
Efficient Bundle Adjustment for Coplanar Points and Lines

Lipu Zhou1, Jiacheng Liu2, Fengguang Zhai1, Pan Ai1, Kefei Ren1, Yinian Mao1

Guoquan Huang1, Ziyang Meng2, and Michael Kaess3

Abstract— Bundle adjustment (BA) is a well-studied funda-
mental problem in the robotics and vision community. In man-
made environments, coplanar points and lines are ubiquitous.
However, the number of works on bundle adjustment with
coplanar points and lines is relatively small. This paper focuses
on this special BA problem, referred to as π-BA. For a point
or a line on a plane, we derive a new constraint to describe
the relationship among two poses and the plane, called π-
constraint. We distribute π-constraints into different groups.
Each group is called a π-factor. We prove that, with some
simple preprocessing, the computational complexity associated
with a π-factor in the Levenberg-Marquardt (LM) algorithm is
O(1), independent of the number of π-constraints packed into
the π-factor. In π-BA, π-factors replace original reprojection
errors. One problem is how to divide π-constraints into π-
factors. Different strategies may result in different numbers
of π-factors, which in turn affects the efficiency. It is difficult
to get the optimal division. We present a greedy algorithm to
overcome this problem. Experimental results verify that our
algorithm can significantly accelerate the computation.

I. INTRODUCTION

Bundle adjustment (BA) is important for visual simultane-
ous localization and mapping (VSLAM) and structure from
motion (SfM). Due to its importance, the BA problem has
been intensively studied [1]–[16]. Coplanar points and lines
are ubiquitous in man-made scenarios. Recently, a number
of works [17]–[27] explore leveraging plane information to
improve the accuracy and stability of VSLAM, and show
promising results. However, the number of works on BA
with coplanar points and lines is relatively small. This paper
focuses on this special BA problem, referred to as π-BA,
and seeks to provide an efficient solution.
π-BA is a non-linear least-squares (NLLS) problem. The

Levenberg-Marquardt (LM) algorithm [28] is generally used
to solve the NLLS problem. Given a NLLS problem, the
LM algorithm first calculates its Jacobian matrix, and then
constructs a linear system to update the current solution. The
runtime of the LM algorithm depends on constructing and
solving the linear system. The computational complexity of
solving the linear system in turn depends on the number

*This work was partially done when Lipu Zhou was with the Robotics
Institute at Carnegie Mellon University.

1Lipu Zhou, Fengguang Zhai, Pan Ai, Kefei Ren, YiNian Mao, and
Guoquan Huang are with the UAV Lab, Meituan, Beijing 100012, China.
{zhoulipu, zhaifengguang, aipan02, renkefei,
maoyinian, huangguoquan}@meituan.com

2Jiacheng Liu and Ziyang Meng are with Department of
Precision Instrument, Tsinghua University, Beijing 100084, China.
liu-jc18@mails.tsinghua.edu.cn, ziyangmeng@ts
inghua.edu.cn

3Michael Kaess is with the Robotics Institute, Carnegie Mellon Univer-
sity, Pittsburgh, PA 15213, USA. kaess@cmu.edu

of unknowns. The crux of our algorithm is that we present
new constraints for π-BA which can significantly reduce
the number of unknowns and the runtime of constructing
the linear system. In fact, we show that the computational
complexity of π-BA can be independent of the number of
coplanar points and lines, and only depends on the number
of planes and poses. The main contributions of this paper
are listed below:

• We introduce new constraints for coplanar points and
lines, referred to as π-constraints, which depend on
the plane where the coplanar points or lines locate,
rather than the points and lines themselves. This can
significantly reduce the number of unknowns.

• We present an efficient algorithm to optimize the π-
constraints. Specifically, π-constraints are divided into
different groups. Each group is called a π-factor. We
prove that, with some matrix multiplications as prepro-
cessing, the computational complexity of a π-factor in
the LM algorithm is O(1), independent of the number
of π-constraints in a π-factor.

• How π-constraints are divided determines the number
of π-factors, which impacts on the efficiency. It is diffi-
cult to find the division that leads to the minimal number
of π-factors. We present a simple greedy algorithm to
divide π-constraints into π-factors to construct the cost
function of π-BA.

Experimental results show that our algorithm can signifi-
cantly speed up the computation. Thus, this work can benefit
the VSLAM and SfM system using planes.

II. RELATED WORK

Bundle Adjustment BA is a nonlinear least-squares
problem with special structure. Triggs et al. [1] show that
the Schur complement trick can accelerate the computation.
This provides the theoretical support to make large-scale
SfM [29], [30] and real-time SLAM [31]–[33] using BA
feasible. Latter works explore ways to further accelerate BA
to handle SfM with growing scale. The Schur complement
generates a linear system for camera poses, referred to as
reduced camera system (RCS) [12], [13]. Agarwal et al. [7]
introduce the preconditioned conjugate gradients algorithm
to efficiently approximate the solution of this linear system.
Zhou et al. [12] decompose the RCS approximately inside
the LM iterations to speed up BA. In addition, parallel
computing has been explored to accelerate BA [10], [11].
Recently, Demmel et al. [13] present the square root BA
which is mathematically equivalent to the Schur complement,
but more numerically stable. This allows for solving a BA

problem with single-precision floating-point numbers. Lines
and planes widely exist in man-made scenarios. Although BA
was originally formulated for points, it can be easily extended
for lines [34]–[37]. However, it is not straightforward to
introduce planes into BA.

