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LiDAR SLAM with Plane Adjustment for Indoor Environment
Lipu Zhou1, Daniel Koppel1 and Michael Kaess2

Abstract—Planes ubiquitously exist in the indoor environment.
This paper presents a real-time and low-drift LiDAR SLAM
system using planes as the landmark for the indoor environ-
ment. Our algorithm includes three components: localization,
local mapping and global mapping. The localization component
performs real-time and global registration, instead of the scan-to-
scan registration adopted in the state-of-the-art LiDAR odometry
and mapping (LOAM) framework that yields lower fidelity poses.
The local mapping component optimizes poses of the keyframes
within a sliding window and parameters of the planes observed by
these keyframes. The global mapping component conducts global
plane adjustment (GPA) that jointly refines plane parameters
and keyframe poses. The GPA is triggered when planes are
revisited, rather than a place is revisited. This can establish
constraints among remote places, and correct the drift without
having to go back to a previously visited place. We adopt the
point-to-plane distance to construct the cost functions of all
the three components. Although this distance results in a large-
scale least-squares problem that seems not suitable for real-time
applications, we propose efficient algorithms to solve the resulting
minimization problems by exploiting the special structure of
the point-to-plane distance. Experimental results show that our
algorithm achieves real-time performance and outperforms the
state-of-the-art LiDAR SLAM algorithms.

Index Terms—SLAM, Range Sensing, Mapping, Localization

I. INTRODUCTION

S IMULTANEOUS localization and mapping (SLAM) using Li-
DAR is essential for many indoor robotic applications, such as

autonomous navigation, control and motion planning. Additionally,
LiDAR SLAM can yield a dense 3D map that is important for many
indoor computer vision tasks, such as augmented reality (AR), and
3D object classification [1]. Due to its importance, this paper focuses
on investigating LiDAR SLAM in the indoor environment.

Planar surfaces ubiquitously exist in the indoor environment. Thus,
planes are widely used in the scan registration in previous works,
such as surfel-based methods [2], [3], planar variants [4], [5] of the
iterative closest point (ICP) framework [6], and the LiDAR odometry
and mapping (LOAM) framework [7] and its variants [8]–[10]. In
these works, planes are not jointly optimized with poses. Instead, they
are estimated on the fly from a small set of the points in the global
point cloud which is generated by assembling previous LiDAR scans
together. This may result in a vicious loop. Specifically, the pose error
lowers the quality of the global point cloud, which in turn reduces
the accuracy of the pose estimation. We overcome this problem by
jointly optimizing plane parameters and LiDAR poses, called plane
adjustment (PA) in this paper that is the counterpart of the bundle
adjustment (BA) in visual SLAM. Besides, planar objects have two
sides, and a LiDAR may see them at different locations, as shown
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in Fig. 1. As the two sides are typically close to each other, the
nearest-neighbor matching scheme widely adopted in previous works
may result in wrong data association that in turn may lead to a large
pose estimation error, named the double-side issue in this paper. This
issue can be solved by comparing the plane normal direction.

This work presents a LiDAR SLAM system using planes as the
landmark based on the state-of-the-art visual SLAM framework,
ORB-SLAM [11]. Our algorithm has three components: localization,
local mapping and global mapping. The localization component
establishes the local-to-global data association, and then undistorts
and registers a new scan to the global plane model in real time. The
local and global mapping components correct the drift and improve
the map through PA. The cost function is crucial for a least-squares
problem [12]. In the three components, instead of choosing the
widely used plane-to-plane cost [13]–[16], we adopt the more robust
point-to-plane cost [17]. We show that the seemingly prohibitive
computational load from the point-to-plane cost can be significantly
reduced, so our algorithm can achieve robustness and real time
simultaneously.

The main contributions of this paper include:
• We adopt the point-to-plane distance to construct the cost

function, and verify that the resulting large-scale least-squares
problems can be efficiently solved.

• We introduce a new loop closure criterion and present a corre-
sponding detection method based on validation of the geometric
consistency. We trigger the loop closure if existing planes are
revisited, rather than a place is revisited, as demonstrated in
Fig. 2. The traditional loop closure detection method based on
appearance similarity [2], [18]–[22] is not suitable for this task.

• We introduce the forward ICP flow to enable real-time global
registration. In contrast, the LOAM framework [7] and its
variants [8]–[10] perform low-frequency global registration.
Besides, the forward ICP flow tracks planar points from the nth
scan to the (n+1)th scan which generates a smaller number of
constraints than the ICP process [22] where the whole (n+1)th
scan is used to find the nearest planar points in the nth scan.

• We solve the double-side issue that may cause wrong data
association. We make the plane normal point toward the LiDAR
center. Then the two sides of a plane can be easily distinguished.

II. RELATED WORK

Scan Registration ICP [6] and its variants [4], [5] provide a
general approach to align two point clouds. Surfel-based methods [2],
[23] give an alternative way for scan registration. These approaches
ignore the motion within a scan, which may result in a suboptimal
pose estimation. The approaches [3], [24] model the in-scan motion
(or called the continuous-time SLAM) and combine it with the surfel.
Sparse feature-based registration is generally more efficient. A well-
known feature-based framework with in-scan motion correction is
LOAM [7]. LOAM uses plane and edge as features, and solves the
SLAM problem by two algorithms. The first algorithm provides real-
time but low-fidelity pose estimation by scan-to-scan registration.
The second algorithm refines the pose by registering a scan to
the global point cloud. It runs at a much lower frequency due to
the higher computational complexity. LeGO-LOAM [8] reduces the
number of features used in LOAM and leverages the ground plane
to assist segmentation and optimization. Lin et al. [9] extend LOAM
to the solid state LiDAR. Deschaud [25] uses implicit moving least
squares (IMLS) to represent the surface, and presents a scan-to-
model registration method. This algorithm shows better accuracy
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Fig. 1. Double-side issue of planar objects. Fig. (a) demonstrates an example
of the double-side issue of the planar object. There are holes in the glass
areas, as the laser can see through the glass. Planar objects (such as doors
and walls) have two sides that are close to each other. This may result in
wrong data association for the nearest-neighbor search method that are widely
used in previous works. We use the plane normal to solve this problem as
shown in (b). We make the normal of a plane point toward the origin of the
sensor coordinate system. As demonstrated in (a), this method succeeds in
distinguishing the two sides of the door and the wall.

