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Abstract— Estimating pose from given 3D correspondences,
including point-to-point, point-to-line and point-to-plane corre-
spondences, is a fundamental task in computer vision with many
applications. We present a fast and accurate solution for the
least-squares problem of this task. Previous works mainly focus
on studying the way to find the global minimizer of the least-
squares problem. However, existing works that show the ability
to achieve the global minimizer are still unsuitable for real-time
applications. Furthermore, as one of contributions of this paper,
we prove that there exist ambiguous configurations for any
number of lines and planes. These configurations have several
solutions in theory, which makes the correct solution may come
from a local minimizer when the data are with noise. Previous
works based on convex optimization which is unable to find local
minimizers do not work in the ambiguous configuration. Our
algorithm is efficient and able to reveal local minimizers. We
employ the Cayley-Gibbs-Rodriguez (CGR) parameterization
of the rotation to derive a general rational cost for the three
cases of 3D correspondences. The main contribution of this
paper is to solve the first-order optimality conditions of the
least-squares problem, which are of a complicated rational
form. The central idea of our algorithm is to introduce some
intermediate unknowns to simplify the problem. Extensive ex-
perimental results show that our algorithm is more stable than
previous algorithms when the number N of correspondences
is small. Besides, when N is large, our algorithm achieves the
same accuracy as the state-of-the-art algorithm [1], but our
algorithm is about 7 times faster than [1] in real applications.

I. INTRODUCTION

Estimating the pose from 3D correspondences, i.e. point-
to-point, point-to-line and point-to-plane correspondences, is
known as the 3D registration problem in the literature [2],
[31, [4], [S], [11, [6]. It is one of the fundamental problems in
computer vision with a wide range of applications, such as
simultaneous localization and mapping (SLAM) [7], [8], [9],
[10], [11], extrinsic calibration [12], [13], [14], [15], [16] and
iterative closes point (ICP) framework [17]. Besides, some
camera pose estimation problems, such as the perspective-n-
point (PnP) problem [18], [19], [20] and the perspective-
n-line (PnL) problem [21], [22], can be transformed to
a 3D registration problem [6]. However, the research on
this problem is not as thorough as other pose estimation
problems.

Previous works mainly focus on solving the least-squares
problem. Although large progress has been made, achieving
the optimal solution and the real-time performance is still
a challenge. Some algorithms [4], [1] are capable of finding
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Fig. 1. An ambiguous configuration for four point-to-line correspondences
which has 2 solutions, described in lemma 1. We plot the side view (left) and
the top view (right) of the cost (12) for the unknowns s; and s2 defined
in (5). To the best of our knowledge, this is the first work revealing the
existence of the ambiguity for the 3D registration problem.

the global minimum, however, their running time makes them
not suitable for real-time applications. Recently, Wientapper
[6] provided an efficient algorithm, but their algorithm can
not achieve the global optimality in theory, and has the risk of
no solution. Furthermore, previous works generally assume
that the correct solution is the global minimizer. However,
we find that the correct solution may come from a local
minimizer in some configurations. The contributions of this
paper are as follows:

First, we prove that there exist ambiguous configurations
for any number of plane and line correspondences, which
leads to multiple solutions in theory. When a configuration
approximates ambiguity, the correct solution of the problem
may come from a local minimizer. Therefore, previous works
[2], [4], [1] that are only able to compute the global mini-
mizer may fail in these cases. Revealing local minimizers is
essential for an algorithm to handle all the configurations of
the 3D registration problem.

Second, we present an efficient and accurate solution
for the 3D registration problem. We use the Cayley-Gibbs-
Rodriguez (CGR) parametrization to represent the rotation,
which generates a rational cost function. We derive its
first-order optimality conditions. They form a high order
polynomial system, and are hard to solve. Four intermediate
unknowns are introduced to relax the original problem, which
results in much simpler first-order optimality conditions.
Grobner basis method [23] is applied to solve this equation
system. Then we refine the solution by the Newton-Raphson
method.

We evaluate our algorithm with synthetic and real data.
Extensive experimental results show that our algorithm sig-
nificantly outperforms previous works [2], [4], [1], [6]when
the number of correspondences is small. Besides, experimen-
tal results verify that our algorithm can converge to the global
minimizer with the same accuracy as the previous works
with guaranteed globally optimality [4], [1], however, our



algorithm is much faster.