Planes for Visual Reconstruction Coplanar points and
lines widely exist in man-made environments. Intuitively,
these coplanar constraints can benefit VSLAM. Thus, adding
plane constraints into VSLAM has gained increasing atten-
tion. To use planes in VSLAM, the first step is to detect
planes from an image. In the literature, neural networks
[17]–[19], [23], [26], [38] and geometry-based methods
[20]–[22], [24], [25], [39] were developed for this purpose.
Given detected planes, the next step is to construct a cost
function to optimize them. In [22], point-to-plane and line-
to-plane regularities are added into the cost function. These
extra regularities increase the computational cost. Their latter
work [23] accelerates the computation by introducing a new
parameterization for coplanar points and lines. In [24], the
plane regularity is introduced into DSO [40] for coplanar
points. It is known that the images of planar points captured
at two poses are related by a homography matrix [41]. This
relationship is adopted to construct the cost function for
coplanar points [20], [25], [39], [42]. This paper considers
both coplanar points and lines. We introduce new constraints
for coplanar points and lines, and divides them into different
groups to speed up the computation.

Planes for Reconstruction with Depth Sensor Planes
are common landmarks used in SLAM with depth sensors,
such as LiDAR [43]–[51] and RGB-D camera [52], [53].
Similar to BA, jointly optimizing planes and poses, referred
to as plane adjustment (PA) [47], [48], has been intensively
studied. Generally, there are two ways to construct the cost
function of PA. The first one is based on the transforma-
tion between plane parameters [52], [53]. The second one
adopts the point-to-plane error [44], [46]–[49], [54]. These
algorithms are designed for depth sensor, thus they cannot
be applied to the camera.

In summary, π-BA has many applications. This paper
focuses on exploring the special structure of π-BA to speed
up the computation.

III. NOTATIONS AND PRELIMINARIES

This paper uses italic, boldfaced lowercase and boldfaced
uppercase letters to represent scalars, vectors and matrices,
respectively.

Pose In this paper, a pose represents a rigid body trans-
formation T ∈ SE(3) from a camera coordinate system to
the world coordinate system. The rotational and translational
components of T are denoted as R ∈ SO(3) and t ∈ R3,
respectively. We parameterize a pose by x = [ω; t], where
ω is the angle-axis representation of R.

Back Projection As shown in Fig. 1, the back projections
of a pixel p and a 2D line l on the image plane are a 3D
line L and a plane π passing through the origin of the
camera coordinate system [41], respectively. Assume that
the camera intrinsic matrix is K. Then the direction of L

Fig. 1. The back-projections of a pixel p (a) and a line l (b) are a 3D
line L and a plane π passing through the camera center, respectively. These
relationships will be used to derive the constraints for coplanar points and
lines in (4) and (5).

is p⃗ = K−1p̄
||K−1p̄||2 , where p̄ is the homogeneous coordinates

of p (i.e., p̄ = [p; 1]), and the normal of π is nl =
KT l

||KT l||2 .
These relationships will be used to derive the constraints
from a point and a line on a plane in (4) and (5).

Vector-by-vector Derivative Assume that v =
[v1, · · · , vM] is an M -dimensional vector function with
respect to an N -dimensional vector ψ = [ψ1, · · · , ψN].
That is to say each element of v is a function of ψ. The
derivative of v by ψ is an M ×N matrix written as

∂v

∂ψ
= [δij] ∈ RM×N , δij =

∂vi
∂ψj

, (1)

where δij is the entry at the ith row and jth column of the
matrix. The above formula will be used in (10).

LM Algorithm The LM algorithm [28] is generally
adopted to solve a least-squares problem. Given an N -
dimensional residual vector e(χ), the corresponding least-
squares problem has the form argmin

χ
||e(χ)||22. To simplify

the notation, we omit the variable χ in the following de-
scription (i.e., e(χ)→ e).

Let us denote the Jacobian matrix of e as Je. The LM
algorithm iteratively updates the solution by χn+1 = χn+δ,
where δ is computed from the following linear system

(JT
e Je + λIN)δ = −JT

e e, (2)

where λ is adjusted according to the value of ||e||22 at the
new solution, and IN is an identity matrix of size N . Assume
that e is divided into different groups. Suppose that ei is the
ith group and Ji is its corresponding Jacobian matrix, then
we have

JT
e Je =

∑
JT
i Ji,J

T
e e =

∑
JT
i ei, ||e||22 =

∑
eT
i ei. (3)

In the LM algorithm, Je is usually computed first. Then
JT
e Je and JT

e e are calculated for constructing the equation
system (2). Finally, ||e||22 is computed at the new solution to
update λ. The computational complexity of the above process
is O(N). From (2) and (3), we find that Je and e are
not required in the LM algorithm, instead JT

i Ji, JT
i ei,

and eTi ei are essential. Our algorithm uses this property to
speed up the computation. Specifically, we divide constraints
into special groups, and show that each group share a lot of
computations in each iteration. We accelerate the process by
getting rid of the redundant computation.

IV. π-CONSTRAINT

Here we consider the constraint on two poses introduced
from a 3D point or a 3D line on a plane, referred to as
π-constraint, as demonstrated in Fig. 2. We will show that
they have a special form, which can be used to speed up
the computation. The proofs of the following lemmas and
theorems are in the Appendix.

Lemma 1: Suppose that P is a 3D point on a plane
π = [n; d], and P is observed by two poses (R1, t1) and
(R2, t2) with images p1 and p2, respectively. Let us denote
the directions of the back-projected rays of p1 and p2 as p⃗1
and p⃗2, respectively. Then we have

R1p⃗1 × (R2p⃗2 + τp2
(t2 − t1)) = 03×1, (4)

where × represents the cross product, τp2 = nTR2p⃗2

−nT t2−d
.

