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Abstract— This paper introduces an efficient direct visual
odometry (VO) algorithm using points and lines. Pixels on
lines are generally adopted in direct methods. However, the
original photometric error is only defined for points. It seems
difficult to extend it to lines. In previous works, the collinear
constraints for points on lines are either ignored [1] or introduce
heavy computational load into the resulting optimization system
[2]. This paper extends the photometric error for lines. We
prove that the 3D points of the points on a 2D line are
determined by the inverse depths of the endpoints of the
2D line, and derive a closed-form solution for this problem.
This property can significantly reduce the number of variables
to speed up the optimization, and can make the collinear
constraint exactly satisfied. Furthermore, we introduce a two-
step method to further accelerate the optimization, and prove
the convergence of this method. The experimental results show
that our algorithm outperforms the state-of-the-art direct VO
algorithms.

I. INTRODUCTION

Visual simultaneous localization and mapping (VSLAM)
is a fundamental module for many robotic and computer
vision applications, ranging from autonomous navigation to
augmented reality (AR). The lightweight VSLAM system
without loop closure is generally named as visual odomery
(VO) [3], which is important for applications requiring real-
time pose estimation on resource-limited embedded devices.
Due to the importance of VSLAM and VO, they gain massive
attention in computer vision and robotics community.

Nowadays, deep learning technology outperforms tradi-
tional methods in various computer visual tasks. In terms
of VO, the learning-based methods have achieved significant
progress in recent years [4]–[8]. However, as these methods
require a powerful GPU, they are infeasible for real-time
applications on embedded systems. Traditional VSLAM and
VO systems are still more suitable for these applications.
The traditional methods are generally classified into two cat-
egories, i.e., feature-based (indirect) [9] and direct methods
[1]. The feature-based method has dominated this field for a
long time. Meanwhile, recent research [1], [2] shows that the
direct method demonstrates high accuracy and robustness,
even in low-textured scenarios that are generally challenging
for the feature-based approaches. Thus this paper focuses on
the direct method for VO.
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Fig. 1. The point cloud and lines generated by our algorithm.

Direct methods generally adopt pixels with sufficiently
large gradients, typically including corners and points on
lines. Points on lines can significantly outnumber corners
in many man-made scenarios, as demonstrated in Fig. 2 (a).
Tracking the corners through optical flow is well defined
[10]. However, tracking points on lines is problematic, as
there exists one-dimensional ambiguity along the line. Dis-
carding the collinear constraint may lead to less accurate
depth estimation, as illustrated in Fig. 2 (b). Although lines
have been explored to overcome this problem, they generally
significantly increase the computation load in the optimiza-
tion [2], [11]. This work is based on our previous work,
DPLVO [2], and we seek to accelerate the computation. The
main contributions of this paper include:

• We extend the photometric error to lines. The original
photometric error is only defined for points, which
makes it difficult to be applied to lines. Instead of
simply introducing the colllinear constraint into the cost
function as done in [2], we propose a novel method to
parameterize the 3D collinear points to make incorpo-
rating lines into the photometric error feasible. Specif-
ically, we prove that the 3D points of any points on a
2D line are determined by the inverse depths of the two
endpoints of the 2D line. This property can significantly
reduce the number of variables. Meanwhile, our method
has the collinear constraint exactly satisfied during the
optimization, which can improve the accuracy.

• We introduce a two-step approach to limit the compu-
tational complexity due to introducing long-term line
association into the optimization. In each iteration, we
first fit 3D lines using the fixed inverse depths and
keyframe poses. Then we use the new line parameters
to regulate the optimization of the inverse depths and



keyframe poses. The two resulting optimization prob-
lems are easy to solve. We prove that this method can
always converge.

Although this paper focuses on VO, the ideas can also be
incorporated into the direct visual-inertial odometry (VIO)
system [12].

II. RELATED WORK

Points and lines widely exist in man-made scenarios.
Feature-based and direct VSLAM or VO using points and
lines have been extensively studied.

