-
ability and accuracy is decreased in dusty conditions, so an autonomous machine might need to
adopt a slower, more conservative motion strategy. There is, however, a limitation to last-pulse
rangefinding. When the target is within the dust cloud, the receiver electronics can have difficulty
separating the dust and target returns. A second type of dust penetrating scanner system identifies
targets by locating the “trailing edge” of the last return signal as is shown in Figure 5 (right). Like
the last pulse system, this device is also robust to occlusions on the exit window making it ideal
for construction and mining environments. Though the trailing edge detection technique forgoes
some range accuracy, it is a superior approach for environments where dust may frequently sur-
round the target. Note that the last pulse device is unable to separate the dust cloud from the truck
and reports the front of the cloud. The trailing edge device correctly reports range to the truck
regardless of the presence of dust.

Two dual-axis laser scanners were used on the autonomous backhoe developed at Carnegie Mel-
lon for automated truck loading. Mounted on either side of the boom (Figure 6), they are used to
sense the dig face, truck, and obstacles the workspace [30]. Two scanners are needed for full cov-
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Figure 6 (left) Two single-axis laser scanners are mounted on either side of the boom on an automated
backhoe. The motion of the backhoe as it swings between the digface and the truck allows the backhoe to build
a terrain map of the bench (top right) as well as a model of the truck that is being loaded.

erage of the workspace and to enable concurrent sensing operations. Each sensor has a sample
rate of 12 kHz, and a motorized mirror sweeps the beam circularly in a vertical plane. Addition-
ally, each scanner can pan at a rate of up to 120 degrees per second, enabling this circle to be
rotated about the azimuth. The scanner positioned over the operator’s cab is called the “left scan-



ner”, and it is responsible for sensing the workspace on the left side of the excavator. That is, this
scanner is used to detect obstacles and locate the truck. The “right scanner”, which is located a
symmetric position on the right side of the boom, is responsible for sensing the workspace on the
right side of the excavator which includes detecting obstacles and mapping the dig face.

3  Modeling

An important issue in the automation of earthmovers is the modeling of actuators and of the inter-
action between tools and the earth. Such modeling can be used to improve the design of tools and
also actively to control automated earthmoving. This section focuses on the latter case.

Canon and Singh have demonstrated a system on an automated backhoe that select digs based on
a method that scores digging actions by evaluating, the resultant trajectory for a given action or
the starting conditions of a dig [3]. This trajectory not only varies with the control parameters of
an action, but also with the shape of the terrain as well as soil properties. Terrain shape is mea-
sured directly, but soil properties must be estimated. They developed a feedforward model of the
excavation process as shown in Figure 7 A model of the machine’s actuators is used to predict the
motion of the bucket in response to the actuator commands and reaction forces. The resultant
motion is used by a soil-tool model to predict reaction forces on the bucket. Reaction forces and
actuator positions are used by a control law to dictate actuator commands. This cycle is started
with initial conditions (starting location and orientation of the bucket) and continued until the
bucket is out of the ground. Predicted trajectories are scored by the use of a utility function com-
posed of factors such as the time spent during digging, the energy expended, and the volume of
soil captured.
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Figure 7 A forward model of the digging process proposed by Canon and Singh [3]. Given models of the
actuators and the interaction between the earthmover and the terrain, the model predicts the trajectory of the
implements in the soil. The advantage of this model is that it runs much faster than real-time, allowing its use
in selecting between trajectories to execute.

3.1 Actuator Models

Dynamical models of hydraulic actuators specific to earthmovers are well studied (e.g. [1], [2],
[15]) but often cannot be processed with requisite speed when they must run much faster than
real-time. Several factors contribute to the difficulty of modeling this system. Typically, open-cen-
ter valves are used to control the hydraulic actuators. Use of these valves requires that some of the
flow is leaked back to a reservoir while the remainder is used to move the actuator. The leakage is
partly dependent on the load on the actuator. The implements are also coupled in motion because
a single hydraulic pump is used to power two joints and is limited in the amount of flow it can pro-



duce. There are also many transient effects, such as the time required for a pump to stroke up to
meet demand, and the compressibility of the hydraulic fluid. Finally, unlike many typical robot
systems, contact forces at the tool can be very high, and significantly contribute to system non-lin-
earity. For instance, when the pressure in an actuator exceeds a threshold, a pressure relief valve
opens stopping the actuator. Models of such complex mechanisms tend to be computationally
expensive.