Lemma 2: Suppose that L is a 3D line on a plane π =
[n; d], and L is observed by two poses (R1, t1) and (R2, t2)
with images l1 and l2, respectively. Let us denote the normal
of the back-projected plane of l1 as nl1 , and denote the
directions of the back-projected rays of the two endpoints of
l2 as p⃗1l2 and p⃗2l2 , respectively. Then we have

R1nl1 ·
(
R2p⃗

i
l2 + τ il2 (t2 − t1)

)
= 0, i = 1, 2, (5)

where · represents the dot product, α is defined in (4) and

τ il2 =
nTR2p⃗

i
l2

−nT t2−d
.

The constraints (4) and (5) are functions of π in stead of P
and L. This can obviously reduce the number of unknowns.
Fig. 2 illustrates the variables involved in (4) and (5). In
the minimization, we parameterize a plane π = [n; d] by
the closest-point representation τ = dn [55]. The following
theorems show that (4) and (5) have special forms.

Theorem 1: Let us define p⃗1 = [x1; y1; z1] and p⃗2 =
[x2; y2; z2], and assume that x1, x2 and τ are the param-
eterization of (R1, t1), (R2, t2) and π, respectively. The
constraints in (4) can be written as

c · fi(τ ,x1,x2) = 0, i = 1, 2, 3, (6)

where c = [x1x2, x1y2, x1z2, y1x2, y1y2, y1z2, z1x2, z1y2,
z1z2]

T is a constant vector, and fi is a vector function of τ ,
x1 and x2 where i=1, 2, 3 is for the three constraints in (4).

Theorem 2: Let us define nl1 = [a1; b1; c1] and p⃗il2 =
[xil2 ; y

i
l2
; zil2]. The constraints in (5) can be written as

di · g(τ ,x1,x2) = 0, i = 1, 2, (7)

where di = [a1x
i
l2
, a1y

i
l2
, a1z

i
l2
, b1x

i
l2
, b1y

i
l2
, b1z

i
l2
, c1x

i
l2
, c1y

i
l2
,

c1z
i
l2
]T is a constant vector, and g is a vector function of

τ , x1 and x2.

V. π-FACTOR

In this section, we first introduce the π-factor, and then
describe how to efficiently minimize the least-squares prob-
lem with π-factors.
π-Factor Formulation Suppose that N points and M

lines on a plane π are captured at the poses x1 and x2,
which forms two sets {pn1 ↔ pn2}

N
n=1 and {lm1 ↔ lm2 }

M
m=1.

For each pn1 ↔ pn2 , we can compute a constant vector

Fig. 2. A schematic of the π-constraints derived from a point P (a) and a
line L (b) on a plane π. In Fig. (a), L1 and L2 are the back-projected ray
of p1 and p2, respectively. The constraint from P in Lemma 1 is based on
the fact that the intersection point between π and L2 should be on L1. In
Fig. (b), πl1 is the back-projected plane of l1, and L1

l2
and L2

l2
are the

back-projected rays of the two endpoints of l2, respectively. The constraint
from L in Lemma 2 is based on the fact that the intersection points P i

l2
(i = 1, 2) between π and Li

l2
should be on πl1 . Note that the endpoints

of l1 and l2 may not be from the same 3D points.

cn, according to (6). Similarly, for each ln1 ↔ ln2 , we can
calculate two constant vectors d1n and d2n, according to (7).
Let us define

C = [c1, c2, · · · , cN]T and D = [d1
1,d

2
1, · · · ,d1

M ,d2
M]. (8)

Stacking all the residuals from the N points and M lines,
we get a (3N + 2M)-dimensional vector

ε(τ ,x1,x2) =


Cf1(τ ,x1,x2)
Cf2(τ ,x1,x2)
Cf3(τ ,x1,x2)
Dg(τ ,x1,x2)

 . (9)

In this work, ε(τ ,x1,x2) is referred to as π-factor. x1

is called the reference image, and x2 is called the target
image. A π-factor contains multiple constraints in (4) and
(5). We will show that, with certain preprocessing, no matter
how many π-constraints are in a π-factor, the computational
complexity associated with a π-factor in the LM algorithm
is O(1). This can significantly reduce the runtime.
π-Factor Minimization Now we consider minimizing

a least-squares problem with π-factors. To simplify the
notation, we omit the variables of functions in the following
description (e.g., ε(τ ,x1,x2)→ ε).

Let us denote the Jacobian matrix of ε as Jε. According
to (2) and (3), we know that only JT

ε Jε, JT
ε ε and εTε are

essential, instead of Jε and ε. We will show that with some
preprocessing, the computational complexities of JT

ε Jε, JT
ε ε

and εTε are all O(1).
Let us define K = CTC and Q = DTD, and for fi

(i = 1, 2, 3) and g in (9), we define

Ui =
∂fi
∂τ

, Vi =
∂fi
∂x1

, Wi =
∂fi
∂x2

,

X =
∂g

∂τ
, Y =

∂g

∂x1
, Z =

∂g

∂x2
. (10)

The above vector-by-vector derivatives are defined in (1).
Using the above symbols, we can further define

∆P
i =

UT
i KUi UT

i KVi UT
i KWi

VT
i KUi VT

i KVi VT
i KWi

WT
i KUi WT

i KVi WT
i KWi

 ,
∆L =

XTQX XTQY XTQZ
YTQX YTQY YTQW
ZTQX ZTQY ZTQZ

 .
(11)

Fig. 3. A schematic of the effect of the reference image selection. Assume
that three coplanar points P1, P2 and P3 are captured at three images x1,
x2 and x3. No matter how the reference images are choose for P1, P2 and
P3, there will exist six π-constraints with the form as Eq. (4). However,
since only the π-constraints with the same reference and target images can
be packed into a π-factor as shown in (9), a different choice of reference
images may result in a different number of π-factors. In Fig. (a), x2 is
selected as the reference image of P1, P2, and P3. In Fig. (b), x1, x2 and
x3 are selected as the reference image of P1, P2, and P3, respectively.
For Fig. (a), only two π-factors are required to pack the six π-constraints.
However, six π-factors are needed for Fig. (b).