A. Line Matching

One of the challenges of using lines is to perform line
matching. The descriptor-based line matching method is
widely adopted in previous algorithms [13]–[16]. The line
descriptor LBD [17] is generally used for this purpose. As
the traditional line detection method, such as LSD [18],
may be unstable, this may make the line matching fail [17].
Although deep learning based line detection methods [19]–
[23] show promising results, these methods are generally
computationally demanding. In addition, as the 3D line
segment observed by a moving camera will change when a
part of it emerges in or moves out the camera’s field of view
(FoV), this appearance change may also lead to the failure
of matching. Recently, tracking-based solutions are proposed
to overcome this problem. Wang et al. [17] propose the line
flow that exploits the spatial and temporal coherence for
line matching. In [2], the tracking-extension-redistribution
method is presented for line matching. This method samples
some points from a line, and then tracks them through
minimizing photometric error along the epipolar line, which
can be naturally incorporated into the front end of DSO [1].
Thus we adopt this method to establish the line association.

B. Feature-based Method

The performance of the feature-based methods that only
use points [9], [24]–[26] decreases in the low-textured areas.
Lines can complement points in the low-textured environ-
ments. The well established ORB-SLAM framework for
points [9], [25], [26] can be easily extended to lines [13].
But this strategy significantly increases the computational
load in both the front end and the back end [13]. The
structure of the lines in the indoor environment can be used
to improve the performance [27], [28]. Due to the Manhattan
world assumption, these methods are difficult to be applied
to outdoor scenarios.

C. Direct Method

Direct methods minimize the photometeric error to es-
timate camera poses and point depths [1], [29]. Drift is
inevitable for a VO system. Some recent works [30], [31]
introduce loop detection into the direct method for drift
correction. Although the loop closure can correct the drift,
it only rectifies the drift of the keyframe poses with hind-
sight. Accurate on-the-fly tracking poses are also important
for many real-time applications, such as motion planning,

Fig. 2. The necessity for employing the collinearity for the direct method.
(a) exemplifies the points (marked in red) adopted in DSO [1] in different
scenarios. Collinear points obviously outnumber corner features in these
scenarios. Due to the ambiguity in matching, depths of collinear 2D points
may be less accurate, as demonstrated in (b). Simply adding the collinear
constraints into the cost as done in [2] will increase the computational
complexity. This paper focuses on exploring the collinearity to improve the
accuracy and reduce the computational complexity as well.

control and AR. Lines provide another option to improve
the performance.

The photometeric error is to measure the difference be-
tween the intensity values of points in the reference and
target images. Unlike the feature-based methods where
the geometrical distance can be defined for difference
types of features, the photometric error is only defined
for points. Thus the direct method is hard to be ex-
tended for lines. In the literature, the collinear constraint
is generally used to regulate the depth estimation. In [11]
and [32], a 3D line is fitted to collinear points, and then
the collinear points are projected into this line. Lines are
not jointly optimized with points and keyframe poses in
these methods. In [2], the collinear constraint is combined
with the photometeric error to jointly optimize 3D lines
with points and keyframe poses. But there is no guarantee
that the collinear constraint can be exactly satisfied during
the optimization, and the lines significantly increase the
computational load of the optimization. In addition, the 3D
line in [2] is represented in the back-projected plane of
its first 2D line observation with two degrees of freedom
(DoF). Although this parameterization reduces the number of
unknowns to speed up the optimization, the estimation error
of the 2D line may result in a suboptimal result. Furthermore,
the 3D lines in [2] are initialized by fitting to the collinear 3D
points, which are initially estimated without considering the
collinear constraint. If the collinear points are of bad quality,
as demonstrated in Fig. 2 (b), the 3D line initialization will
be inaccurate or even fail, so that the 3D line may degrade or
lose its ability to regulate the depth estimation of the collinear
points. In this paper, we seek to overcome these drawbacks
and show how to efficiently optimize the full four-DoF of
the 3D lines with points and keyframe poses.



III. NOTATIONS AND PRELIMINARIES

In this paper, we use boldfaced letters to represent vectors
and matrices, and employ italic lowercase and italic uppercase to
represent scalars and functions, respectively.

Photometric Error The photometric error is defined between
a reference image Ii and a target image Ij . We represent a camera
pose by a rotation matrix R ∈ SO3 and a translation vector t ∈ R3,
or more concisely by a transformation matrix T ∈ SE(3). Let us
denote the poses of the reference and the target images as Ti and
Tj , respectively. Let Ω represent the image domain. Suppose x ∈ Ω
is a point in Ii with the inverse depth d. Assume x is also observed
by Ij at x′ ∈ Ωj . The relationship between x and x′ has the form

x′ = Πc

(
RijΠ

−1
c (x, d) + tij

)
, (1)

where Πc : R3 → Ω and Π−1
c : Ω×R→ R3 denote the projection

and back-projection function with the camera intrinsic parameters
c, and Rij and tij are the rotational and translational components
of TjT