than LOAM, but it does not achieve real-time performance. The
recent work LOL [10] introduces place recognition into LOAM to
correct the accumulated drift of LOAM. One major drawback of
the mapping algorithm based on incremental scan registration is
the lack of a counterpart of the BA in visual SLAM. The pose
estimation errors end up accumulating into the global map, which
in turn degrades the pose estimation accuracy. This forms a vicious
circle. Besides, these algorithms adopt the nearest-neighbor search
to establish data association, which is hard to handle the double-
side issue mentioned above. Furthermore, the global registration is
generally computationally demanding, as directly establishing local-
to-global data association requires to search large global K-D trees,
and except for the surfel-based methods, the global model (planes or
lines) are generally calculated on the fly.

SLAM with Planes In the algorithms mentioned above, planes
are not explicitly detected, matched, parameterized and optimized. In
fact, planes have also been explicitly treated as landmarks in SLAM
systems of various depth sensors. Pathak et al. [13] introduce an
algorithm named minimally uncertain maximal consensus to find the
plane correspondences for pose estimation. Kaess [14] introduces
a new plane parameterization based on the quaternion. Besides, he
presents the relative plane formulation to improve the convergence
speed. This formulation is adopted in [15] for the global optimization
after loop closure. Geneva et al. [16] introduce the closest point (CP)
to parameterize planes, which outperforms the plane parameterization
introduced in [14]. Planes together with other features are also used
in the EKF framework for pose estimation [26]. In these works,
they adopt the plane-to-plane cost. As shown in [17], the point-
to-plane cost generally converges faster and leads to more accurate
results. Ferrer [27] derives the closed-form gradient of an algebraic
point-to-plane cost. As only the gradient is used in the optimization,
it is generally less efficient than the Levenberg-Marquardt (LM)
method [28]. The recent work [29] derives the first and second order
derivatives of the point-to-plane cost, which is sufficient to apply the
LM algorithm. However, as its computational complexity is O(N2)
where N is the number of points, this method is hard to be applied
to a large-scale problem. This paper adopts the point-to-plane cost.
We show the resulting continuous-time scan registration, local PA
(LPA) and global PA (GPA) can be solved efficiently. Although
similar concepts are used in our previous work π-LSAM [22], this
work has significant improvement compared to [22]. For the scan
registration, we adopt the first-order Taylor expansion to simplify
the computation rather than the LM algorithm used in π-LSAM. For
LPA, π-LSAM adopts the marginalization strategy which is difficult
to remove the false data association and difficult to recover the
marginalized information. In this paper, we overcome this problem
by introducing the cost function constructed by fixing old keyframe
poses and parameters of unseen planes. Using this cost function, we
can easily remove false data associations and add prior constraints,
which are generated from previous observations, on a plane when
the plane is revisited. To speed up the computation, we introduce an

Fig. 2. Two examples of establishing loop closure between two remote
locations. Walls marked in the red rectangles above are initially observed at
location A, and then are revisited at location B. The revisited walls can provide
constraints to correct drift. The scan A and B are almost non-overlapping.
Since planes are infinite, they can be revisited without returning to the location
where they were first observed. This significantly differs from visual SLAM.
The 3D models of the above two datasets are shown in Fig. 8 (c) and (d).

integrated cost matrix (ICM) for each plane. Moreover, the GPA in π-
LSAM is triggered when a robot returns back to a previous location.
In this work, we conduct GPA when a plane is revisited.

Loop closure is important for a SLAM system. To detect a loop,
previous approaches generally require the sensor to return back to
a visited place [2], [18]–[22]. This makes the mapping inefficient.
Although loop closure is typically related to place recognition,
essentially it is to establish the data association between current
observations and previously visited landmarks. Thus, we consider
that a loop occurs when previous planes are revisited. Since a plane
is an unbounded object, it can be revisited at a place far from the
first place where this plane was observed, as shown in Fig. 2. Thus
we can correct the drift without having to go back to a previously
visited location. This can speeds up the mapping.

III. SYSTEM OVERVIEW

Our system has three components: localization, local mapping and
global mapping, as shown in Fig. 3.

The localization component establishes the local-to-global point-
to-plane data association. Then it undistorts and registers the current
scan to the global plane model, and determines whether a new
keyframe should be added or not.

The local mapping is triggered once a new keyframe is added. This
component detects new planes and matches them with the existing
planes, then it optimizes the keyframes within a sliding window and
the the planes observed by these keyframes.

The global mapping is performed when a plane is revisited.
This component jointly optimizes all the keyframe poses and plane
parameters.

IV. NOTATIONS AND PRELIMINARIES

In this paper, we use italic, boldfaced lowercase and boldfaced up-
percase letters to represent scalars, vectors and matrices, respectively.

1) Pose: We represent a rigid transformation as a rotation matrix
R ∈ SO(3) and a translation vector t ∈ R3, or more concisely as a
transformation matrix T ∈ SE (3)

This paper adopts the angle-axis parameterization ω =
[ω1;ω2;ω3] to represent R. Let us define the skew matrix of ω as
[ω]× that lies in the tangent space so (3) of the manifold SO (3) at
the identity [14]. The exponential map exp : so (3)→ SO (3) is

exp
(
[ω]×

)
= I +

sin (‖ω‖)
‖ω‖ [ω]× +

1− cos (‖ω‖)
‖ω‖2

[ω]2× . (1)

Accordingly, we parameterize T as x = [ω; t].
Let Sk denote the kth scan captured within (tsk, t

e
k]. Sk is associ-

ated with two poses Ts
k and Te

k which represent the LiDAR pose at tsk
and tek, respectively. Ts

k is estimated by the localization component,
and Te

k is optimized in LPA and GPA. The relationship between
the two poses is

Te
k−1 = Ts

k. (2)
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Fig. 3. Overview of our SLAM system. It has three components, i.e.,
localization, local mapping and global mapping. The three components all
interact with the map. LPA and GPA represent the local and global plane
adjustment introduced in section VI-G and VII, respectively. ICM is defined
in section VI-E, which is used to speed up LPA.