The following theorem provides the forms of JT
ε Jε, JT

ε ε and
εTε using the above symbols.

Theorem 3: JT
ε Jε, JT

ε ε, and εTε have the forms

JT
ε Jε = ∆L +

3∑
i=1

∆P
i ,

JT
ε ε =

[
X,Y,Z

]T
Qg +

3∑
i=1

[
Ui,Vi,Wi

]T
Kfi,

εTε = gTQg +

3∑
i=1

fT
i Kfi.

(12)

As the sizes of the matrices in (12) are small, the computa-
tion is very efficient. From Eq. (12), we know that given K
and Q, the computational complexities of JT

ε Jε, JT
ε ε and

εTε are all O(1). Since K and Q are reused during the
iteration, we only need to compute them once.

VI. π-BA

π-BA Formulation In π-BA, π-factors are used to
replace the reprojection errors of coplanar points and lines.
For constructing π-factors, the images with coplanar points
and lines are divided into reference images and target im-
ages. The factor graph of π-BA is demonstrated in Fig. 4.
Formally, the full cost function is given by∑

i∈A

∑
j∈Bi

∑
k∈Pij

∥ε (τk,xi,xj)∥22 + Cother, (13)

where A denotes the set of reference images, Bi represents
the set of target images associated with the reference image
with pose xi, Pij describes the set of planes visible at both xi

and xj , and Cother includes other costs, such as reprojection
errors of non-coplanar points and lines, IMU and GPS.

Greedy Division In π-BA, π-constraints are packed
into π-factors. The way of packing affects the efficiency,
as demonstrated in Fig. 3. A π-factor in (9) contains the
π-constraints of a plane with the same reference and target
images. Each coplanar 3D point or 3D line is captured in
multiple images. In our algorithm, one of these images is

Fig. 4. A factor graph of π-BA with N poses, M planes, and K π-factors.
The π-factor is a ternary factor connecting two poses and a plane. Each
π-factor has a reference image and a target images. Black and blue circles
represent the reference and target images of π-factors, respectively.

selected as the reference image, and the remaining ones
are treated as target images. The number of π-factors is
determined by this division. As demonstrated in Fig. 3,
different divisions may lead to different numbers of π-
factors, which in turn affects the efficiency. It is difficult
to get the best division that leads to the smallest number
of π-factors. From Theorem 5, we know that given Q and
K, no matter how many π-constraints are packed into a
π-factor, the computational complexity of handling a π-
factor in the LM algorithm is the same. Intuitively, if we can
pack more π-constraints into a π-factor, we can save more
computational time. Here we introduce an greedy algorithm
to get the A and T = {Bi|i ∈ A} in (13).

Let us use Q to represent the set of all coplanar points
and lines in the 3D space. In our algorithm, we first count
the number of coplanar points and lines captured at each
image. Assume that the image with pose xi captures the
largest number of coplanar points and lines. Let us denote
the set of coplanar points and lines captured at xi as Qi.
The image with pose xi is select as the first reference image
(i.e., A = {i}), and the images which can see any points or
lines in Qi form the set of corresponding target images Bi.
Then we remove Qi from Q (i.e., Q = Q−Qi), and repeat
the above process until Q is empty. Algorithm 1 summarizes
the above greedy algorithm.
Algorithm 1 Get the set of reference images A and target
images T = {Bi|i ∈ A} for π-BA in Eq. (13).
A← ∅, T← ∅;
Q← {coplanar points and lines};
while Q ̸= ∅ do
xi ← a pose that captures the largest number of

elements in Q;
Qi ← {planar points and lines captured at xi};
Bi ← {indices of poses see any elements in Qi};
A← A ∪ {i}, T← T ∪ {Bi};
Q← Q−Qi;

end while

VII. EXPERIMENTAL RESULTS

In this section, we use synthetic and real data to evaluate
our algorithm. All the experiments were conducted on a
desktop with an Intel i9 processor and 64GB memory.

A. Setup
Algorithms In the experiments, we evaluate the following

three algorithms:

Fig. 5. The two synthetic datasets used in our experiments. They contain
200 and 400 images, respectively.

Fig. 6. The root mean square of absolute pose errors (RMSAPE) w.r.t.
the runtime using the synthetic data in Fig. 5. The insets in the above
figures provide close-ups of our algorithm on the two datasets. Our algorithm
obviously surpasses the other two algorithms in speed.

• Our algorithm: The algorithm introduced in this paper.
• Our algorithm w/o π-factor: The π-factor is not

adopted in our algorithm. That is to say all the π-
constraints are computed individually.

• BA: This is the traditional BA algorithm with the
reprojection error, implemented by g2o [56].

All the algorithms use the same stopping criteria.
Metrics Previous works generally use the cost with

respect to time to evaluate the performance of a BA algorithm
[8]–[14]. This is because they use the same cost function.
However, as a different cost function is adopted in this work,
this method is not suitable. Instead, we adopt the root mean
square of absolute pose errors (RMSAPE) to evaluate the
convergence speed of different algorithms [57]. Specifically,
we first use a similarity transformation matrix to align the
estimated poses and the ground truth after each iteration.
Then RMSAPE is computed to evaluate the performance.