Cannon and Singh developed a neural net to model actuator response as shown in Figure 8 [3].
Neural nets are particularly suited to this application because system performance does not
change significantly over time and a large set of training data (operation in various geometric con-
figurations as well as soil conditions) is available prior to prediction. The advantage of neural nets
is that they can capture the non-linearity not possible with globally linear methods and are much
faster than locally linear methods. The disadvantage is that good performance requires trial and
error experimentation with various configurations of neural nets.
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Figure 8 The actuator model for three links of a backhoe predicts velocities given commands and loads
(From [3]). Note the coupling between the bucket and boom due to the fact that both are powered by a single
source. Each actuator is modeled with a neural net.

Such a model was found to be effective in predicting velocities based on commands and loads as
shown in Figure 9 Accuracy is typically within a few percent and the actuator model can be exe-
cuted within a few milliseconds.

3.2 Soil-Tool Models

Another model is necessary to predict contact forces at the bucket due to resistance from the soil.
Canon and Luengo implemented two methods for estimating reaction forces on the bucket

[3][4][20]. The first method uses an analytical model based on the well known Fundamental

Earthmoving Equation (FEE) in soil mechanics [21]. The second method uses a lumped parame-
ter empirical model that uses terms from the FEE as a basis set. Reaction forces can vary dramati-
cally depending on terrain geometry, soil compaction, and even climate. For instance even at one
test site, soil varies from hard and frozen in the winter, wet and soupy in the rainy seasons, and dry
and powdery during the summers. Therefore it is necessary that the soil reaction force models
reflect the changing soil characteristics encountered. For each of the models a method for extract-
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Figure 9 Comparison of predicted versus measured actuator velocities on an automated backhoe
excavator for the stick (left) and the bucket (right) and stick over 10 digging cycles. Mean absolute velocity
errors for the boom, stick and bucket were 4.3 mm/s, 11.8mm/s and 18.6 mm/s respectively. Peak velocities for
these actuators were 87 mm/s, 243 mm/s and 250 mm/s. (From [3]).

ing soil properties based on the forces encountered during digging was implemented. Reaction
forces are estimated based on the measurement of pressure in the hydraulic actuators. These pres-
sures can be transformed into joint torques, which can subsequently be used to estimate the reac-
tion forces. A comparison between the measured force and both the force predicted by the
analytical and empirical method is shown in Figure 10.

Figure 10  Cross-validation test for resistive force using the analytical and empirical models. The left plot
shows a comparison of the force magnitudes for two digs.The right plots show histograms of errors. Using the
analytical model, the mean absolute error in force magnitude is 13,980 N vs. 14,790 N when the empirical
model is used. Standard deviations are 10,970 N and 11,880 N respectively. Peak forces are approximately
142,000N.

Somewhat surprisingly, the difference in error between the two models is small. However, while
the time required to predict reaction forces using the empirical model is only slightly faster than
the analytical model (13 ms vs. 16 ms), extraction of the soil properties with the empirical model

is significantly faster (8 ms vs. 3400 H1s§5oi| properties estimated via the analytical model



appear to make physical sense, and are relatively consistent during an extended sequence of oper-
ations. The empirical model parameters however vary a great deal since they are not tied to any
physical relationship [4].

4  Planning

Automated earthmoving operations such as leveling a mound of soil are distinguished from typi-

cal planning problems in two important ways. First, soil is diffuse and therefore a unique descrip-

tion of the world requires a very large number of variables. Second, the interaction between the
robot and the world is very complex and only approximate models that are also computationally
tractable are available. The large state space and complex robot-world interaction imply that only
locally optimal planners (i.e. per dig) can be created. In order to deal with the practical issues of
excavating large volumes of earth in applications, a multi-resolution planning and execution

scheme is typically necessary. Below, the discussion is separated into planning for digging and for
dumping.