II. RELATED WORKS

This paper focuses on the pose estimation from point-
to-point, point-to-line and point-to-plane correspondences
correspondences. Pose estimation from point-to-point cor-
respondences has been solved in early works [24], [25],
[26]. There exist closed-form solutions for this problem.
However, estimating pose from point-to-line and point-to-
plane correspondences is more complicated. These 3D cor-
respondences actually yield similar distance function, which
is employed by previous works to construct a general cost
function [2], [3], [4], [5], [1], [6]. The difference of various
cost functions lies in the parameterization of the rotation
matrix. The raw rotation matrix is adopted in [3], [1], and
the quaternion [25] is used in [2], [4], [5], [6]. Previous
works mainly focus on finding the global minimizer of the
resulting cost function. In [4], they proposed a provably opti-
mal algorithm. They employed convex underestimators with
branch-and-bound methods to iteratively compute the global
minimum of the cost function. Although this algorithm
can guarantee global optimality, it is very time-consuming.
Olsson et al. [3] reduced the computational complexity
by applying the Lagrangian dual relaxation to approximate
the cost function. Their experimental results showed that a
single convex semidefinite program can well approximate the
original problem. Recently, an improved result is obtained
by a strengthened Lagrangian dual relaxation [1]. Although
without theoretical guarantees, their experimental results
show that this algorithm can achieve the global minimum.
Although these algorithms [3], [1] have made progress
in efforts to reduce the computational time, they are still
not suitable to demanding real-time applications. Recently,
Wientapper [6] provided an efficient algorithm based on
Grobner basis polynomial solver. They introduced the first
order derivatives of the norm-one constraint of the quaternion
into the first order optimality conditions of the cost function
as [20], rather than apply the Lagrangian formulation for
the norm-one constraint of the quaternion. This results in
an efficient solution, however, their result is not optimal in
theory. Furthermore, as the number of equations is greater
than the number of unknowns, the equation system may have
no solution. They introduced 4 pre-rotations to solve the
problem 4 times to handle this problem. The pre-rotation is
to make the no-solution problem happen less likely, however,
it can not fully solve this problem in theory.

3D registration without correspondence is an related but
more complicated problem. Several works [27], [28], [29],
[30] presented globally optimal solution for the 3D point
cloud registration without correspondence. The ICP frame-
work [17] gives a general way to find correspondences
and the pose at the same time. Although this framework
was originally designed for the point, other 3D models can
also be introduced into this framework [31], [32], [33].
The ICP framework iteratively finds the nearest elements as
correspondences then calculates the pose until it converges.

(b)

Fig. 2. (a) Pose estimation for mixed point-to-point, point-to-line and point-
to-plane correspondences. (b) A schematic of the point-to-point, point-to-
line and point-to-plane distance.

Efficiently and accurately estimating the pose from current
3D correspondences is critical for the ICP framework.

III. PROBLEM FORMULATION

In this paper, we use italic, boldfaced lowercase and
boldfaced uppercase letters to represent scalars, vectors and
matrices, respectively. This paper focuses on the problem of
pose estimation from point-to-plane, point-to-line and point-
to-point correspondences as demonstrated in Fig. 2 (a). Fig.
2 (b) illustrates the distance of the three correspondences.
We first consider the point-to-plane correspondence. 2 (b).
Suppose we have a point x; in one coordinate system
and the corresponding plane in another coordinate system
represented by the plane’s norm-one normal n and a point
y™ lying on it. Then the scalar residual between a point and
a plane can be written as

r.=n"’ Rx;+t—yx) (D

For the point-to-line correspondence, we can calculate the
3-dimensional residual vector between a point x; and the
corresponding line represented by the norm-one direction d
and a point y; on it as

r= (I3 —dd") (Rx;+t —y;) )

where I3 is the identify matrix. Lastly, a point-to-point
correspondence yields a 3-dimensional residual vector

r,=Rx, +t -y, 3)

R and t have 6 DoF. We adopt the concept, i.e. effective
number of correspondences, defined in [1]. Let us denote the
number of effective correspondences as N. One point-to-
plane, point-to-line and point-to-point correspondence pro-
vide 1, 2, and 3 constraints, respectively. For n, point-
to-plane, n; point-to-line, and n, point-to-point correspon-
dences, we have N = n, +2 x n;+3 X n,. This paper seeks
to estimate the pose for N > 6.