Fig. 4. Planes detected by our algorithm.

This relationship is important to correct the drift of the pose Te
k after

LPA and GPA. To simplify the notation in the following description,
we use Tk to represent Ts

k or Te
k if its meaning can be recognized

by the context.
2) Plane: Planar objects have 2 sides, which are generally close

to each other, as shown in Fig. 8. This may cause wrong data
association. We call this issue the double-side issue. We set the plane
normal looking toward the LiDAR origin. Then the two sides of a
planar object can be easily distinguished.

We use π = [n; d] to represent a plane, where n is the normal
looking toward the LiDAR origin with ‖n‖2 = 1, and d is the
distance from the origin to the plane. The point-to-plane residual
δ for a point p on π observed at pose T is

δ = πTTp̄, (3)

where p̄ denotes the homogeneous coordinates of p. According to
the requirement of different tasks, π and T can be optimized jointly
or either of them can be fixed. In the optimization, we adopt the
closest point (CP) η to parameterize π, i.e., η = nd [16]. Given η,
we have π = [ η

||η||2
; ||η||2].

V. LOCALIZATION

A. Initial Global Planes
We assume the LiDAR starts from a stationary state. Thus the first

frame does not suffer from the motion distortion. We extract planes
from the LiDAR point cloud based on a region growing method
similar to [30]. Specifically, we first estimate the normal of each
point, and then we segment the point cloud by clustering points with
similar normals. For each cluster, we apply the RANSAC algorithm to
detect a plane. We keep the plane with more than N points (N = 30
in our experiments).

B. Forward ICP Flow
In this paper, we introduce the forward ICP flow to track planes

scan by scan, instead of detecting planes in each scan as done in
previous works [13]–[16]. This can reduce the runtime and naturally

propagate the local-to-global data association scan by scan. Fig. 4
shows the results of this algorithm.

Assume Sk and Sk−1 are two consecutive scans. Suppose Pk−1,i is
the set of points belonging to the ith plane detected in Sk−1 with the
parameters πk−1,i, and Pk−1,i is associated with the mith global
plane πg

mi
. That is to say we have a set of local-to-global point-

to-plane correspondences Pk−1,i ↔ πg
mi

for Sk−1. We then track
Pk−1,i in scan Sk.

We build a K-D tree on Sk. For each point pk−1,i,j ∈ Pk−1,i,
we find the n nearest neighbors in Sk (n = 2 in our experiments).
Eliminating redundant points, we obtain a point set P̃k,i. We apply
the RANSAC algorithm to fit a plane πk,i from P̃k,i, and obtain an
inlier set Pk,i. We then expand Pk,i by incorporating nearby points
whose distances to πk,i are smaller than 5cm. If the number of
points in Pk,i is larger than N (N is defined in section V-A), and
the angle between the normals of πk,i and πk−1,i is smaller than θ
(we use θ = 15◦), we obtain a set of local-to-global point-to-plane
correspondences Pk,i ↔ πg

mi
for scan Sk. Here the angular threshold

θ is used to solve the double-side issue.
The π-LSAM [22] adopts an opposite direction to establish the

local-to-global constraints. As the number of points in Sk is generally
larger than the number of planar points ∪Pk−1,i in Sk−1, our new
algorithm generally results in a smaller number of candidate data
associations, which will speed up the computation.

C. State Estimation and Scan Undistortion
Relative Pose We define the rigid transformation from scan k to

scan k−1 as Tk−1,k with the rotational and translational components
Rk−1,k and tk−1,k, respectively. Suppose ωk−1,k is the angle-axis
representation of Rk−1,k. We use xk−1,k = [ωk−1,k; tk−1,k] to
parameterize Tk−1,k.

We denote the rigid transformation at the last point of scan k− 1
and scan k as Tk−1 and Tk, respectively. The relationship between
Tk−1, Tk and Tk−1,k is

Tk = Tk−1Tk−1,k. (4)
We aim to calculate xk−1,k, after which we can in turn get Tk−1,k

and finally obtain Tk.
Linear Interpolation of Relative Pose As mentioned in section

IV-1, the points in scan Sk are captured within (tsk, t
e
k]. When the

LiDAR is moving, Sk will be distorted by the motion. This problem
is generally addressed by linearly interpolating the pose for each
point in Sk [7], [9]. For t ∈ (tsk, t

e
k], we define s =

t−tsk
te
k
−ts

k
∈ (0, 1].

Then Rt
k−1,k and ttk−1,k of the rigid transformation Tt

k−1,k can be
estimated by the following linear interpolation

Rt
k−1,k = exp

(
s [ωk−1,k]×

)
and ttk−1,k = stk,k−1. (5)

Pose Estimation Cost Now, let us consider the set of corre-
spondences Pk,i ↔ πg

mi
. Assume the jth point pk,i,j ∈ Pk,i is

captured at time tk,i,j . According to (3), (4) and (5), the residual for
pk,i,j ↔ πg

mi
can be written as

δk,i,j (xk−1,k) =
(
πg

mi

)T
Tk−1T

tk,i,j

k−1,kp̄k,i,j . (6)

Define lgmi
=
(
πg

mi

)T
Tk−1. Substituting it into (6), we have

δk,i,j (xk−1,k) = lgmi
T

tk,i,j

k−1,kp̄k,i,j . (7)