−1
i , respectively. We adopt the photometric error formulated

in [1] with the form as:

Exj =
∑
x∈Nx

wx

∥∥∥∥(Ij [x′]− bj)− tje
aj

tieai
(Ii [x]− bi)

∥∥∥∥
γ

, (2)

where ti and tj are the exposure time of Ii and Ij , ai, aj , bi and
bj are the affine brightness transform parameters, wx is a gradient-
dependent weighting factor, Nx is a set of neighborhoods around
x, and ‖·‖γ is the Huber norm. The relationship between x and x′

is given in (1).
Plücker Coordinates A 3D line can be represented by the

Plücker coordinates [33]. Given two points p1 and p2 on a 3D
line, the Plücker coordinates of the 3D line have the form:

L = [m;d] , m = p1 × d and d =
p2 − p1

‖p2 − p1‖2
, (3)

where × represents the cross product. The Plücker coordinates are
homogeneous coordinates. Here we normalize d, as this can lead
to more concise formulas in the following description. Using the
Plücker coordinates in (3), we can write the distance from a point
p to L as

e (L,p) = m− p× d. (4)

Due to the overparamerization, the Plücker coordinates are seldom
directly used in optimization. Instead, a certain parameterization
for the Plücker coordinates is generally adopted in the optimization
[34]–[36]. But they generally suffer from singularity under certain
configurations. Our algorithm described in section IV-F can avoid
parameterizing the 3D line.

IV. DIRECT POINT-LINE MODEL

A. Parameterize 3D Points of Collinear 2D Points
In this section, we show that the 3D point of a 2D point on a 2D

line can be determined by the inverse depths of the two endpoints
of the 2D line, as demonstrated in Fig. 3 (a). Formally, assume x1

and x2 are the endpoints of a 2D line segment l with the inverse
depths d1 and d2, respectively. Using the back-projection function
Π−1

c introduced in (1), the 3D points for x1 and x2 have the form

p1 = Π−1
c (x1, d1) and p2 = Π−1

c (x2, d2). (5)

Using (3), we can compute the Plücker coordinates Ll of the 3D
line determined by p1 and p2. Let us write Ll as

Ll = [ml;dl] . (6)

Note that here Ll is a function of d1 and d2.

Fig. 3. A schematic of the photometric error for a line introduced in
this paper (a) and the collinear constraint used in DPLVO [2] (b). In (a),
the 3D point px of a 2D point x on the 2D line l are determined by the
inverse depths of x1 and x2. The p1, px and p2 and their projections
x′1, x′, and x′2 on Ij are exactly collinear. In fact, no matter how many
points are sampled from l, the number of variables will not increase and
the collinearity among them will be exactly satisfied. In (b), a 3D line
Ll is explicitly introduced to impose collinear constraints on p1, px and
p2. There is no guarantee that these points and their projections on Ij are
collinear. Furthermore, enlarging the number of sampled points on l will
increase the number of variables.

Suppose x is a point on l, which is different from x1 and
x2. According to [33], given the intrinsic camera matrix K, the
direction of the back-projected ray Lx of x has the form

dx =
K−1x̄

‖K−1x̄‖2
, (7)

where x̄ is the homogeneous coordinates of x. Let us denote the
3D point of x as px. Given d1 and d2, the following theorem gives
a closed-form solution for px.

Theorem 1: The 3D point px of a 2D point x on a 2D line l
is determined by d1 and d2 with the form:

px =
(
AT

l Al

)−1

AT
l bl,

Al =

[
[dl]×
[dx]×

]
and bl = −

[
ml

03×1

]
,

(8)

where [dl]× and [dx]× are the skew-symmetric matrices of dl and
dx that are defined in (6) and (7), respectively.

We prove Theorem 1 in the Appendix.

B. Photometric Error for Lines
The photometric error introduced in (2) is just defined for points.

In this section, we show that lines can be easily incorporated into
the photometric error (2), as demonstrated in Fig. 3 (a).

Assume that a 3D line L is observed by a reference image Ii
and a target image Ij , and the image of L in Ii is l. We sample
some points from l as done in [2]. According to Theorem 1, it is
clear that, given d1 and d2, the 3D points of the internal points on
l are determined. Thus we use different formulas to calculate the
photometric errors for the endpoints and the internal points of l.