IV. LEAST SQUARES SOLUTION

Using the notation in (1), (2) and (3), we define our cost
function as follows

Ny ny Np
Crip (R>t) = Z T?r.; + Z rlj,;rli + Z r;?irpw
) 1= =1

=1 1 “)
st. RRT =13, det (R) = 1,

where det (R) represents the determinant of R.
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Fig. 3. A schematic of a point-to-line ambiguous configuration (a) and a

point-to-plane ambiguous configuration (b) described in Lemma 1 and 2,
respectively.

A. Ambiguous Configurations

In previous works, the global minimizer is treated as the
optimal solution. It is well known that there is an unique
solution for at least three point-to-point correspondences,
except for the degenerate configuration, i.e. all the points are
collinear. However, for plane and line, there exist configura-
tions which have several solutions. We call them as ambigu-
ous configurations. The ambiguous configuration differs from
the degenerate configuration. The ambiguous configuration
has several solutions, but the degenerate configuration has
infinite solutions. For ambiguous cases, the global minimizer
can only find one solution, which may miss the correct
solution. Formally, we have the following lemma for point-
to-line correspondences.

Lemma 1: For any n; points and any {R;,t;} and
{Rag, t2}, there exist n; lines to make {Ry,t1} and {Ro, t2}
the exact solutions for the n; point-to-line correspondences.

Proof: Define x; the ith point of an arbitrary point
set with n; points. For any {Rq,t;} and {Rq,t>}, we can
have yi1 = Rix; +t; and yf = Royx; + to. Then we can
use y; an 2712 to define a line 1; = [d;;y;] with direction
di = | ;’7‘:7 y12L 2
Fig. 3 (a). According to how we construct 1;, we know that 1;
passes through y! and y?2. Therefore {R1,t;} and {Rq,t2}
are two solutions for the n; point-to-line {x; +> 1;};",. ™

Similarly, we have lemma 2 for point-to-plane correspon-
dences.

Lemma 2: For any n, points and any {R4,t;}, {Ro,t2}
and {Rg,ts}, there exist n, planes to make {Rq,t;},
{Rq, t2} and {Rs,t3} are exact solutions for the n, point-
to-plane correspondences.

Proof: Define x; the ith point of an arbitrary point set
with n, points. For any {Rq,t1}, {R2,t2} and {R3,t3},
we can have y! = Rix; +t1, y? = Rox; +to and y? =
Rsx; + t3. Then we can find a plane m; passing through
vy}, y? and y?, as demonstrated in Fig. 3 (b). According
to how we construct 7;, we know that {Rq,t1}, {Re,ta}
and {Rs,t3} are three solutions for the n, point-to-plane
correspondences {x; <> m; };" ;.

and a point y; =y} on it, as demonstrated in

|

Finally, we have the following theorem for n; point-to-line
and n, point-to-plane correspondences.

Theorem 1: For any n; points on lines and n, points

on planes and any {Rq,t1} and {Rq,ts}, there exist ny
lines and n, planes to make {Rj,t;} and {Rq,ts} are
exact solutions for the n; point-to-line and n, point-to-plane
correspondences.

Proof: We first consider the n; points on lines. Define
Xﬁ; is the ith point. According to Lemma 1, we can find n;
lines to make {Ry,t;} and {Rq,to} are exact solutions for
the n; point-to-line correspondences {xi & 12}:11

Then we consider the n, points on planes. For the jth
point x7 within them, we can define 'y] = R;x} 4t and
2y§r = Rox] + ta. Let us denote 7; as a plane passing
through the line defined by 'y; and ?y7. According to
how we construct 7;, we know that {Rq,t1} and {Ro,t2}
are two solutions for the n, point-to-plane correspondences
{X;r T J}:l 1

Therefore, {R1,t1} and {Rs,t2} are the two solutions
for the n; point-to-line correspondences {x! +»1;}" and
N point-to-plane correspondences {x] < m;}!",. [ |

When measurements approximate an ambiguous configu-
ration, a prior is required to identify the correct solution. The
prior is generally available in real applications. For instance,
we generally have a rough estimation of the pose between
two sensors in the extrinsic calibration problem [12], [13],
[14], [15], [16]. For the pose estimation in SLAM [7], [8],
[9], [10], [11], current pose should be consistent with the
previous motion trajectory.