Initialization Initial camera poses and landmarks are
generated by perturbing the ground truth ones with isotropic
zero-mean Gaussian noises. We denote the standard devia-
tions (STD) of the Gaussian noises for translation vectors,
angle-axis representations of rotation matrices, and land-
marks (i.e., 3D points and the endpoints of 3D lines) as σt,
σθ, and σl respectively. In our experiment, we set σθ = σt

10 .
The initial plane parameters are obtained by fitting a plane
to the noisy 3D points and lines.

B. Synthetic Data

We first use synthetic data to compare the performance of
different algorithms. Specifically, two scenes with coplanar
points and lines are generated, as shown in Fig. 5. In the first
scene, a synthesized camera moves around a four-sided fence
with a periodic change in the pitch and roll angles. In the
second scene, a downward facing camera takes off vertically
from a ground plane, and then flies around at the height of
100m. In the experiment, the resolution of the virtual camera
is set to 1280×800 pixels, and the focal length is set to 930
pixels. We generate 200 and 400 images for the two scenes,
and add the zero-mean Gaussian noise with STD 1 pixel to
the 2D feature points and the endpoints of 2D lines.

The algorithms are initialized by perturbing the landmarks
and the poses. For 3D points and lines, we set the STD of the
Gaussian noise as σl = 0.1m. For poses, we set σt = 2m
and σθ = 0.2rad. Fig. 6 shows the results. It is clear that
our algorithm is significantly faster than other algorithms.
C. Real Data

We collect four real datasets in urban environments using
two aerial robots. The ground truth poses were acquired from
an inertial navigation system (INS) with RTK-GPS. We adopt
COLMAP [58], [59] with the ground truth poses to generate
3D points and 3D lines. Then we use PCL [60] to detect
planes from the point cloud. Finally, we get the coplanar lines
by checking the distances between a plane and the endpoints
of 3D lines. These coplanar points and lines are used to
evaluate the performance of different algorithms.

The poses and landmarks are perturbed by the same
Gaussian noises as the synthetic data, i.e., σt = 2m,
σθ = 0.2rad, and σl = 0.1m. We also add the noisy GPS
positions into the optimization. Fig. 8 provides the results.
Our algorithm outperforms the traditional BA in terms of
both speed and accuracy. Our algorithm and our algorithm
w/o π-factor converge at the same point, but the first one
is much faster. This verifies that π-factor can significantly
reduce the computational cost.

VIII. CONCLUSIONS

This paper introduces an efficient algorithm for π-BA.
We present new constraints, referred to as π-constraints, for
coplanar points and lines, and show that the π-constraint
has a special form, so that π-constraints can share a lot
of computations in the LM algorithm. This is the crux of
our algorithm. We introduce a greedy algorithm to group π-
constraints into π-factors to construct the cost function of π-
BA. We prove that, with some simple matrix multiplications
as preprocessing, the computational complexity of a π-factor
in the LM algorithm is O(1), independent of the number
of π-constraints in it. Experimental results show that our
algorithm can significantly reduce the computational load.

APPENDIX

A. Proof of Lemma 1

Let us denote the back-projected rays of p1 and p2 as
L1 and L2, respectively. In the world coordinate system, the
directions of L1 and L2 are Rp⃗1 and Rp⃗2, respectively. As
shown in Fig. 2, L1 and L2 pass through the origins of the
camera coordinate systems, respectively. Thus, in the world
coordinate system, L1 and L2 passes through the 3D points
t1 and t2, respectively. As P is the intersection between L2

and π, we have

P = kp2R2p⃗2 + t2, n
TP + d = 0. (14)

Substituting the formula of P into nTP + d = 0, we get

kp2 =
α

βp2

, α = −nT t2 − d and βp2 = nTR2p⃗2. (15)

Define τp2 = 1
kp2

. As P is on the line L1, we obtain

R1p⃗1 × (P − t1) = 03×1. (16)

Fig. 7. The four real datasets used in our experiments. They contain 306, 377, 757, and 895 images, respectively. Points on the same plane are colorized
by the same color. As planes are unbounded, some planar patches belonging to the same plane are not connected in the third dataset.

Fig. 8. The root mean square of absolute pose errors (RMSAPE) w.r.t. the runtime using the four datasets in Fig. 7. Our algorithm is much faster than
the other two algorithms. In addition, the two versions of our algorithm get more accurate results than BA.

Substituting the first equation of (14) into (16) and using
τp2

= 1
kp2

in (15), we have

R1p⃗1 ×
(

1

τp2

R2p⃗2 + t2 − t1
)

= 03×1

⇒ R1p⃗1 ×
1

τp2

(R2p⃗2 + τp2
(t2 − t1)) = 03×1

⇒ R1p⃗1 × (R2p⃗2 + τp2
(t2 − t1)) = 03×1.

(17)

B. Proof of Lemma 2

Let us denote the back-projected plane of l1 as πl1 , and
the back-projected rays of the two endpoints pil2 (i = 1, 2)
of l2 as Li

l2
. As illustrated in Fig. 2, in the world coordinate

system, πl1 passes through the 3D point t1 with the normal
Rnl1 , and Li

l2
passes through the 3D point t2 with the

direction R2p⃗
i
l2

.
Let us first compute the intersection between Li

l2
and π,

denoted as P i
l2

. According to (14) and (15), P i
l2

has the form

P i
l2 =

α

βi
l2

R2p⃗
i
l2 + t2, (18)

where α = −nT t2 − d and βi
l2

= nTR2p⃗
i
l2

.