For an internal point x, we first use (8) to calculate the corre-
sponding 3D point px. Then we project px into Ij . This process
can be formulated as

x′ = Πc(Rijpx + tij), (9)

where Rij and tij are the rotation matrix and the translation vector
from the coordinate system of Ii to the coordinate system of Ij
and are defined in (1). We can substitute (9) into (2) to get the
photometric error El

xj for the internal point x of l.
For the endpoints x1 and x2 of l, we adopt (2) to directly

calculate their photometric errors Ex1j and Ex2j , respectively.



Fig. 4. A schematic of our algorithm for one 3D line and the sliding
window of size three (a) and the Hessian matrices of different methods
(b)-(e). Four points are sampled from each 2D line. As done in DPLVO
[2], the invisible points of an active 3D line are fixed as priors in the
following optimization (demonstrated as the gray points in (a)). (b) and (c)
demonstrate the Hessian matrices of our two-step minimization algorithm
and directly minimizing (12), respectively. For our algorithm, no matter
how many points are sampled from a 2D line, only the inverse depths of
the two endpoints are optimized, since the 3D points of other points on
the 2D line are determined by them, as demonstrated in Fig. 3 (a). (d)
and (e) demonstrate the Hessian matrices of DSO [1] and DPLVO [2],
respectively. DSO only considers the photometric error of each point, and
DPLVO imposes collinear constraints on collinear points. Both methods
introduce an inverse depth for each pixel. It is clear that our two-step
minimization algorithm leads to the smallest Hessian matrix.

Assume that N internal points of l are sampled, which forms a
set X. We formulate the photometric error for a 2D line l as

Elj = Ex1j + Ex2j +
∑
x∈X

El
xj . (10)

Note that Elj only depends on the inverse depths of x1 and x2,
no matter how many points are sampled from l.

C. Collinear Constraint for Line Association
In the above section, we incorporate lines into the photometric

error. As an unbounded object, a 3D line can exist in the FoV of a
camera for a long time. We adopt the method introduced in [2] to
establish the line association, and introduce the collinear constraint
to regulate the depths of the endpoints, as demonstrated in Fig. 4.

Suppose that a 3D line with the Plücker coordinates L is
observed by ML poses whose indices form a set OL. Let us denote
the pose with index i ∈ OL as Ti, and the 2D line observation
of L at Ti as li. We use pi,1 and pi,2 to represent the two 3D
endpoints for li. pi,1 and pi,2 can be computed by (5) and are in
the local camera coordinate system. Using T−1

i , we can transform
pi,1 and pi,2 into the global coordinate system. Let us denote the
global coordinates of pi,1 and pi,2 as qi,1 and qi,2, respectively.
This work adopts the LSD algorithm [18] for line detection. Due
to noise, quantization error and motion blur, each line detected by
the LSD algorithm is associated with a line support region. Let ρi
represent the width of the support region of li. ρi can reflect the
uncertainty of the endpoints of li, and in turn impact the uncertainty
of the 3D endpoints qi,1 and qi,2. A larger ρi generally means
a higher uncertainty on the 3D endpoints. Thus, we adopt 1

ρi
to

weigh the collinear constraint. Using (4) and the above notations,
we formulate the collinear constraints for L as:

EL =
∑
i∈OL

1

ρi

(
‖e (L, qi,1)‖22 + ‖e (L, qi,2)‖22

)
, (11)

where e (L, qi,j) (j = 1, 2) is defined in (4), representing the
distance between L and qi,j .

D. Model Formulation
Our model combines the photometric errors from points and

lines, and the collinear constraints from line association. Using (2),

Fig. 5. Results of line combination. (a) illustrates lines detected by the
LSD algorithm [18]. It is clear that some line segments belong to a same
line. Line segments with similar parameters are merged, as demonstrated
by the red lines in (b). Note that we do not combine adjacent parallel lines,
as marked in the red box in (a). In this case, the merged line will not lie on
the edge. Instead, it may lie in a low-gradient area between the two lines.

(10) and (11), the full cost over all points, lines and keyframes is
formulated as

E =
∑
i∈F

∑
p∈Pi

∑
j∈obs(p)

Epj︸ ︷︷ ︸
point photo

+
∑
i∈F

∑
l∈Li

∑
j∈obs(l)

Elj︸ ︷︷ ︸
line photo

+
∑
L∈L

EL︸ ︷︷ ︸
collinearity

,

(12)
where i runs over all keyframes F, Pi and Li are the sets of 2D
points and 2D lines in keyframe i, obs(p) and obs(l) are the sets of
keyframes where p and l are visible, and L is the set of 3D lines.
For obs(l), we consider a line segment l is visible at a keyframe
j, if any sampled points on l are visible at the keyframe j.