4.1  Dig Planning

At the highest level of the system developed by Canon and Singh is a coarse planning scheme that
uses the geometry of the site and the goal configuration of the terrain to plan a sequence of “dig
regions” [29]. In turn, each dig region is searched for the “best” dig that can be executed in that
region. Finally, the selected dig is executed by a force-based closed loop control scheme. Treat-
ment of the problem at three levels meets different objectives. The coarse planner ensures even
performance over a large number of digs. The refined planner chooses digs that meet geometric
constraints (reachability and collisions) and which locally optimize a cost function (e.g. volume,
energy, time). At the lowest level is a control scheme that is robust to errors in sensing the geome-
try of the terrain. Fig. 10 shows the process of coarse to fine planning for the excavator.

Terrain Map
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Planner Dig Region Planner Dig Goal Planner

Figure 11  Coarse to fine planning strategy

The coarse planner takes as input processed sensor data which it places in a terrain map (a 2-D
grid of height values). The output is a sequence of dig regions, each of which is in turn sent to a
refined planner. Fig. 12 shows a strategy for removing material that was recommended by an
expert excavator operator. Each box indicates a region, and the number within the box indicates
the order in which the region is provided to the refined planner. In this strategy, material is
removed from left to right, and from the top of the face to the bottom. There are several reasons
for choosing this strategy. In most cases, the truck is parked on the operator’s left hand side so that

1. Tests were conducted with an SGI R10000 processor



the operator has an unobstructed view of it. By digging from left to right, the implements do not
need to be raised as high to clear material when swinging to the truck. In digging from top to bot-
tom, less force is required from the implements because it is not necessary to work against the
weight of the material up above. In addition, clearing material away from the top minimizes the
range shadows cast on the face of the terrain given a scanning range sensor that is mounted on the
cab. The refined planner operates on an abstract representation of an atomic action (i.e. a single
dig). Rather than searching for a bucket trajectory, the refined planner searches through compact
task parameters within the bounds specified by the coarse planner. In order to select the best dig-
ging action, the refined planner evaluates candidates through the use of a forward model that sim-
ulates the result of choosing an action. An evaluation function based on energy and time scores the
trajectory resulting from each action, and the action that meets all constraints and optimizes the
cost function is chosen.

range sensors
—

Figure 12 A coarse plan for an excavator performing bench loading. The strategy encoded is based on
recommendations from expert human operators. The dig face is tessellated into regions as a function of the
terrain geometry and heuristics that ensure stability of the excavator while digging. From[29].

Another scenario for autonomous operation is an application in which a wheel loader selects dig
locations along a wall of material and the material is dumped into a waiting truck as shown in Fig-

ure 13 The wheel loader is assumed to have environmental sensors similar to the excavator back-
hoe that enable it to perceive the shape of the terrain to be excavated to locate the truck. As in the
case of the excavator, a coarse planner is used to reduce the search space. The refined planner con-
siders a number of possible actions each of which is defined by the initial pose of the wheel loader
as it enters the terrain.

The coarse planning enforces a strategy that minimizes distance traveled between the dig-face and
the truck. As with the excavator, the coarse planner finds the boundaries of the material, specifi-
cally the contour of the pile at ground level (zero contour). Once again it is assumed that a closed
loop controller is used to control the bucket while the bucket is in contact with the terrain. Hence,
as with the excavator, the action parameters need specify only the starting pose of the machine.
Other heuristics may be used to reduce the size of the action space. For instance, to reduce tire
damage from loose rocks, wheel loaders typically start digging with the bucket flat and on the
ground. Another heuristic is that the wheel loader should dig perpendicular to the wall to prevent
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Figure 13 Coarse planning methodology for a wheel loader. The wheel loader is constrained to start within
the dig region.

uneven loading of the bucket. This is ensured by requiring that both front corners of the bucket
touch the zero contour and thus constraining the heading. Hence, in this case, the action space is a
set of one dimensional distances along the dig region.

Evaluation of actions is based only on the starting location from there the wheel loader dig, as
opposed to the predicted closed-loop trajectory through the soil. Three criteria are used: side load-
ing, concavity and location. First, the selected dig location should minimize side loading of the
bucket. This improves the efficiency of the dig because the force applied by the wheel loader is
directed to the cutting edge of the bucket, and not to the side walls. Second, if a surface is highly
curved or concave, there will be more volume in the bucket at its starting location than if the sur-
face were flat or recessed inwards. And third, dig locations should be chosen as close as possible
to the truck for the sake of productivity.