Define τ il2 =
βi
l2

α . As P i
l2

should be on πl1 , we have

R1nl1 · (P i
l2 − t1) = 0. (19)

Substituting (18) into (19) and using τ il2 =
βi
l2

α , we get

R1nl1 · (
1

τ il2
R2p⃗

i
l2 + t2 − t1) = 0

⇒ R1nl1 ·
1

τ il2

(
R2p⃗

i
l2 + τ il2 (t2 − t1)

)
= 0

⇒ R1nl1 ·
(
R2p⃗

i
l2 + τ il2 (t2 − t1)

)
= 0.

(20)

C. Proof of Theorem 1

Let us define a = R1p⃗1 and b = R2p⃗2 + τp2 (t2 − t1).
Then equation (4) can be written as a× b = 03×1. Suppose
that an and bn represent the nth element of a and b,

respectively. Expanding a and b, we know that an and bn
have the forms as

an = r1n · p⃗1 and bn = cn · p⃗2, n = 1, 2, 3, (21)

where r1n is the nth row of R1, and cn is a vector function
of π, t1, R2 and t2. Substituting (21) into a× b, we have

a× b =

a2b3 − a3b2
a3b1 − a1b3
a1b2 − a2b1

 =

p⃗T
1 r

1
2c

T
3 p⃗2 − p⃗T

1 r
1
3c

T
2 p⃗2

p⃗T
1 r

1
3c

T
1 p⃗2 − p⃗T

1 r
1
1c

T
3 p⃗2

p⃗T
1 r

1
1c

T
2 p⃗2 − p⃗T

1 r
1
2c

T
1 p⃗2

 . (22)

Note that τ , x1, and x2 are the parameterizations of π,
(R1, t1), and (R2, t2), respectively. So it is clear that each
p⃗T1 r

1
i c

T
j p⃗2 in (22) is of a quadratic form with respect to p⃗1

and p⃗2, whose coefficients are functions of τ , x1, and x2.
Thus, substituting p⃗1 = [x1; y1; z1] and p⃗2 = [x2; y2; z2]
into (22) and expanding it, we can get that the elements of
a× b have the form as (6).

D. Proof of Theorem 2
Let us define u = R1nl1 and vi = R2p⃗

i
l2
+ τ il2 (t2 − t1)

(i = 1, 2). Then equation (5) can be written as u · vi = 0.
Suppose that un and vin are the nth element of u and vi,
respectively. Similar to (21), we have

un = r1n · nl1 and vin = dn · p⃗l2 , n = 1, 2, 3, (23)

where r1n is the nth row of R1, and dn is a vector function of
the elements in π, t1, R2 and t2. Similar to (22), substituting
(23) into u · vi = 0 and expanding it, we can obtain that it
has the form as (7).

E. Proof of Theorem 3
Let us first consider the Jacobian Jε of ε(τ ,x1,x2)

defined in (9). Using the notations in (10), Jε has the form

Jε =


CU1 CV1 CW1

CU2 CV2 CW2

CU3 CV3 CW3

GX GY GZ

 . (24)

Substituting ε in (9) and Jε in (24) into JT
ε Jε, JT

ε ε and εTε
and using the block matrix multiplication rule, we obtain that
JT
ε Jε, JT

ε ε and εTε have the forms as shown in (12).

REFERENCES

[1] B. Triggs, P. F. McLauchlan, R. I. Hartley, and A. W. Fitzgibbon,
“Bundle adjustment—a modern synthesis,” in International workshop
on vision algorithms. Springer, 1999, pp. 298–372.

[2] M. Spetsakis and J. Y. Aloimonos, “A multi-frame approach to visual
motion perception,” International Journal of Computer Vision, vol. 6,
no. 3, pp. 245–255, 1991.

[3] F. Dellaert and M. Kaess, “Square root sam: Simultaneous localization
and mapping via square root information smoothing,” The Interna-
tional Journal of Robotics Research, vol. 25, no. 12, pp. 1181–1203,
2006.

[4] M. Kaess, A. Ranganathan, and F. Dellaert, “isam: Incremental
smoothing and mapping,” IEEE Transactions on Robotics, vol. 24,
no. 6, pp. 1365–1378, 2008.

[5] D. Sibley, C. Mei, I. D. Reid, and P. Newman, “Adaptive relative
bundle adjustment.” in Robotics: science and systems, vol. 32, 2009,
p. 33.

[6] M. I. Lourakis and A. A. Argyros, “Sba: A software package for
generic sparse bundle adjustment,” ACM Transactions on Mathemati-
cal Software (TOMS), vol. 36, no. 1, pp. 1–30, 2009.

[7] S. Agarwal, N. Snavely, S. M. Seitz, and R. Szeliski, “Bundle
adjustment in the large,” in European conference on computer vision.
Springer, 2010, pp. 29–42.

[8] C. Wu, S. Agarwal, B. Curless, and S. M. Seitz, “Multicore bundle
adjustment,” in CVPR 2011. IEEE, 2011, pp. 3057–3064.

[9] C. Zach, “Robust bundle adjustment revisited,” in European Confer-
ence on Computer Vision. Springer, 2014, pp. 772–787.

[10] K. Natesan Ramamurthy, C.-C. Lin, A. Aravkin, S. Pankanti, and
R. Viguier, “Distributed bundle adjustment,” in Proceedings of the
IEEE International Conference on Computer Vision Workshops, 2017,
pp. 2146–2154.