Note that the collinear constraint plays a different role in DPLVO
[2] and this paper. The collinear constraint in DPLVO [2] is used to
regulate the depths of all the 2D points sampled from the matched
2D lines. There is no guarantee that 3D points from a 2D line will
be collinear. In this paper, each 2D line segment in a keyframe has
a corresponding 3D line segment estimated by minimizing the line
photometric error (10). That is to say even without the collinearity
term in (12), the collinearity of the 3D points from each 2D line
can still be satisfied. Thus, in this work, the collinear constraints
are only imposed on the endpoints of the 3D line segments to make
them consistent.

E. Windowed Optimization
We employ the sliding window strategy to optimize the full

cost (12) to balance accuracy and efficiency, as demonstrated in
Fig. 4. Marginalization is generally adopted in previous direct VO
algorithms [1], [2]. As a 3D line can exist in the FoV of a camera
for a long time, we want to keep updating a line when it is visible.
In addition, as wrong line associations may be included in (12), we
want to remove the wrong line association when we find the point-
to-line distance (4) is too large during the optimization. The wrong
association is difficult to be removed once it is marginalized out.
Thus this work does not adopt the marginalization method. Instead,
we adopt the optimization strategy that is similar to the local bundle
adjustment described in [9]. Specifically, we refine active poses
within the sliding window and the visible points and lines. Other
parameters in (12) are fixed. Let us take the term EL defined in (11)
as an example. If qi,1 and qi,2 become invisible, they get fixed, as
demonstrated by the gray points in Fig. 4 (a). Thus, EL becomes
a function that only depends on L. For a long 3D line segment,
this strategy may introduce many prior collinear constraints [2]. We
employ the method introduced in [2] to speed up the computation.
Wrong associations and large photometric errors can be easily
removed in this framework. We adopt the idea introduced in [37]
to efficiently solve the resulting optimization problem, where the
Schur complement is constructed incrementally and a residual is
relinearized if the change of the involved parameters is large.



Algorithm 1: Two-step minimization for E in (12).

while not converge do
1) Use the latest poses and inverse depths to fit 3D

lines L̂ = {L̂|L̂ = argminL EL,L ∈ L};
2) Fix L̂ and conduct one Levenberg-Marquardt step

[38] to update poses and inverse depths to reduce
the cost E;

end

F. Two-step Minimization
Lines enlarge the number of unknowns and correlate with points

and poses. Thus jointly optimizing lines with points and poses
will increase the computational load. We introduce a two-step
approach to minimize (12). Let us first focus on the last term of
(12). Points, lines and poses are correlated in this term. Given the
camera poses and the inverse depths of the 2D endpoints, this
problem is equivalent to fitting 3D lines to sets of points, i.e.,
L̂ = {L̂|L̂ = arg minL EL,L ∈ L}, where EL is defined in
(11). On the other hand, if the line parameters in L̂ are fixed,
the resulting cost function E for poses and inverse depths can
be minimized as efficiently as only considering the photometric
error alone. We can iterate these two steps. The algorithm, named
two-step minimization, is summarized in Algorithm 1. Note that
one Levenberg-Marquardt (LM) step may include more than one
iteration to reduce the cost [38] . One question is whether the two-
step minimization algorithm will converge or not. The following
theorem gives an answer to this question.

Theorem 2: The two-step minimization algorithm always con-
verges.

We prove Theorem 2 in the Appendix.

V. FRONT-END

Our front-end is similar to DPLVO [2], which manages points,
lines and frames. The main differences lie in 3D line initialization
and 2D line combination.