Suppose we have Nk sets of point-to-plane correspondences{
Pk,i ↔ πg

mi

}Nk

i=1
, and Pk,i has Nk,i points. We can formulate the

least-squares cost function for xk−1,k as follows

min
xk−1,k

Nk∑
i=1

Nk,i∑
j=1

δ2k,i,j (xk−1,k) . (8)

As different points have different transformation matrices, solutions
for the traditional point-to-plane registration problem, such as [31],
are not suitable for (8). Here we employ the linearization of Rt

k−1,k

to simplify this problem.
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Approximation of Rotation Assuming the rotation within Sk

is small, then we can adopt the first-order Taylor expansion to
approximate the Rt

k,k−1 in (5):

Rt
k−1,k ≈ I + s [ωk−1,k]× . (9)

Let us define lgmi
=

[
agmi

, bgmi
, cgmi

, dgmi

]
and p̄k,i,j =[

xk,i,j , yk,i,j , zk,i,j , 1
]T . Substituting lgmi

, p̄k,i,j and (9) into (7)
and expanding it, we obtain a linear constrain on xk−1,k:

ak,i,jxk−1,k = bk,i,j ,where

ak,i,j = sk,i,j ·
[
cgmi

yk,i,j − bgmi
zk,i,j , a

g
mi
zk,i,j − cgmi

xk,i,j ,

bgmi
xk,i,j − agmi

yk,i,j , a
g
mi
, bgmi

, cgmi

]
, (10)

bk,i,j = −
(
agmi

xk,i,j + bgmi
yk,i,j + cgmi

zk,i,j + dgmi

)
.

In ak,i,j , we set sk,i,j =
tk,i,j−tsk
te
k
−ts

k
. Stacking all the constraints

from
{
Pk,i ↔ πg

mi

}Nk

i=1
, we obtain a linear system for xk−1,k

Akxk−1,k = bk. (11)

Thus we have a closed-form solution for xk−1,k =

−
(
AT

k Ak

)−1
AT

k bk. After we get xk−1,k, we can recover
Rk−1,k using the exponential map (1).

Iterative Approximation When the rotation between Sk−1

and Sk is large, the first-order Taylor expansion (9) cannot well
approximate Rt

k,k−1. In this case, we iteratively refine the solution.
Specifically, we start with calculating an initial estimation x0

k−1,k

from (11) which generates an initial transformation matrix T0
k−1,k. If

||ω0
k−1,k||2 > τ , we update p̄k,i,j = T

0,tk,i,j

k−1,k p̄k,i,j , where T
0,tk,i,j

k−1,k

is the linear interpolation of T0
k,k−1 at time tk,i,j calculated by (5).

We then use the new p̄k,i,j to generate a new linear system (11).
We solve it to get x1

k−1,k and the corresponding T1
k−1,k. We repeat

these steps at most K times or until the rotation angle is smaller than
τ . Given m iterations, Tk−1,k can be computed by

Tk−1,k = Tm
k−1,kTm−1

k−1,k · · ·T
0
k−1,k. (12)

During the iteration, we adopt the bisquare weight for robustness as
in [7]. In our experiments, we set K = 5 and τ = 0.5◦.

D. Keyframe Decision
We use the following criteria to add a keyframe:
• The distance between the current frame and the last keyframe

is larger than 0.2m.
• The ration angle between the current frame and the last

keyframe is larger than 10◦.
• 20% of the points in the current frame are not tracked.

When one of the above criteria is met, we trigger the local mapping
process for this new keyframe.

VI. LOCAL MAPPING

A. Add New Keyframe
Detect Planes For a new keyframe, we first undistort the scan

by applying the transformation in (5). Then we detect planes in the
point cloud that has not been tracked, using the method described in
section V-A. We keep planes that have more than N points ( N is
defined in section V-A).

Match Planes Using the estimated pose, new local planes are
transformed into the global frame and then matched with the global
planes. Specifically, for a new plane, we first select the global planes
whose normals are nearly parallel to its normal (the angle between
the normals is less than 10◦ in our experiments). Next, we compute
the mean distance from the points of this new plane to each of
the candidate global planes, and keep the one with the smallest
mean distance. Let d̄min denote this smallest mean distance. If
d̄min < γ (we set γ = 5cm in our experiments), we keep this
new correspondence. If d̄min < 3γ, we trigger an extra geometric

Fig. 5. A schematic of the factor graph of LPA with window size three. xi

represents the state of the ith keyframe, and πj denotes the jth plane. ci,j
is the cost from the set of points of πj recorded at xi. In LPA, we optimize
the poses of the keyframes within a sliding window (i.e., x4,x5,x6) and the
planes observed by them (i.e., π2,π3,π4). Other poses (i.e., x1,x2,x3)
and planes (i.e., π1) are fixed. The cost function contains two parts, i.e.,Cf

and Cw , defined in (14). Both of them can be significantly simplified.

consistency check (GCC) described below, otherwise we add a new
global plane.

Geometric Consistency Check We represent the linear system
(11) generated from the original correspondences as Ao

kxk−1,k =
bo
k, and denote its solution as x̂o

k−1,k. Let Ai
kxk−1,k = bi

k represent
the linear constraints obtained from the ith new correspondence. We
solve the following augmented linear system to check the ith new
correspondence

Ao+i
k xk−1,k = bo+i

k , where Ao+i
k =

[
Ao

k

Ai
k

]
,bo+i

k =

[
bo
k

bi
k

]
. (13)

Let x̂o+i
k−1,k denote the solution of (13) and d̄o+i

min denote the mean
point-to-plane distance for the solution x̂o+i

k−1,k. We keep the ith new
correspondence if the following two criteria are met:
• d̄o+i

min < γ.
• ||Ao

kx̂
o+i
k−1,k−bo

k||2 < λ||Ao
kx̂

o
k−1,k−bo

k||2. This requires the
cost of the original constraints increase only slightly. We set
λ = 1.05 in the experiments.