Previous works [2], [3], [4], [1] using convex approxima-
tion can only find the global minimizer. However, the global
minimizer may not be the correct solution for a problem
when measurements approximate an ambiguous configura-
tion. Therefore, we can not simply omit local minimizers.

B. Rotation Parameterization

Solving for the rotation matrix is the crux for pose esti-
mation. Previous works [2], [4], [1], [6] adopt non-minimal
representations for R, which results in additional quadratic
constraints in the minimization problem. This paper adopts
the CGR parametrization [18], [34] which gives a minimal
representation for the rotation matrix, removing the quadratic
constraints in (4) . The CGR parametrization expresses a
rotation matrix as

R

- 1+sTs’
where s = [s1; 59; s3] is a 3-dimensional vector, and [s],, is
the skew-symmetric matrix of s.

R R=((1-s"s)I; +2[s], +2ss7) (5

C. Rational Form of the Residual

We will show that the residuals from point-to-point, point-
to-line and point-to-plane correspondences have a general
form

rg = a’Rb+a’t+c (6)

where a and b are two 3-dimensional vectors and c is a

scalar. We first consider the point-to-plane residual r, in

(1). It is obvious that a = n, b =y, and ¢ = —n"y,.

Let us then consider the point-to-line residual. We define
T

r; = [rf,r3,r}]" and Ay = (I; —dd”) = [a};a};a}],



where af,a? and a} are the three rows of A;. Using this

notation, equation (2) can be written as
ri=al(Rx; +t—y), i=1,2,3 (7

. T .
It is easy to find that a = (a}) , b=x; and c = —a}y;.
Lastly, we consider the point-to-point correspondence. Sim-

ilar to the point -to-line correspondence, we define r, =

[r5,72, r3] and I3 = [e};e7; e}]. Substituting this notation

into (3), it is easy to find
rp—e Rxp+t—yp), i=1,2,3 8

The similarity between (8) and (7) is obvious. Therefore, r;
also has the general form (6).

Let t = [t1;t2;t3]. Substituting (5) into the general

residual 74 in (6) and adding the tree terms together yields
TRb kT

2 raTt o= —— ©)

r, =
9 1+sTs
where kv is a third order polynomial with terms v =
2 2 2 2 2 2 2 2
[51t1751t2751t3751;515275153751552t1352t2752t3752a52537
2 2 2 2 T
82,83t1,83t2783t3783,Sg,tl,tz,ﬁg,1] .

D. First-Order Optimality Conditions

Now we consider the least-squares problem (4). Using (9),
the squared residual can be represented as

s, t
2= Q(7)

"= Ca ooy (10)

where ¢ (s,t) = vI'kkTv is a 6th order polynomial in s and
t. For the point-to-line distance rgrli in (4), we have

rle, = ()" 4 (7)) + (1) (11)

As mentioned above, Ti’ rlz and rl?’ all have the same form as
r4. Therefore, the point-to-line distance r;";rli will have the
same form as (10). Similarly, rgrp will also yield the same
form as (10). After the summation of squared residuals in
(4), we know that Cy, would have the same rational form
as (10). We write it as

C’ﬂ—lp (S, t)
(1+sTs)?
where C’Wlp is a 6th order polynomial function in s and t.

To find the critical points of (12), we first calculate its first
order optimality conditions as follows:

Crip (s,t) = 12)

gs; = aggjp = m ((1 +sT's) ag—"”) - 4s-C'7Tlp) =0

9t = T = e ot =0, i=1,23 1

Canceling the denominator of (13) yields -
Js, = (1 +s7's) 3?“’ 48;Cr1p =0 (14)
g, = %5t =0, i=1,2,3

BC;“’ and ;’“’ are of degree 5. Therefore, gs, and gy,

are of degree 7 and 5, respectively. Although the Grobner
basis method gives a general way to solve the polynomial

system, it is computationally demanding and numerically
unstable to apply it to a high order polynomial system,
as the experimental results in Fig. 4. The Newton-Raphson
method provides an alternative way to find the roots of (14).
Denote an equation system as G (x). For the kth iteration,
the Newton-Raphson method updates the solution as

Xp =Xp-1 — J5" (Xp—1) G (Xp-1) (15)

This iterative method requires an initial solution sy and
to. In the next section, we will describe how to calculate an
accurate sg and tg.