[11] R. Zhang, S. Zhu, T. Fang, and L. Quan, “Distributed very large scale
bundle adjustment by global camera consensus,” in Proceedings of the
IEEE International Conference on Computer Vision, 2017, pp. 29–38.

[12] L. Zhou, Z. Luo, M. Zhen, T. Shen, S. Li, Z. Huang, T. Fang, and
L. Quan, “Stochastic Bundle Adjustment for Efficient and Scalable
3d Reconstruction,” in European Conference on Computer Vision.
Springer, 2020, pp. 364–379.

[13] N. Demmel, C. Sommer, D. Cremers, and V. Usenko, “Square root
bundle adjustment for large-scale reconstruction,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion, 2021, pp. 11 723–11 732.

[14] N. Demmel, D. Schubert, C. Sommer, D. Cremers, and V. Usenko,
“Square root marginalization for sliding-window bundle adjustment,”
in Proceedings of the IEEE/CVF International Conference on Com-
puter Vision, 2021, pp. 13 260–13 268.

[15] T. Tanaka, Y. Sasagawa, and T. Okatani, “Learning to bundle-adjust: A
graph network approach to faster optimization of bundle adjustment
for vehicular slam,” in Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV), October 2021, pp. 6250–
6259.

[16] C.-H. Lin, W.-C. Ma, A. Torralba, and S. Lucey, “Barf: Bundle-
adjusting neural radiance fields,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV), October 2021,
pp. 5741–5751.

[17] S. Yang, Y. Song, M. Kaess, and S. Scherer, “Pop-up slam: Se-
mantic monocular plane slam for low-texture environments,” in 2016
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE, 2016, pp. 1222–1229.

[18] C. Liu, J. Yang, D. Ceylan, E. Yumer, and Y. Furukawa, “PlaneNet:
Piece-wise planar reconstruction from a single rgb image,” in Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2018, pp. 2579–2588.

[19] Z. Yu, J. Zheng, D. Lian, Z. Zhou, and S. Gao, “Single-image
piece-wise planar 3d reconstruction via associative embedding,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2019, pp. 1029–1037.

[20] S. Du, H. Guo, Y. Chen, Y. Lin, X. Meng, L. Wen, and F.-Y. Wang,
“Gpo: Global plane optimization for fast and accurate monocular slam
initialization,” in 2020 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 2020, pp. 6254–6260.

[21] X. Wang, M. Christie, and E. Marchand, “Relative Pose Estimation and
Planar Reconstruction via Superpixel-Driven Multiple Homographies,”
in 2020 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). IEEE, 2020, pp. 10 625–10 632.

[22] X. Li, Y. He, J. Lin, and X. Liu, “Leveraging planar regularities for
point line visual-inertial odometry,” in 2020 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE, 2020,
pp. 5120–5127.

[23] X. Li, Y. Li, E. P. Örnek, J. Lin, and F. Tombari, “Co-planar
parametrization for stereo-slam and visual-inertial odometry,” IEEE
Robotics and Automation Letters, vol. 5, no. 4, pp. 6972–6979, 2020.

[24] B. Xu, X. Li, J. Li, C. Yuen, J. Dai, and Y. Gong, “PVI-DSO: Lever-
aging Planar Regularities for Direct Sparse Visual-Inertial Odometry,”
arXiv preprint arXiv:2204.02635, 2022.

[25] X. Wang, M. Christie, and E. Marchand, “TT-SLAM: Dense Monoc-
ular SLAM for Planar Environments,” in 2021 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, 2021, pp.
11 690–11 696.

[26] P. Ji, Y. Tian, Q. Yan, Y. Ma, and Y. Xu, “Cnn-augmented
visual-inertial slam with planar constraints,” arXiv preprint
arXiv:2205.02940, 2022.

[27] F. Shu, J. Wang, A. Pagani, and D. Stricker, “Structure plp-slam:
Efficient sparse mapping and localization using point, line and
plane for monocular, rgb-d and stereo cameras,” arXiv preprint
arXiv:2207.06058, 2022.

[28] J. J. Moré, “The Levenberg-Marquardt algorithm: implementation and
theory,” in Numerical analysis. Springer, 1978, pp. 105–116.

[29] S. Agarwal, N. Snavely, I. Simon, S. M. Seitz, and R. Szeliski,
“Building rome in a day,” in 2009 IEEE 12th International Conference
on Computer Vision, 2009, pp. 72–79.

[30] J. L. Schonberger and J.-M. Frahm, “Structure-from-motion revisited,”
in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2016, pp. 4104–4113.

[31] E. Mouragnon, M. Lhuillier, M. Dhome, F. Dekeyser, and P. Sayd,
“Real time localization and 3d reconstruction,” in 2006 IEEE Com-
puter Society Conference on Computer Vision and Pattern Recognition
(CVPR’06), vol. 1. IEEE, 2006, pp. 363–370.

[32] G. Klein and D. Murray, “Parallel tracking and mapping for small ar
workspaces,” in 2007 6th IEEE and ACM international symposium on
mixed and augmented reality. IEEE, 2007, pp. 225–234.

[33] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardos, “Orb-slam: a
versatile and accurate monocular slam system,” IEEE transactions on
robotics, vol. 31, no. 5, pp. 1147–1163, 2015.

[34] P. Baker and Y. Aloimonos, “Structure from motion of parallel lines,”
in Computer Vision-ECCV 2004: 8th European Conference on Com-
puter Vision, Prague, Czech Republic, May 11-14, 2004. Proceedings,
Part IV 8. Springer, 2004, pp. 229–240.