If the ith new correspondence only meets the second criterion
and d̄o+i

min < 2γ, which means the new correspondence seems
consistent to the current plane model, we treat it as an undetermined
correspondence (UC). This situation may happen if the drift is large
or the new plane is close to an existing plane. We conduct additional
GCCs for all the UCs in LPA and GPA. The UC will be tracked, but
it will not be used for scan registration until it is verified as a correct
correspondence.

We can efficiently solve the linear system (13). Specifically, for
each new correspondence, we solve the normal equation system
Ao+i

k

T
Ao+i

k xo+i
k−1,k = Ao+i

k

T
bo+i
k . We find that Ao+i

k

T
Ao+i

k =

Ao
k
TAo

k + Ai
k
T
Ai

k and Ao+i
k

T
bo+i
k = Ao

k
Tbo

k + Ai
k
T
bi
k. It is

clear that Ao
k
TAo

k and Ao
k
Tbo

k, which dominate the computation,
are shared among the new linear systems, and we already have
them when we compute xk−1,k in (11). Thus the augmented linear
system (13) can be easily solved. Finally, after we find all the new
correspondences, we can efficiently solve the final linear system that
combines all the constraints, as we have already computed Ao

k
TAo

k

and Ao
k
Tbo

k, and some Ai
k
T
Ai

k and Ai
k
T
bi
k during GCC.

B. Cost Function of Local Plane Adjustment
The LPA optimizes the poses of the keyframes within the sliding

window and all the parameters of the planes observed by these
keyframes, as demonstrated in Fig. 5. We set the window size as
Nw (Nw = 8 in our experiments). The latest Nw keyframes form a
set W. Assume the planes observed by the Nw keyframes form a set
O, and the keyframes out of the window which see the planes in O
form a set F. The poses of the keyframes in F are fixed. Denote the
parameterization of the pose of the ith keyframe as xi. Suppose the
jth plane πj has the CP parameters ηj , and the measurements of πj
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at xi are a set of Ki,j points defined as Pi,j = {pi,j,k}
Ki,j

k=1 . Each
pi,j,k ∈ Pi,j provides one constraint δi,j,k with the form defined in
(3). In LPA, we minimize the following cost

min
xi,ηj
i∈W
j∈O

∑
i∈W

∑
j∈Oi

Ki,j∑
k=1

δ2i,j,k (xi,πj)︸ ︷︷ ︸
ci,j(xi,πj)︸ ︷︷ ︸

Cw

+
∑
j∈O

∑
m∈Fj

Km,j∑
k=1

δ2m,j,k (πj)︸ ︷︷ ︸
cm,j(πj)︸ ︷︷ ︸

Cf

, (14)

where Oi is the set of planes observed by the ith keyframe xi, and
Fj is the set of keyframes out of the sliding window which see the
jth plane πj . Here δm,j,k(πj) only depends on πj , as the pose out of
the window is fixed. Assume Jw and Jf are the Jacobian matrices of
the residual δw in Cw and the residual δf in Cf , respectively. Then
the Jacobian matrix Jl and the residual δl of (14) have the form

δl =
[
δTw , δ

T
f

]T and Jl =
[
JT
w,J

T
f

]T
. (15)

Then we can compute the step vector of the LM algorithm by solving
the linear system

(
JT
l Jl + λI

)
ξ = −JT

l δl. As planes generally have
many observations, directly computing this linear system is time-
consuming. The computation of δw and Jw can be simplified by the
algorithm introduced in [17]. Here we focus on δf and Jf .

C. Residual Vector δf
We first consider the residual vector δf in Cf . Assume qm,j,k is

a point on πj observed at pose Tm. δm,j,k (πj) in (14) has the form

δm,j,k (πj) = πj
TTmq̄m,j,k = q̄T

m,j,kTm
Tπj . (16)

Stacking all the Km,j residuals in (16), we obtain a residual vector

δm,j (πj) = Qm,jT
T
m︸ ︷︷ ︸

Pm,j

πj = Pm,jπj , (17)

where Qmj =
[
· · · , q̄mjk, · · ·

]T .
Further stacking all δm,j(πj) for m ∈ Fj , we get the residual

vector δj (πj) for πj in Cf :

δj (πj) =
[
· · · , PT

mj , · · ·
]T
πj = Pjπj , (18)

We finally stack all δj (ηj) for j ∈ O to get the residual vector
δf in Cf in (14):

δf = [ · · · , δj (πj)
T , · · · ]T . (19)

D. Jacobian Matrix Jf

To calculate Jf , we first calculate the derivatives of δm,j,k (πj)
in (16) with respect to ηj . Here we define p̄mjk = Tmq̄m,j,k, as
Tm is fixed. Then (16) can be rewritten as

δm,j,k (πj) = p̄T
m,j,kπj . (20)

Let us define ηj = [ηj,1, ηj,2, ηj,3]T . Then the derivatives of
δm,j,k (πj) with respect to ηj have the form

∂δm,j,k(πj)

∂ηj
=
∂δm,j,k(πj)

∂πj

∂πj

∂ηj

= p̄T
m,j,k

[
∂πj

∂ηj,1
,
∂πj

∂ηj,2
,
∂πj

∂ηj,3

]
︸ ︷︷ ︸

Vj

= p̄T
m,j,kVj .

(21)

Then, using (18) and (21), we obtain the Jacobian matrix block of
δj (πj) in (19)

Jj =
[
0 · · · PjVj · · · 0

]
. (22)

Stacking all Jj (j ∈ O), we get the Jacobian matrix Jf of δf in (19)

Jf =
[
· · · , JT

j , · · ·
]T
. (23)

As the number of points recorded by a LiDAR is large, δf in (19)
and Jf in (23) involve a large amount of computation. We introduce
the reduced residual vector δrf and the reduced Jacobian matrix Jr

f

to reduce the computational complexity.

Fig. 6. A schematic of updating ICM Hj of plane πj incrementally. Assume
the nth keyframe is about to be removed from the sliding window, and there
are K sets of observations of πj out of the sliding window. Pn,j is generated
from the set of observations of πj at the nth keyframe with the form defined
in (17). Then we update Hj by HK+1

j = HK
j +PT

n,jPn,j .