3D Line Initialization In DPLVO [2], some points are sampled
from a new 2D line. Then their 3D points are estimated individ-
ually without considering the collinear constraint. The 3D line is
initialized by fitting to these 3D points. If the 3D points are less
accurate as demonstrated in Fig. 2 (b), the line initialization will be
degraded or even fail, which impacts the stability of the algorithm.
In this paper, we consider imposing the collinearity at the line
initialization step. Specifically, given a new 2D line l, we track
the sampled 2D points in a subsequent image along the epipolar
line by minimizing the photometric error, as done in DPLVO. This
forms a set of correspondences {x↔ x′}. This tracking is unlikely
to generate accurate point-point correspondences, due to the pose
error and the ambiguity along the line l. But it can generate accurate
line-line correspondences. We fit a 2D line l′ to the tracked points
{x′}. Assume π and π′ are the back-projected planes of l and
l′, respectively. We calculate the 3D line by line triangulation
[17] if the angle between π and π′ is larger than 3◦. Then the
inverse depths of the endpoints of l can be computed and then
used in the subsequent line tracking. Motivated by [17], when a
new line association is available, we update the 3D endpoints by
averaging. Lines with large photometric errors during tracking will
be removed, and the points sampled from these lines will then be
treated as normal points in DSO [1].

2D Line Combination The LSD line detector [18] may return
several segments of a 2D line, as demonstrated in Fig. 5 (a). In
DPLVO [2], nearby lines with similar parameters are merged. This
approach may integrate adjacent but different lines, as marked in
the red dashed rectangle in Fig. 5 (a). In this case, the merged line

Fig. 6. The cumulative error curves for eate on the ICL NUM dataset
[39]. eate represents the absolute trajectory error. For an algorithm, a point
on its cumulative error curve represents the number of sequences whose
absolute trajectory error is smaller than a certain eate.

may lie in an area with low gradient. Thus we do not combine two
lines, when the projections to the merged line are overlapping or
the angle between the mean gradients of the two lines is large. As
demonstrated in Fig. 5, the merged lines may pass through low-
gradient areas. Thus, the original segments are projected to the
merged line. The 2D points are sampled from the projected line
segments separately. If approximately parallel lines are too close
to each other, we sum up the magnitude of the gradient along the
line, and keep the one with the largest amassed magnitude. We also
try to merge newly detected lines with the existing ones to avoid
introducing new parameters.

VI. EXPERIMENTAL RESULTS

A. Datasets and Metrics
We use the ICL-NUIM [39] and TUM monoVO [40] datasets to

evaluate the performance of the compared algorithms. The ICL-
NUIM dataset contains 8 indoor sequences, and the TUM monoVO
dataset has 50 loop-closed sequences from indoor and outdoor
environments. To deal with the non-deterministic behavior, we run
each sequence 10 times backwards and forwards, and adopt the
cumulative error curve to summarize the results, as done in [1].
This curve shows the number of tracked sequences whose errors
are below a certain threshold, which reveals both accuracy and
robustness of an algorithm. The ICL-NUIM dataset provides the
ground truth trajectory for each sequence. Thus we compare the
absolute trajectory error eate of the compared algorithm. On the
other hand, the TUM monoVO dataset does not offer the ground
truth trajectory. Instead, it provides the loop-closure ground truth.
We adopt the alignment error ealign, rotation drift er and scale drift
es defined in [40] to evaluate the performance of an algorithm.

B. Comparison with the State-of-the-art
We compare our algorithm (referred to as EDPLVO) with the

state-of-the-art visual odometry algorithms, including DSO [1],
DPLVO [2] and ORB-SLAM [9]. Fig. 6 and Fig. 7 show the results
for the ICL-NUIM dataset [39] and the TUM monoVO dataset
[40], respectively. The results show that our algorithm outperforms
other algorithms. The results of ORB-SLAM and DSO are obtained
from the website of DSO [1]. Our algorithm is closely related
to DPLVO. For a fair comparison, we use the line management
approach introduced in Section V to replace the counterpart in
DPLVO to make both algorithms have the same front end, and
name this method as DPLVO++. As shown in Fig. 6, DPLVO++
yields better results than DPLVO. As the two datasets are rich
in low-textured environments, ORB-SLAM does not perform well.
Due to the proposed line photometric error (10) that imposes exact
collinearity into photometric error and the optimization of the full
four DoF of the 3D line, our algorithm achieves better accuracy
than DPLVO++.



Fig. 7. The cumulative error curves on the TUM monoVO [40] dataset. The alignment error ealign, rotation drift er and scale drift es defined in [40] are
used to evaluate the performance of the compared algorithms. Here e′s in the last figure is defined as e′s = max(es, e

−1
s ). A point (e, n) on a cumulative

error curve means that there are n tracked sequences whose errors are smaller than e.