E. Initial Estimation from Relaxation

The difficulty of solving (14) lies in the denominator
of CGR parameterization (5). To solve this problem, we
introduce the following intermediate variable

1

P Vit 2+ s2+s2

Substituting (16) into (9) will transform (9) from a rational
function to a polynomial function. Furthermore, we define

a7

(16)

a = psy, 6 = pS2, 7 = pPS3.
Using (16) and (17), the residual (9) can be expressed as

rg=a,u+b,"t (18)
where u = [aQ, aB, oy, ap, B2, By, Bp, V2, vp, p2, 1]T. This
formulation turns the rational function (9) into a polynomial
function (18) that is easier to handle. Furthermore, t in (18)
is decoupled from R as in [6], [1], and (18) is linear in t.
Now we consider the least-squares problem (4) for the new
unknowns. We stack the residuals from n, point-to-plane, n;
point-to-line, and 7, point-to-point correspondences to get

e, = Au+ Bt (19)

where A is a (n; +3n; 4+ 3np) x 11 matrix and B is a
(nr + 3n; + 3n,) x 3 matrix. Then (4) can be written as

‘n'lp (pv a/B s )_e eg (20)

As (19) is linear for t, then t has a closed-form solution as

~ (B"B) ' B"Au @1

Substituting (21) into (20), we derive a cost function only
involving p, o, B8,y as

Crip (p,, B,7) =u"CTCu=u"Qu (22)

where C = A — B(BTB)_lBTA. The elements in the
vector u are second order monomials except for the constant
term. Thus (22) is a fourth order polynomial function. We
compute the first order optimality conditions to get all the
stationary points. This first-order condition contains four

third order polynomials for p, o, 5 and ~y as
8071—[ aC(Trl
gp = P = O7 g(x = p = O’
Op o 23)
_0Cny, 0 _0Cn, 0



The solution of (23) includes the global and local mini-
mizers of Cjy,. According to Bézout’s theorem [23], there
exist at most 3* = 81 solutions. We find that the polynomial
system in (23) only contains third and first degree monomi-
als. This equation system stratifies the 2-fold symmetry [35],
[36], [19]. That is to say if any nontrivial £ = [p, , 3, ﬂT is
a solution, —¢ is also a solution. Thus there are at most 40
independent solutions. We adopt the algorithm introduced in
[37] to generate the polynomial solver which can utilize this
property to yield an efficient solution.

After solving (23), we are then able to compute t from
(21). The CGR parameters s, So and s3 can be recovered
from the definitions in (16) and (17). The above formulation
treats p, «, 3,y as independent unknowns. However, they are
related as they are functions of s, s and s3. To recover the
minimizer of (12), we refine the solution using the Newton-
Raphson iteration method in (15). We summarize our least-
squares solution in Algorithm 1.

Algorithm 1 Least-squares solution
Input: n, point-to-plane, n; point-to-line, and n, point-to-
point correspondences

Output: R and t
1. Compute the coefficient matrices A and B in (19).

Compute Q in (22).

Compute the first order optimality conditions (23)
Solve the equation system (23) for p, «, 3, 7.
Recover s1, s9, s3 using (17).

Compute t from (21).

Nk ®wD

V. EXPERIMENTS

In this section, we compare our algorithm with the state-
of-the-art algorithms, including Briales’s algorithm [1], BnB
[4], Olsson’s algorithm [3] and Wientapper’s algorithm [6].

A. Experiments with Synthetic Data

Our synthetic data are generated as [1]. Specifically, each
geometric element is determined by randomly sampling a
point within a sphere of radius 10m. For lines and planes,
a random unit direction and normal are generated. We
uniformly sample the Euler angles ¢, 4,1 of the rotation
matrix (p, 1 € [0°,360°] and ¥ € [0°,180°]). The translation
elements are uniformly distributed within [—10m, 10m]. We
use R and t to represent the estimated rotation and trans-
lation and use Ry and tg to represent the ground truth.
The rotation error is evaluated by the angle of the axis-
angle representation of R}lR, and the translation error is
evaluated by ||ty — E||2/||tgt|| . We consider the effective
number of the correspondences as [1]. For n, point-to-plane,
n; point-to-line, and n,, point-to-point correspondences, the
number of correspondences for is calculated as N = n, +
2n;+3n,. Given an N, we randomly generate a combination
of point, line and point whose effective number is N.