4.2  Dump Planning

Apart from choosing where to dig, earthmovers that load trucks must determine where to dump
the excavated material. The truck must be loaded evenly and completely. Because of uncertainty
in soil settlement, the dumping strategy may need to be revised for each successive bucket load.
The dump point planner applies a template-based approach to robustly find the low regions of sail
distribution in the truck bed. Sensor data are gathered after each bucket of soil has been dumped
in the truck. Like with the dig point planner, the sensor data are placed in a 2-D terrain map.
Occlusion of the deposited soil by the truck bed walls can be a serious problem. Rather than
assuming that nothing is in the unseen regions of the truck bed, the dump point planner fills in any
unknown grid cells with the average elevation of the known grid cells. Finally, a specific terrain
shape template is convolved over the entire truck bed terrain map to produce a score for each grid
cell. This template looks for a certain profile of the material in the truck bed, such as a slope or a
hole. Simple templates of constant elevations can be used to find the lowest elevation in the truck
bed terrain map as well. The convolution operator produces a score which represents how well the
template matched the particular region in the truck bed, and the location of the cell with the best
score is returned as the desired dump location.



5 Control

This section examines free-space motion control as well as control of the implements while in
contact with the terrain.

5.1  Free-Space Motion Control

Since excavators use highly non-linear actuators, efficient control of the implements in free space
requires special consideration. While motion between any two points in space can be optimized in
an offline fashion [15], it is important to be able to plan motion of an earthmover in free space
online and preferably in an adaptive fashion that compensates for changing characteristics of the
actuators over long periods of time.

Rowe developed a planner to plan motions of an excavator in free space, that is to avoid all known
obstacles in the workspace and execute each loading cycle as quickly as possible [25]. Because of
power constraints and joint coupling effects of the excavator’s hydraulic system, as well as the dif-
ficulty in accurately modeling the dynamics of such a machine, more traditional optimal trajectory
generation schemes do not work well. Instead, recognizing the fact that the excavator’s motions
are highly repetitive and very similar from loading cycle to loading cycle, and that it operates in a
relatively small portion of its total workspace, a script based approach to motion planning was
adopted. A script is a set of rules which define the general motions of the excavator’s joints for a
certain task, in this case loading trucks. These rules contain a number of variables, known as script
parameters, which are instantiated on every loading cycle.The script rules were designed with the
input of an expert human excavator operator and implicitly constrain what the excavator is and is
not allowed to do. For example, if it was advised that moving two particular joints simultaneously
was a bad idea, then the rules of the script make that motion impossible. Figure 14 shows the
script rules for the truck loading task.

A new set of script parameters are computed right after digging is complete and before the free
motion starts using the information about the truck’s location and the desired dig and dump
points. There are two types of script parameters, those which appear in the left hand side of the
script rules and affect which commands are sent by the planner, and the joint commands them-
selves which appear on the right hand side of the rules. The command script parameters in the
right hand side of the rules are primarily computed by geometric and kinematic means. The script
parameters in the left hand side of the rules are found through a combination of simple excavator
dynamic models and heuristics. These simple dynamic models capture first order effects of the
excavator’'s closed loop behavior when given desired angular position commands. These models
provide information about the velocities, accelerations, and command latencies for each joint,
which are used to intelligently coordinate the different joint motions, resulting in fast loading
times. As an example, consider the case when the excavator has finished digging, and the bucket is
raising up out of the ground. The excavator does not need to wait until the bucket has raised to its
full clearance height before swinging to the truck. Instead, it can begin swinging at some earlier
point as the bucket is still raising, but it must have the knowledge provided by the dynamic models
about how much time it will take to swing to the truck and to raise the bucket so it can safely cou-
ple the two motions to avoid a collision. Rowe also showed how critical parameters could be
learned from actual experimentation and that such a parameterized script could be used to create
smooth and fast motion of a complex, coupled non-linear system.