E. Reduced Residual Vector and Jacobian Matrix
Using (18), the last two summation of Cf in (14) has the form

Cj =
∑
m∈Fj

cm,j(πj) = δj (πj)
T δj (πj)

= πT
j PT

j Pj︸ ︷︷ ︸
Hj

πj = πT
j Hjπj = πT

j LjL
T
j πj ,

(24)

where Hj = LjL
T
j is the Cholesky decomposition of the 4 × 4

matrix Hj , and Lj is a 4 × 4 lower triangular matrix. As Hj is a
4×4 matrix, the runtime of the Cholesky decomposition is negligible.
We call Hj the integrated cost matrix (ICM) for πi. Let us define
reduced the residual vector δrf and reduced Jacobian matrix Jr

f as

δrf =
[
· · · δrj T · · ·

]T and Jr
f =

[
· · · Jr

j
T · · ·

]T
, (25)

where δrj = LT
j πj and Jr

j =
[

0 · · · LT
j Vj · · · 0

]
. δrf and

Jr
f include all the information required by the LM algorithm, and

using these reduced forms significantly decreases the computational
time. Specifically, we have the following two lemmas:

Lemma 1: JT
f Jf = Jr

f
TJr

f and JT
f δf = Jr

f
T δrf .

Lemma 2: Assume there are Kj residuals in δj (πj) (defined in
(18)). The runtime of computing Jr

j , δrj , Jr
j
TJr

j and Jr
j
T δrj is 4

Kj

of the runtime of computing the original Jj , δj , JT
j Jj and JT

j δj .
We prove Lemma 1 and 2 in the Appendix section.

F. Incremental Computation of Hj

As we show above, Hj in (24) is crucial to simplify the com-
putation. Hj summarizes the cost derived from the observations of
plane πj at keyframes out of the sliding widow. Due to the large
number of observations of πj , it is time-consuming to compute Hj

from scratch each time. Here we introduce an incremental method to
avoid the redundant computation for Hj , as demonstrated in Fig. 6.

Assume there are K keyframes out of the sliding window which
have seen πj . This results in a corresponding HK

j computed from
(24). Suppose δn,j (πj) = Pn,jπj with the form defined in (17) is
the residual vector derived from the observations of πj at the nth
keyframe xn that is about to be removed from the sliding window,
as demonstrated in Fig. 6. Using the definition of Hj in (24) and
the definition of Pj in (18), we can compute HK+1

j for the K + 1
keyframes out of the sliding window as follows

H
K+1
j = P

T
j Pj =

∑
m 6=n

P
T
m,jPm,j + P

T
n,jPn,j = H

K
j + P

T
n,jPn,j . (26)

Each global plane has an ICM. Once a keyframe is removed from
the sliding window, we update the ICMs of the planes observed by
this keyframe through (26).

G. Local Plane Adjustment
Before we perform the optimization, we remove the oldest

keyframe if the sliding window is full. Now we consider minimizing
(14). As (14) is generally a large-scale optimization problem, we first



6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JUNE, 2021

Fig. 7. Factor graph for a GPA problem with N poses and M planes. x1 is
fixed during the optimization.

simplify its residual vector δl and the corresponding Jacobian matrix
Jl in (15). In [17], we proved that δw and Jw in (15) can be replaced
by a reduced residual vector δrw and a reduced Jacobian Jr

w in the
LM algorithm. Let us define

Jr
l =

[
Jr
w

T ,Jr
f
T
]T and δrl =

[
δrw

T , δrf
T
]T
. (27)

Then we have the following theorem for Jr
l and δrl :

Theorem 1: Jr
l and δrl can replace Jl and δl in the LM algorithm.

As Jr
l and δrl have a much lower dimension than Jl and δl, they

can significantly reduce the computational complexity. The proof of
Theorem 1 can be found in the Appendix section.

During the optimization, if there exist UCs in the new keyframe,
we test them. If the mean point-to-plane distance d̄L of a UC is
smaller than γ (γ is defined in section VI-A), we treat it as a correct
correspondence. If d̄L < 2γ, we still treat it as a UC, otherwise we
remove it. After LPA, if there does not exist a UC, we correct the
drift of the localization component. Let Ts

n denote the pose of the
latest keyframe. Using (2), we know its correspond tracking pose is
Te

n−1. We calculate ∆T = Ts
n(Te

n−1)−1. Then we apply ∆T to
the latest tracking pose to correct its drift. If new correspondences
or UCs are retained, we consider previous planes are revisited. The
GPA introduced bellow is then triggered.

VII. GLOBAL MAPPING

When global planes are revisited as introduced in section VI-A,
GPA is triggered after LPA. GPA jointly optimizes keyframe poses
and plane parameters by minimizing the point-to-plane distances.

Assume that there are M planes and N keyframes. The factor
graph of GPA is demonstrated in Fig. 7. Using the notations in section
VI-B, we can write the cost function of GPA as

min
xi,ηj
i6=1

N∑
i=1

M∑
j=1

ci,j (xi,πj) . (28)

We adopt the method introduced in [17] to efficiently solve (28).
During the optimization, we test the remaining UCs. If the mean
point-to-plane distance d̄G of a UC is smaller than γ (γ is defined
in section VI-A), we treat it as a correct correspondence, otherwise
we remove it. After GPA, the drift of the tracking pose is corrected
as done after LPA.

Update ICM After we refine the poses, we need to update
the ICM Hj of each plane. This can be done efficiently. As
shown in (26), the important elements for computing Hj are the
summands PT

n,jPn,j . Using the form of Pn,j defined in (17), we
have PT

n,jPn,j = TnQT
n,jQn,jT

T
n . As QT

n,jQn,j is fixed, we only
need to compute it once. After GPA, we use the refined pose Tn to
update PT

n,jPn,j , and then we sum them up to get the new Hj . Since
we only need to compute the most time-consuming part QT

njQnj

once and afterwards we can reuse it, updating Hj is fast.

