Dense Visual SLAM: Greedy Algorithms

Richard Newcombe

June 28, 2014
1. Motivation for Higher Quality 3D Models

2. Dense Visual SLAM: DTAM system

3. KinectFusion: Real-Time Dense Surface Mapping and Tracking with Kinect

4. Dense Visual SLAM: Passive Fusion system

5. Beyond Surfaces to Object SLAM

6. Greedy Dense SLAM Conclusions
What is Dense Visual SLAM?

- We are interested in modelling geometry of a scene

[Noah Snavely, Steven M. Seitz, Richard Szelisk Sigraph 2006]

- However we want **surfaces**: not just **sparse point geometry**
- And we want it to be **causally estimated** in real-time
- not after all data has been collected after many hours.
Scene interaction vs. Obstacle avoidance/navigation

Building and keeping up to a date a model of the world enables robot interaction. A similar goal is enabling Human-Computer interaction.
We can usefully recognize an object by utilising physical model properties – for example when we ask:
"Where is (the) chair?" (Visual recognition/search problem),
Do we really mean
"Where can I sit?" (Physically constrained embodied problem).

[Grabner, Ga, Van Gool"What makes a chair a chair?", CVPR 2011]
Can we just Scale up SfM to Real-time Dense SLAM?

-SFM (Structure from Motion)
-Obtain image correspondences across N views

-Estimate both 3D points y and camera poses x
-Solve by minimising non-linear 2D Point Reprojection Error

[Adapted from Pollefeys et al. 1999]
Can we just Scale up SfM to Real-time Dense SLAM?

- **Full SLAM** as Bayesian network: graphical representation shows structure

![Bayesian network diagram](image)

[Adapted from Dellaert and Kaess (2006)]

- Can we trivially scale to dense correspondences through video data?
- **Explosion of constraints** can the full optimisation problem be solved incrementally?

[Real-Time Simultaneous Localisation and Mapping with a Single Camera, Davison, ICCV 2003]
Joint Gaussian distribution

Covariance matrix is \((n + 6) \times (n + 6)\) growing with \(n\) structure.

If we attempt to increase the density of the point cloud, it quickly becomes infeasible to solve in real-time due to fill in of the covariance matrix.
Example: Parallel Tracking and Mapping

- 2007, 2008 Klein and Murray’s PTAM
- Can handle **denser structure** estimation

[Parallel Tracking and Mapping, Klein and Murray, ISMAR 2007]
Point cloud surface fitting techniques, e.g. implicit surface defined as a hierarchical sum of Compactly Supported Basis Function weighted quadrics etc.

Alternative method is to tetrahedralise the point cloud (proForma: Qi Pan et al 2009), utilise the space carving property possible with point and line observations.
Optical flow initialised with surface prediction

We found that the coarse surface prediction (from a PTAM point cloud) greatly improves optic flow quality.
The depth maps are stitched sequentially into a global frame:

J. Stuehmer et al 2010, also augment the real-time SFM system but obtain real-time depth maps (without stitching/fusion). Also early work by Pollefeys et al 2007, on real-time reconstruction of Urban scenes.
Multiple View Stereo

-A Reference pixel induces a photo-consistency error function

-Correspondence exists along epipolar line (if not occluded).
Build a cost volume from lots of weak data terms, and then using a simple discontinuity preserving smoothness prior, optimise global energy.

The sum over photometric errors is

$$C_r(u, d) = \frac{1}{|\mathcal{I}(r)|} \sum_{m \in \mathcal{I}(r)} \|\rho_r (l_m, u, d)\|_1,$$

$$\rho_r (l_m, u, d) = l_r (u) - l_m \left(\pi (KT_{mr} \pi^{-1} (u, d)) \right),$$

Figure: The cost volume for a given Depth map.
Using all possible frames from the live camera

- Combine lots of weak data-terms

Figure: MVS Errors for single pixel photometric functions
Regularisation of the MVS cost

Energy = (Data Term Error) + (Spatial Regularisation Term Cost)

\[E_\xi = \int_\Omega \left\{ \lambda C(u, \xi(u)) + g(u)\|\nabla \xi(u)\|_\epsilon \right\} du. \]

- **non-convex** energy function
- Can iteratively linearise the data-term
- OR solve through splitting variable and exploit point-wise data-term.
- **Trivially parallelizable solution**: use GPGPU

Figure: Per pixel inverse depth minimum and lastly Regularisation
- Single Passive Camera system

[DTAM: Dense Tracking and Mapping in Real-time, Newcombe, Lovegrove, Davison, ICCV 2011]

Dense Mapping
- Create dense model using **multiple-view stereo** using estimated camera poses.