Joint 1: Swing Command
1) When digging finishes, wait 01 =5°

2) If 82 > 14°, swing to truck 01 =101°
3) If 64 > 10°, swing to dig 01 =0°

4) If 81 = 0°, stop and execute dig

Joint 2: Boom Command
1) When digging finishes, raise 02 = 18°
2) If 81 < 60°, lower to dig 02 =6°

Joint 3: Stick Command
1) When digging finishes, wait 063 =-100°
2) If 81 > 31°, move to spill point 63 =-76°
3) If 64 > -30°, move to dump point 63 = -92°

4) If 81 < 65°, move to dig 03 =-75°
Joint 4: Buclet Command
1) When digging finishes, curl 04 = -90°

2) If 61 > 60° and 3 > -89°, open 64 = 30°

Figure 14  Truck loading script for an automated excavator [25]. The left hand side of the rules are functions
of the excavator’s state, and the right hand side of the rules are the commands which the planner sends to the
excavator’s low level joint controllers. Thus, when the left hand side of a particular rule evaluates to true, its
corresponding command gets sent to the excavator. The rules get re-evaluated at a 10 Hz during the execution
of the excavator’s motion.

5.2  Digging control

Digging control or the control of the implements while the excavator is in contact with the terrain
is complicated essentially by the fact that the resistive force experienced can vary significantly.
Further this application requires both the control of position (‘do not dig beyond a particular
boundary’) as well as force (‘regulate contact force to not exceed a preset threshold’). Several
researchers have considered the use of impedance control to deal with this issue [10][11][26].
Such methods have been shown to work well when encountering a stiff boundary such as an
impenetrable layer of rock. However, the issue of efficiently digging has not been addressed very
much. Rocke has proposed a rule based system (AutoDig) to control the implements that is simi-
lar to the parameterized scripts used for free-space motion control [24].

AutoDig uses the position of the implements and cylinder pressures to directly control cylinder
velocities. The behavior of AutoDig can be modified by changing a small set of parameters some
of which have to do with implement position, while others are used to map cylinder pressures to
actuator velocities. The latter can be thought of as an adjustment of end-effector stiffness or con-
versely a means of indicating soil hardness. Experiments show that the control law is effective in
most cases where it is possible to capture a full bucket. When a stiff inclusion such as a boulder is
encountered, AutoDig guides the bucket along the boundary of the object without stalling the
excavator. AutoDig requires prior specification of certain joint angles at which the digging should
end. In some cases, this means that digging is terminated early, while in others, the bucket sweeps
a volume of soil greater than bucket capacity.



Figure 15 Autodig breaks the digging process down into four stages.Bom Down the boom is lowered
until contact is made with the ground. 2lPre-Dig: the bucket is quickly curled to bite into the material. 3)Dig:
the material is force into the bucket. 4Capture the implements are positioned for carrying the material to the
dump point. B is the stick angle to end Pre-Digpl is the bucket angle to end Pre-Digp2 is the bucket angle to
end the Dig,p3 is the bucket angle to end Capture, angis the boom angle to end Capture.

Canon extended AutoDig to deal with this issue by continuously monitoring the amount of soil in
the bucket during the execution of a dig [4]. The amount of soil estimated to be swept into the
bucket was determined by differencing the bucket trajectory from the terrain profile. In case the
bucket filled up sooner than expected, capture is initiated. If the bucket has not filled up as much
as expected, the implements are kept moving until the bucket is at capacity or a joint limit is
encountered. In practice this simple control law was very useful is producing an effective digging
strategy.

6 Systems

Automated earthmoving systems have been used for a variety of tasks recently. These include sys-
tems for laying pipes and working around buried utilities and ordnance[13][14][17][18] and trans-
porting materials underground with a Load Haul Dump machine [22]. An impressive rule based
method was used to effectively load from ore piles using a wheel loader [27]. This section exam-
ines three recent systems in the automation of earthmoving.

6.1  Dragline Automation

In surface mining, reduction of overburden removal costs has been identified as an important
means of improving the economic performance of open cut coal mines. Draglines are key compo-
nents in the overburden removal process, so improvement in dragline productivity realizes a sig-
nificant reduction in costs. At a cost of $50 million to $100 million, a dragline is a major
investment. It has been estimated that increasing the productivity of a dragline by around 4 per
cent, would save the typical coal mine $1-2 million a year. A project at CSIRO in Australia has
developed a swing automation system to improve the productivity of the swing-to-dump and
dump-to-dig phases of a draglines operation. This project has automated a dragline and is pres-
ently conducting field testing [5][7][32]
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Figure 16  Automated Dragline (left) in strip mine (right) configuration showing the location of the laser
scanner.