VIII. EXPERIMENTAL RESULTS

A. Dataset
We used a NavVis M6 device to collect four indoor datasets with

many large rotation motions, as shown in Fig. 8. The trajectory
estimated by the NavVis system is treated as the ground truth. The
NavVis device has a Velodyne VLP-16 LiDAR and 3 Hokuyo single-
layer LiDARs. It estimates the pose through the LiDARs mentioned

TABLE I
THE KEYFRAME ATES OF LEGO-LOAM [8], BALM [29] AND VARIANTS

OF OUR ALGORITHM ON FOUR INDOOR DATASETS. LEGO-LOAM [8]
FAILS TO COMPLETE THE SEQUENCES A, C AND D, AND BALM [8] FAILS

TO FINISH THE SEQUENCE C, AS SHOWN IN FIG. 10.
A B C D

Length (m) 261.9 294.0 391.7 139.7
LeGO-LOAM [8] (m) - 1.33 - -
BALM [29] (m) 0.34 0.21 - 0.23
π-LSAM [22] (m) 0.082 0.16 0.13 0.11
Ours - LPA - GPA (m) 0.29 0.25 0.24 0.46
Ours - GPA (m) 0.18 0.14 0.11 0.16
Ours (m) 0.039 0.042 0.033 0.048

above and an IMU. In addition, it can also use the wifi signal and
manually set ground control points to trigger loop closure to improve
the accuracy of the trajectory. The four trajectories were generated
by fusing all the information through hours of offline computation.
We only use the data collected by the Velodyne VLP-16 LiDAR,
and adopt the absolute trajectory error (ATE) to evaluate the
performance of different algorithms.
B. Results

In this section, we provide the experimental results. We ran the
experiments on a computer with a 3.1 GHz Intel i7 CPU and 16G
memory. We first explore the impact of different design selections of
our algorithm. Then we compare our algorithm with the state-of-the-
art LiDAR SLAM algorithms, LeGO-LOAM [8] and BALM [29].
Finally, we provide the runtime of our algorithm. In the following
experiments, we run all the compared algorithms 5 times on each
dataset, and report the median of the resulting ATEs.

Ablation Study We study two variants of our algorithm:
• Ours - GPA - LPA: Our algorithm without GPA and LPA.
• Ours - GPA: Our algorithm without GPA.

Table I lists the ATEs of the above variants of our algorithm, and
Fig. 9 shows the trajectories generated by them on dataset A and D.
It is clear that LPA and GPA can significantly improve the accuracy
of trajectory. Dataset D contains a loop. In previous work, the loop
closure will be triggered at the end of the trajectory. In our algorithm,
the loop closure can be triggered much earlier as shown in Fig. 2.
Comparing the trajectories from our algorithm and the one without
GPA in Fig. 9, we find that our loop closure strategy can correct the
drift much earlier instead of correcting it at the end. Fig. 8 shows
the maps generated by our algorithm. Our algorithm can distinguish
and reconstruct the two sides of planar objects. This results in more
accurate data association compared to the nearest-neighbor method.

Benchmarking We compare our algorithm with LeGO-LOAM
[8] and BALM [29]. Table I lists the results of the compared
algorithms. Our algorithm, even the variant without GPA and LPA,
significantly outperforms LeGO-LOAM [8]. BALM adopts planes
and lines as the landmarks. It dose not have the loop closure. We
find that our algorithm without GPA (Ours - GPA) surpasses BALM.
This is probably because BALM adopts the nearest-neighbor method
to get the data association that may results in false data associations
due to the double-side issue of the planar objects. As shown in Fig.
11, the two sides of the walls reconstructed by BALM are mixed
together. Besides, BALM estimates the plane parameters from a
small set of points, instead the plane parameters in our algorithm
are estimated from a much larger set of points, which may result in
more accurate plane parameters. Fig. 10 shows the trajectories of the
compared algorithms. LeGO-LOAM and BALM are not stable for
the large rotation motion. LeGO-LOAM fails to finish the sequences
A, C and D, and BALM fails on the sequence C. Furthermore, the
odometry trajectory of LeGO-LOAM that is estimated from scan-to-
scan registration has obvious jitters, and its trajectory from scan-to-
map registration is much smoother but it has a lower frequency. Our
algorithm and BALM perform global registration for each scan. Thus
the resulting odometry trajectory is smooth and accurate.

Runtime We use the dataset B and C that have the longest
two trajectories to evaluate the runtime of different components
of our algorithm. Table II shows the results. The average runtime
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Fig. 8. Planes and trajectories generated by our algorithm for the four datasets. Our algorithm can identify and recover the double sides of planar objects
(such as walls and doors), which can lead to more accurate data association compared to the nearest-neighbor search.

TABLE II
RUNTIME (MS) OF DIFFERENT COMPONENTS OF OUR ALGORITHM.

Dataset Localization Local Mapping Global Mapping
Forward ICP Flow Pose Estimation Keyframe Decision Detect Planes Match Planes GCC LPA GPA Update ICM

B 25.6± 5.1 16.5± 4.2 0.076± 0.031 10.1± 2.9 5.7± 3.1 0.65± 0.36 8.6± 3.5 395.6± 301.9 1.5± 1.3
C 28.2± 5.8 17.3± 4.8 0.074± 0.029 9.8± 2.6 6.0± 3.2 0.67± 0.35 9.1± 2.9 420.2± 330.2 1.7± 1.6

Fig. 9. The results of our algorithm and its variants on dataset A and D.
The benefit of our loop closure strategy is clear by comparing the trajectories
from our algorithm and “Ours - GPA” on dataset D (the 2nd image). Our
method can correct the drift much earlier (as shown in the 2nd image of Fig.
2) instead of correcting it at the end where the traditional loop closure occurs.

