VSLAM on Phones
Closing Loops

Frank Dellaert
CVPR 2014 Visual SLAM Tutorial
With many slides/movies generously donated by Torsten Sattler (!!!), Gim Hee Lee, Marc Pollefeys
Outline

- VSLAM on the Phone
 - With live Metaio demo
- VSLAM in the Large
 - KITTI, ETH Multi-camera demo
- Direct
 - F2P, Prioritized (Sattler11iccv)
 - P2F, Prioritized (Li10eccv)
- Image Retrieval
 - Nistér06cvpr
 - Sattler12bmvc
Outline

- VSLAM on the Phone
 - With live Metaio demo

- VSLAM in the Large
 - KITTI, ETH Multi-camera demo

- Direct
 - F2P, Prioritized (Sattler11iccv)
 - P2F, Prioritized (Li10eccv)

- Image Retrieval
 - Nistér06cvpr
 - Sattler12bmvc
Turning Mobile Phones into 3D-Scanners
Mobile 3D scanner: Pipeline
Sparse SLAM Example
Metaio: Live Demo by Jürgen Sturm!
Outline

- VSLAM on the Phone
 - With live Metaio demo

- VSLAM in the Large
 - KITTI, ETH Multi-camera demo

- Direct
 - F2P, Prioritized (Sattler11iccv)
 - P2F, Prioritized (Li10eccv)

- Image Retrieval
 - Nistér06cvpr
 - Sattler12bmvc
Loop Closing Factor Graph

- In addition to projection factors, IMU factors, add long-range links that correct the graph
Real-time Large-scale VSLAM
Lim et al, ICRA 2014

Real-Time 6-DOF Monocular Visual SLAM in a Large-Scale Environment

Hyon Lim, Jongwoo Lim, H. Jin Kim

ICRA 2014 Video
Resulting Map
Lim et al, ICRA 2014

Red square = loop closure
Loop Closing
Lim et al, ICRA 2014
Loop Closing
Lim et al, ICRA 2014
Multi-camera Visual SLAM
Gim Hee Lee et. al, ETH, 2014
Multi-camera Visual SLAM
Gim Hee Lee et. al, ETH, 2014
Loop Closing
Gim Hee Lee et al., ETH, 2014

652 Loop-Closure Edges

1352 Loop-Closure Edges
Final Result
Gim Hee Lee et. al, ETH, 2014
Outline

- VSLAM on the Phone
 - With live Metaio demo
- VSLAM in the Large
 - KITTI, ETH Multi-camera demo
- Direct
 - F2P, Prioritized (Sattler11iccv)
 - P2F, Prioritized (Li10eccv)
- Image Retrieval
 - Nistér06cvpr
 - Sattler12bmvc
Image-Based Localization Pipeline

- Extract Local Features
- Establish 2D-3D Matches
- Camera Pose Estimation: RANSAC + n-Point-Pose Algorithm
What Situations Can Be Handled

Easy
- Database & query images from same source, e.g., Flickr
- 97% - 100% localization rates
- *Challenges*: Run-time & memory consumption for large scale

Hard
- Database & query images from different spatial distributions
- 70% - 90% localization rates
- *Challenges*: Deal with larger variety in viewpoints
- Streetview imagery
- 50% - 65% localization rates
- *Challenges*: Repetitions, viewpoint variations, scale
- Indoor scenarios
- *Challenges*: Identical structures, small distance to scene
Establishing 2D-3D Matches

- 3D model from SfM
- 2D-3D correspondences from (SIFT) descriptor matching
Matching = Nearest Neighbor Search

Query Image

3D Model

Descriptor Space
Lowe’s Ratio Test

- No every nearest neighbor is correct
- Use ratio test to reject wrong / ambiguous matches [Lowe, IJCV'04]
- Only accept match if

\[
\frac{||d - d_1||_2}{||d - d_2||_2} < 0.8
\]
Nearest Neighbor Search

• Typical datasets: 3-10k features, >1M points

→ Exhaustive (linear) nearest neighbor search is prohibitive

• **Curse of dimensionality:** No exact search method that is faster than linear search

• Multiple fast approximate nearest neighbor search methods:

 • **kd-trees** [Muja & Lowe, PAMI’14] [code]

 • **Hierarchical k-means trees** [Muja & Lowe, PAMI’14] [code]

 • Product quantization [Jégou et al., PAMI’11] (Orals 4A) [code] [Kalantidis & Avrithis, CVPR’14] (Posters P5)

 • Diverse hashing techniques

 • ...
kd-tree Construction & Search

- Iteratively split dimension with largest variance at median
- Traversal based on side of split
- 1B SIFT descriptors (128D) → Only 30 dimensions considered!
 - Curse of dimensionality: Need to visit all leaves!
 - Approximate search: Visit \mathbb{N} leaf nodes
Tree-Based Search Drawbacks

• Tree-based approach so slow because it
 • … tries to find all possible matches
 • Don’t need all of them!
 • … ignores dependencies between matches

➡ Exploit co-visibility information to guide matching!
Vocabulary-Based Prioritized Search (VPS)

Assign features to words
Sort based on costs
Linear search through words
Stop after 100 matches
Pose estimation: RANSAC + p6p

[Sattler et al., ICCV'11] [code]
City-Scale Localization
Example: Aachen
~1.5M points
3047 database images
369 query images
Vocabulary-Based Prioritized Search (VPS)

[Sattler et al., ICCV’11] [code]
Worldwide Pose Estimation using 3D Point Clouds

[Li et al., ECCV’10]
Prioritized Point-to-Feature Matching (P2F)

Idea: Use Visibility Graph to guide 3D-to-2D matching

1. Build kd-tree for query image
2. Prioritized 3D-to-2D Matching
3. Stop after 100 matches
4. Camera Pose Estimation: RANSAC + P6P

[Li et al., ECCV’10]
The Visibility Graph

- Bipartite visibility graph G_V defined by SfM reconstruction
- Two points co-visible if share a common camera

[Li et al., ECCV’10]
Point Priorities

• Start with points that are …
 • stable under viewpoint changes
 • at more popular parts of the model
 ➡ Points with high degree in G_V

• **Initial priority** of point p_i: $S_i = d_i = \text{degree in } G_V$

• **Update priorities**: $S_j = S_j + 10/d_i$ for co-visible points p_j

[Li et al., ECCV’10]
Outline

- VSLAM on the Phone
 - With live Metaio demo
- VSLAM in the Large
 - KITTI, ETH Multi-camera demo
- Direct
 - F2P, Prioritized (Sattler11iccv)
 - P2F, Prioritized (Li10eccv)
- Image Retrieval
 - Nistér06cvpr
 - Sattler12bmvc
Image-Based Localization & Place Recognition

Direct Matching

3D Model

Query Image

Retrieved Database Image
Hierarchical k-Means Tree

- Iteratively apply k-means clustering
- Traversal based on nearest neighboring cluster
- Approximate search: Visit \mathbb{N} leaf nodes
- Performs (slightly) worse than kd-tree
Vocabulary Trees

- Each level in a hierarchical k-means tree defines a quantization of the descriptor space (visual vocabulary).
- Hierarchical k-means trees also known as Vocabulary Trees [Nister & Stewenius, CVPR’06]