While a previous system requires an operator to enter so-called “no go” points in to the system
indicating where the bucket must not travel, the current system is seeks a higher level of automa-
tion by allowing the dragline to “see” the local terrain, and thus automatically generate via points
in real-time as the dragline swings from dig to dump. This would also allow the automation sys-
tem to “see” the top of the spoil pile as it grows with each swing and hence allow the automatic
adjustment of the dump height. This is expected to reduce hoist time since the current system con-
tains a dump height safety margin to reduce the risk of collision bucket to spoil pile collision.

Figure 17  Digital terrain maps created from the laser scanner mounted on the dragline. From [23].

6.2  Volume measurement of truck haulage loads

Haulage trucks are large and costly machines used in open-pit mining to remove large volumes of
overburden and ore. There are a number of design and scheduling issues that need to be resolved
to optimize the performance of haul trucks. In particular, whilst haul-trucks are designed to carry
weight, they are used to move a volume of dirt. Mine operators are primarily interested in remov-



ing a volume of material from the ground, irrespective of its weight. Historically, the volume car-
ried by the truck has been inferred from a volumetric survey of the mine (divided by the number
of loads) or a weight survey of each truck (bulk density of the material divided by weight). Nei-
ther technique actually measures the load in the tray and does not take into account changes in
packing, or swelling. Laser scanning makes it possible to measure the in-situ volume of each load
directly. CSIRO in Australia has developed an automated system that can automatically measure
the volume of material in the tray of haul trucks. Currently, it is able to estimate volumes off-line
(wi..

Figure 18  Depth images of an overhead view showing load profile and fragmentation.

The hardware for the current system consists of a field computer and two scanning lasers. The
lasers are inexpensive and eye-safe. They can operate in rain and dusty environments. The lasers
are placed several metres above the truck. As the truck is driven under the lasers, a 3D profile is
built up and the volume can be estimated by subtracting the 3D surface of the empty tray from the
3D surface of the full tray. Although this is conceptually simple, the process is computationally
complex. It requires knowing the precise location and orientation of each tray, and a 3D represen-
tation of the empty tray. In addition to estimating the volume of material in each tray, the 3D pro-
file of the load can be used to measure load distribution, load profile and fragmentation as shown
in Figure 18

6.3  Automated Truck Loading

The surface mining of metals, quarrying of rock, and construction of highways require the rapid
removal and handling of massive quantities of soil, ore, and rock. Typically, explosive or mechan-
ical techniques are used to pulverize the material, and digging machines such as excavators load
the material into trucks for haulage to landfills, storage areas, or processing plants.

As shown in Figure 19, an excavator sits atop a bench and loads material into trucks that queue up
to its side. The operator is responsible for designating where the truck should park, digging mate-
rial from the face and depositing it in the truck bed, and stopping for people and obstacles in the
loading zone. The opportunities for automation are immense. Typically, loading a truck requires
several passes, each of which takes 15 to 20 seconds. Reducing the time of each loading pass by
even a second translates into an enormous gain across the entire job. The operator’'s performance
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Figure 19 Excavator loading a truck in a mass excavation scenario. The excavator sits on top of an elevated
bench, removes the material from the bench, and deposits it into the back of the truck.

peaks early in the work shift and degrades as the shift wears on. Scheduled idle times, such as
lunch and other breaks, also diminish average production across a shift. All of these factors are
areas where automation can improve productivity. Safety is another opportunity. Excavator opera-
tors are most likely to be injured when mounting and dismounting the machine. Operators tend to
focus on the task at hand and may fail to notice other site personnel or equipment entering the
loading zone. Automation can improve safety by removing the operator from the machine and by
providing complete sensor coverage to watch for potential hazards entering the work area.

The Automated Loading System developed at Carnegie Mellon completely automates the truck
loading task (Figure 20). The excavator uses two scanning laser rangefinders to recognize and
localize the truck, measure the soil face, and detect obstacles. The excavator's software decides
where to dig in the soil, where to dump in the truck, and how to quickly move between these
points while detecting and stopping for obstacles. The system was fully implemented and was
demonstrated to load trucks as fast as human operators on extended term operations that have
lasted for several hours at a time.
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