Fig. 10. The trajectories of our algorithm, LeGO-LOAM [8] and BALM [29].
The odometry trajectories of LeGO-LOAM have obvious jitters as shown in
the rectangle of dataset A. BALM smooths each pose, so its keyframe and
odometry trajectories have the same number of poses. For dataset D, the
odometry and keyframe trajectories of π-LSAM [22] are different. This is
because its loop closure is trigger at the end of the trajectory. Our method
can conduct the loop closure much earlier to correct the drift as shown in the
2nd image of Fig. 2, which benefits the online applications, such as motion
planning and control.

of the localization component is about 42.1ms and 45.5ms on
dataset B and C, respectively. As one scan of a VLP-16 LiDAR
takes 100 ms, our algorithm achieves real time. On the other hand,
the localization component of π-LSAM [22] averagely takes about
62.3ms and 60.7ms on dataset B and C, respectively. Thus our
algorithm is faster than π-LSAM. We also test the runtime of the
plane extraction algorithm introduced in section V-A. The runtime of

Fig. 11. The point cloud of BALM [29] on dataset B. Compared to our results
in Fig. 8, it is clear that BALM mixes the double sides of the walls.

this algorithm is about 71.3 ± 5.6ms and 73.2 ± 6.1ms on dataset
B and C, respectively. Thus, our plane tracking strategy is about 3
times faster. The local mapping can be finished around 25.1±5.8ms
and 25.6 ± 6.3ms for dataset B and C, respectively. Thus it can
quickly update the map and the trajectory to reduce the drift. We
also test the runtime for directly minimizing (14). Our algorithm can
speed up LPA 32 and 37 times on dataset B and C, respectively. The
standard deviation of GPA is large. This is because GPA is triggered
at obviously different places.

IX. CONCLUSION

In this paper, we present a novel LiDAR SLAM algorithm using
planes as the landmark for the indoor environment. Our algorithm
consists of localization, local mapping and global mapping. The
localization component provides real-time and globally consistent
poses, rather than the lower fidelity local registration pose in the
LOAM framework [7]. To achieve this, we introduce the forward
ICP flow to maintain the correspondences between local planes and
global planes scan by scan, which avoids getting this information
from scratch through the nearest-neighbor search in previous works.
We show that the large-scale least-squares problem from the point-
to-plane cost can be significantly simplified. We linearize the rotation
matrix to simplify the LiDAR scan undistortion and pose estimation.
We introduce the reduced residual vector and Jacobian matrix to
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speed up the PA. As planes can be revisited at a remote place,
we propose to trigger the global mapping when existing planes are
revisited, rather than a place is revisited. The experimental results
show that our algorithm outperforms the state-of-the-art LiDAR
SLAM methods [8], [29] and achieves real-time performance.

APPENDIX

A. Proof of Lemma 1

Proof. We first prove JT
f Jf = Jr

f
TJr

f . Jf in (23) and Jr
f in (25) are block

vectors. Using the block matrix multiplication rule, we have

JT
f Jf =

∑
j∈O

JT
j Jj , and Jr

f
TJr

f =
∑
j∈O

Jr
j
TJr

j . (29)

Using the definition of Jj in (22), we know that JT
j Jj only has one non-

zero term VT
j PT

j PjVj . According to the definition of Hj in (24), we have
VT

j PT
j PjVj = VT

j HjVj Similarly, according to the definition of Jr
j in

(25), Jr
j
TJr

j also only has one non-zero term VT
j LjL

T
j Vj . Using (24), we

have VT
j LjL

T
j Vj = VT

j HjVj . According to the above discussion, we
know JT

j Jj = Jr
j
TJr

j . As the summands of JT
f J and Jr

f
TJr

f in (29) are
equal, we have JT

f Jf = Jr
f
TJr

f .
Then we prove JT

f δf = Jr
f
T δrf . δf in (19), Jf in (23), δrf and Jr

f in
(25) are all block vectors. Using the block matrix multiplication rule, we have

JT
f δf =

∑
j∈O

JT
j δj , and Jr

f
T δrf =

∑
j∈O

Jr
j
T δrj . (30)

According to the definition of Jj in (22) and the definition of δj in (18),
Jj

T δj only has one non-zero term VT
j PT

j Pjπj . Using the definition of
Hj in (24), we have VT

j PT
j Pjπj = VT

j Hjπj . Similarly, according to
the definition of Jr

j and δrj in (25), the only non-zero term of Jr
j
T δrj is

VT
j LjL

T
j πj = VT

j Hjπj . Thus using (30), we have JT
f δf = Jr

f
T δrf

B. Proof of Lemma 2

Proof. Comparing Jr
j and δrj in (25) with Jj in (22) and δj in (18), and

according to the forms of Jr
j
TJr

j , Jr
j
T δrj , Jj

TJj and Jj
T δj in the proof

of Lemma 1, we know that the difference between the two sets of entities is
that we use Lj to replace Pj . Lj has 4 rows, and Pj has Kj rows. Thus,
the runtime for calculating the reduced entities is 4

Kj
relative to calculating

the original ones.

C. Proof of Theorem 1

Proof. To prove this theorem, we only need to verify JT
l Jl = Jr

l
TJr

l and
JT
l δl = Jr

l
T δrl . Using the definition of Jl and δl in (15) and the definition

of Jr
l and δrl in (27), we have

JT
l Jl = JT

wJw + JT
f Jf , Jr

l
TJr

l = Jr
w

TJr
w + Jr

f
TJr

f ,

JT
l δl = JT

wδw + JT
f δf , Jr

l
T δrl = Jr

w
T δrw + Jr

f
T δrf .

(31)

According to [17] we know JT
wJw = Jr

w
TJr

w , and according to Lemma
1 we have JT

f Jf = Jr
f
TJr

f . Thus we know the summands of JT
l Jl and

Jr
l
TJr

l in (31) are equal. Finally, we have JT
l Jl = Jr

l
TJr

l . Similarly, as
JT
wδw = Jr

w
T δrw and JT

f δf = Jr
f
T δrf , we obtain JT

l δl = Jr
l
T δrl .
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