Dense Tracking
- Dense 6DoF tracking against current textured Model
- Enables **elegant occlusion handling**
Given current dense **textured** model:

- **Predict** View depth $\xi_v(u)$
- **Predict** View appearance $I_v(u)$

To estimate current view pose ψ (6DoF)

- **Minimise** cost over per pixel data error in live image $I_l(u)$

$$f_u(\psi) = I_l \left(\pi \left(KT_l(\psi) \pi^{-1}(u, \xi_v(u)) \right) \right) - I_v(u).$$

Figure: Gating given the predicted and live image (shown left).
Then along came commodity Depth Cameras: What’s changed?

- Depth cameras provide real-time dense depth estimation
- Have become commodity devices!
- Two important technological changes in real-time vision:

Amazing commodity hardware capabilities

![Kinect camera: Real-time depth measurement](image1)

![GPGPU: Massive processing capabilities](image2)

This pairing of New technology changes what makes a solution scalable or elegant for SLAM.
KinectFusion: Real-Time Dense Surface Mapping and Tracking

ISMAR, UIST 2011 work while at MSRC.
- Use structured light based kinect device
- Exploit real-time depth estimation by fusing the data into a global implicit surface

KinectFusion Idea
- Use all depth frames and build volumetric surface model
- Perform full depth frame to model alignment as pose estimation
- Choice of representation to map efficiently to GPGPU computation.
KinectFusion uses only depth data, enabling operation of SLAM in complete darkness.
Many techniques available for estimating a complete surface from a noisy point cloud.

Representation is important: we don’t want to be restricted in surface topology or precision.

Use all data

We want to integrate over $640 \times 480 \times 30 \approx 9.2$ Million depth measurements per second on commodity hardware.

- Point clouds are *not* surfaces and meshes
- Updating surface topology is not trivial with explicit triangle meshes.
- Curless and Levoy (1996) introduced an elegant method for fusing depth maps into a global surface.
- Use the **signed distance function (SDF)** representation of the depth measurement.
- Robustly average the measurements together into a single SDF.
We use a *truncated signed distance* function representation, \(F(\vec{x}) : \mathbb{R}^3 \mapsto \mathbb{R} \) for the estimated surface where \(F(\vec{x}) = 0 \).

Figure: A cross section through a 3D Signed Distance Function of the surface shown.
Similar to volumetric denoising of the SDF under an ℓ_2 norm data-cost with no regularisation:
- Trivial to compute in an online manner as data comes in using weighted average.
A regular grid holds a discretization of the SDF. Ray-casting of iso-surfaces (S. Parker et al. 1998) is an established technique in graphics.
A regular grid holds a discretization of the SDF. Ray-casting of iso-surfaces S. (Parker et al. 1998) is an established technique in graphics.
Rendering a surface represented in SDF

Interpolation reduces quantisation artefacts, and we can use the SDF value in a given voxel to skip along the ray if we are far from a surface.
Near the level sets near the zero crossing are parallel. The SDF field implicitly represents the surface normal.
Predict current depth map and use dense ICP (see Dense Tracking Talk)

\[\hat{T}_{w,k} \]
Using the Dense Prediction

Dense inliers/outerliers

- ICP compatibility testing on the current surface model for **tracking** robustness
- Can use SDF distance check for **interaction** between moving unmapping objects in the scene.
Low Drift Tracking with KinectFusion

Frame-Model tracking provides drift free, higher accuracy tracking than Frame-Frame (Scan matching).
Frame-Frame tracking results in drift as pose errors are continuous integrated into the next frame.
Scalability

Sub-mapping techniques and **multi-scale** SDF representations to allow models to scale up for larger scenes (but note the system is still only greedily optimising, hence drift can build up):
Can we do surface fusion with a single passive camera?

Yes

-Speed up single camera depth estimation to real-time
-Use the appearance based whole-image alignment tracking
Next Session: Beyond Surfaces to Object SLAM

- Can we bring object recognition into real-time Dense SLAM?
- No need reconstruction from scratch previously seen objects:

[CVPR 2013 : Salas-Moreno, Newcombe, Strasdata, Davison]
Dense Greedy SLAM Conclusions

Dense SLAM Key

Using denser surface model representation leads to trivially enabling all of the measurement data to be used.

- Using dense surface measurements leads to more robust tracking.
- Tracking from the current model can pose estimates good enough for dense MVS.
- Dense Models are more useful for robotics and augmented reality applications.
- But, we should start to incorporate more prior knowledge about the environment geometry: scene and object modelling.
Thankyou, Questions?

Richard Newcombe
Dense Visual SLAM: Greedy Algorithms