[35] A. Bartoli and P. Sturm, “Structure-from-motion using lines: Repre-
sentation, triangulation, and bundle adjustment,” Computer vision and
image understanding, vol. 100, no. 3, pp. 416–441, 2005.

[36] A. Pumarola, A. Vakhitov, A. Agudo, A. Sanfeliu, and F. Moreno-
Noguer, “Pl-slam: Real-time monocular visual slam with points and
lines,” in 2017 IEEE international conference on robotics and automa-
tion (ICRA). IEEE, 2017, pp. 4503–4508.

[37] Q. Wang, Z. Yan, J. Wang, F. Xue, W. Ma, and H. Zha, “Line flow
based simultaneous localization and mapping,” IEEE Transactions on
Robotics, vol. 37, no. 5, pp. 1416–1432, 2021.

[38] C. Liu, K. Kim, J. Gu, Y. Furukawa, and J. Kautz, “PlanerCNN: 3d
plane detection and reconstruction from a single image,” in Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2019, pp. 4450–4459.

[39] Z. Zhou, H. Jin, and Y. Ma, “Plane-based content preserving warps
for video stabilization,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2013, pp. 2299–2306.

[40] J. Engel, V. Koltun, and D. Cremers, “Direct sparse odometry,” IEEE
transactions on pattern analysis and machine intelligence, vol. 40,
no. 3, pp. 611–625, 2017.

[41] R. Hartley and A. Zisserman, Multiple view geometry in computer
vision. Cambridge university press, 2003.

[42] D. Chen, S. Wang, W. Xie, S. Zhai, N. Wang, H. Bao, and G. Zhang,
“Vip-slam: An efficient tightly-coupled rgb-d visual inertial planar
slam,” in 2022 International Conference on Robotics and Automation
(ICRA). IEEE, 2022, pp. 5615–5621.

[43] J. Zhang and S. Singh, “Loam: Lidar odometry and mapping in real-
time.” in Robotics: Science and Systems, vol. 2, no. 9. Berkeley, CA,
2014, pp. 1–9.

[44] L. Zhou, D. Koppel, H. Ju, F. Steinbruecker, and M. Kaess, “An effi-
cient planar bundle adjustment algorithm,” in 2020 IEEE International

Symposium on Mixed and Augmented Reality (ISMAR). IEEE, 2020,
pp. 136–145.

[45] K. Favre, M. Pressigout, E. Marchand, and L. Morin, “A plane-
based approach for indoor point clouds registration,” in 2020 25th
International Conference on Pattern Recognition (ICPR). IEEE, 2021,
pp. 7072–7079.

[46] Z. Liu and F. Zhang, “BALM: Bundle Adjustment for LiDAR Map-
ping,” IEEE Robotics and Automation Letters, vol. 6, no. 2, pp. 3184–
3191, 2021.

[47] L. Zhou, S. Wang, and M. Kaess, “π-lsam: Lidar smoothing and
mapping with planes,” in 2021 IEEE International Conference on
Robotics and Automation (ICRA). IEEE, 2021, pp. 5751–5757.

[48] L. Zhou, D. Koppel, and M. Kaess, “Lidar slam with plane adjustment
for indoor environment,” IEEE Robotics and Automation Letters,
vol. 6, no. 4, pp. 7073–7080, 2021.

[49] L. Zhou, G. Huang, Y. Mao, J. Yu, S. Wang, and M. Kaess, “Plc-
lislam: Lidar slam with planes, lines and cylinders,” IEEE Robotics
and Automation Letters, 2022.

[50] J. Zhang, C. Zhang, J. Wu, J. Jin, and Q. Zhu, “Lidar-inertial 3d
slam with plane constraint for multi-story building,” arXiv preprint
arXiv:2202.08487, 2022.

[51] L. Zhou, “Efficient second-order plane adjustment,” arXiv preprint
arXiv:2211.11542, 2022.

[52] M. Kaess, “Simultaneous localization and mapping with infinite
planes,” in 2015 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 2015, pp. 4605–4611.

[53] M. Hsiao, E. Westman, G. Zhang, and M. Kaess, “Keyframe-based
dense planar slam,” in 2017 IEEE International Conference on
Robotics and Automation (ICRA). Ieee, 2017, pp. 5110–5117.

[54] G. Ferrer, “Eigen-factors: Plane estimation for multi-frame and time-
continuous point cloud alignment,” in 2019 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE, 2019,
pp. 1278–1284.

[55] P. Geneva, K. Eckenhoff, Y. Yang, and G. Huang, “LIPS: Lidar-Inertial
3D plane SLAM,” in IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2018, pp. 123–130.

[56] R. Kümmerle, G. Grisetti, H. Strasdat, K. Konolige, and W. Burgard,
“g 2 o: A general framework for graph optimization,” in 2011 IEEE
International Conference on Robotics and Automation. IEEE, 2011,
pp. 3607–3613.

[57] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers,
“A benchmark for the evaluation of rgb-d slam systems,” in 2012
IEEE/RSJ International Conference on Intelligent Robots and Systems,
2012, pp. 573–580.

[58] J. L. Schönberger and J.-M. Frahm, “Structure-from-motion revisited,”
in Conference on Computer Vision and Pattern Recognition (CVPR),
2016.

[59] J. L. Schönberger, E. Zheng, M. Pollefeys, and J.-M. Frahm, “Pixel-
wise view selection for unstructured multi-view stereo,” in European
Conference on Computer Vision (ECCV), 2016.

[60] R. B. Rusu and S. Cousins, “3D is here: Point cloud library (PCL),”
in 2011 IEEE international conference on robotics and automation.
IEEE, 2011, pp. 1–4.