Fig. 8. Accumulated drifts of our algorithm and DPLVO++ [2]. (a) shows
the trajectories generated by our algorithm and DPLVO++. (c) and (d)
illustrate the point clouds of our algorithm and DPLVO++ at the place
of loop closure (b), respectively. The results show that our algorithm yields
smaller drift than DPLVO++.

Fig. 1 demonstrates the point cloud and lines generated by our
algorithm. Fig. 8 shows the trajectories and the point clouds at the
place of loop closure generated by our algorithm and DPLVO++
[2], respectively. The results show that the drift of EDOLVO is
smaller than DPLVO++.

C. Ablation Study
We then study the impact of different components of our algo-

rithm. We consider two variants of our algorithm:
• EDPLVO - LA: Line association is not established. That is

to say the collinearity term in (12) is removed.
• EDPLVO Joint: All variables in cost function (12) are jointly

adjusted. We adopt the four DoF representation introduced in
[34] to parameterize the 3D line.

Fig. 7 illustrates the results. Due to regulating the collinear
points, EDPLVO - LA outperforms DSO. Besides, the performance
of EDPLVO - LA approaches DPLVO++ [2]. It is not surprising
that EDPLVO outperforms EDPLVO - LA, as the line association
introduces additional constraints for poses. The differences between
the results of EDPLVO and EDPLVO Joint are marginal, but
EDPLVO is significantly more efficient, as discussed below.

D. Runtime
The main contributions of this paper focus on the back-end.

Thus we evaluate the runtime of the back-end of our algorithm,
EDPLVO Joint, DSO [1] and DPLVO++ [2]. The runtime was
obtained on a laptop with an i7 3.4 GHZ CPU and 16G memory
using the TUM monoVO dataset. The average runtime of the back-
ends of our algorithm, EDPLVO Joint, DSO [1] and DPLVO++
[2] is about 96ms, 123 ms, 141 ms and 172 ms respectively. Our
algorithm has the fastest back-end among the compared algorithms.
Note that although 3D lines in EDPLVO Joint are parameterized in
four DoF [34] and DPLVO++ adopts a two-DoF parameterization
for 3D lines, EDPLVO Joint is still faster than DPLVO++.

VII. CONCLUSIONS

This paper presents a novel direct VO algorithm. We prove that
the 3D points of pixels on a 2D line are determined by the inverse
depths of the endpoints of the 2D line, which makes incorporating
lines into the photometric error feasible. Compared to DPLVO [2],
our algorithm significantly decreases the number of variables in the
optimization and makes the collinearity exactly met. Furthermore,
we introduce a two-step optimization method to speed up the
optimization and prove its convergence. The experimental results
show that our algorithm significantly reduces the computation load
of the optimization and obtains more accurate results than the state-
of-the-art VO algorithms.

APPENDIX

A. Proof of Theorem 1
Proof: The 3D point px should be at the intersection of

the line Ll and the back-projected line Lx of x, as shown in
Fig. 3 (a). Lx passes through the origin of the camera. Thus its
Plücker coordinates have the form Lx = [0;dx], where dx is
defined in (7). According to (4), px should satisfy the following
equation system

ml − px × dl = 03×1,

px × dx = 03×1.
(13)

As px × dl = − [dl]× px and px × dx = − [dx]× px, the linear
system (13) can be rewritten as

[dl]× px = −ml,

[dx]× px = 03×1.
(14)

Using the definition of Al and bl in (8), the equation system
(14) can be written as Alpx = bl. Thus px has a closed-form
solution px =

(
AT

l Al

)−1
AT

l bl. As the elements of Al and bl
only depend on d1 and d2, px is determined by d1 and d2.

B. Proof of Theorem 2
Proof: Let us denote as Ek the value of cost (12) at the kth

iteration. At the (k+ 1)th iteration, we first minimize the last term
EL in (12) with the fixed poses and inverse depths obtained at the
kth iteration. Assume the value of (12) after this step is E[1]

k+1. As
the first two terms in (12) do not involve the 3D lines, they keep
the same value after this step. Thus it is clear that E[1]

k+1 ≤ Ek.
In the second step, we fix the value of the 3D lines and conduct
one LM step for the poses and inverse depths to reduce the value
of E[1]

k+1. Assume the value of (12) after this step is Ek+1. It is
obvious that

0 ≤ Ek+1 ≤ E[1]
k+1 ≤ Ek. (15)

According to the monotone convergence theorem (i.e., if a sequence
is decreasing and bounded below, this sequence has a limit), the
two-step minimization algorithm always converges.
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