Refine the solution by Newton-Raphson iteration (15).
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Fig. 4. Compare our least-squares solution with the direct least-squares
solution (DLSSol) which directly solves the polynomial system (14).
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Fig. 5. Rotation and translation errors for increasing number of correspon-
dences. The noise level is fixed to 0.05m.

Effect of our intermediate unknowns As it is gener-
ally difficult to get a stable solution for a high order polyno-
mial system [23], we introduce 4 intermediate unknowns to
simplify the least-squares problem. To verify their benefit, we
evaluate the performance of the direct least-squares solution
(DLSSol) for the polynomial system (14). We employed the
algorithm in [37] to generate the solver. We ran 2000 trials
for each N € [7,15]. Fig. 4 shows the results. Directly
solving (14) can recover the static points of cost function (12)
in theory. However, the large mean errors of DLSSol verify
that this polynomial solver is very unstable. Furthermore,
the computational time of DLSSol and our algorithm are
20.0 ms and 2.95 ms, respectively. Our solution is about 7
times faster than DLSSol. The above results verify that our
intermediate unknowns can increase the numerical stability
as well as significantly reduce the computational time.

Least-squares solution  We conduct experiments to
evaluate the performances of different algorithms under
varying number of correspondences, increasing level of noise
and computational time. The results of all experiments are
from 100 independent trials as [1].

The first experiment considers a fixed noise level and an

)
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Fig. 6. Rotation and translation errors for increasing noise level. The
number of effective correspondences is set to 10.



TABLE I
EXPERIMENTAL RESULTS ON THE 03, 04, AND 07 SEQUENCES OF THE KITTI DATASET [38].

Method KITTI 03 KITTI 04 KITTI 07
etho tEr (%) | REr(°) | Time() | tEm (%) | REx(°) [ Time(s | tEr (%) | REw (°) | Time (5)
Olsson [3] 2.03e-1 5.46e-1 2.22 5.75e-1 5.76e-1 1.88 3.60e-1 2.53e-1 2.08
Wientapper [6] | 2.00e-1 5.72e-1 0.58 4.32e-1 3.49e-1 0.55 3.6le-1 2.58e-1 0.56
Briales [1] 1.96e-1 5.6le-1 2.16 4.31e-1 3.37e-1 1.88 3.60e-1 2.53e-1 2.03
Ours 1.95e-1 5.6le-1 0.33 4.31e-1 3.37e-1 0.30 3.60e-1 2.53e-1 0.30
0.3- There are more than 20,000 correspondences in each frame,
with the majority being the point-to-plane correspondence.
0.2 BT For each frame, 2D feature points are detected by the
o I Br'i:‘re:pper ORB feature detector [39]. We project LiDAR points into
£ 01 Olsson the image plane, and select the LiDAR points around an
' —~QOurs ORB feature. Then, we fit a plane to these LiDAR points.
st Finally, we compute the 3D coordinates of an ORB feature
500 1000 1500 2000 by calculating the intersection of the back-projection ray of
Number of Correspondences the ORB feature and the plane. We use the ORB descriptor
to match with the 2D feature points in the previous frame,
Fig. 7. Computational time of different algorithms. then we obtain the 3D point-to-point correspondences.

TABLE II
AVERAGE NUMBERS OF POINT-TO-POINT(P-TO-P),
POINT-TO-PINE(P-TO-L), AND POINT-TO-PLANE(P-TO-PL)
CORRESPONDENCES PER FRAME FOR 03, 04 AND 07 KITTI SEQUENCES.

Sequences Average Correspondences Per Frame
au #P-to-P | #PtoL | #P-to-PL
KITTI 03 63 17 21117
KITTI 04 37 30 19994
KITTI 07 111 40 20126

increasing number of correspondences. Let us denote the
standard deviation of a zero mean Gaussian noise distribution
as 6. We set § = 0.05m. NN varies from 7 to 15. Fig. 5 shows
the result. The results of BnB [4] and Briales’s algorithm [1]
overlap. This is consistent to the results in [1]. The compared
algorithms are all unstable for a small N. Our algorithm
significantly outperforms them when N is small. When N is
large, our algorithm achieves the same accuracy as [4], [1].
Wientapper’s method [6] can not find the optimal solution
even N is large.

In the second experiment, § is from 0.0lm to 0.11m,
stepping by 0.02m. The results are illustrated in Fig. 6. BnB,
Briales’s algorithm and our algorithm present better results
than other algorithms. Our algorithm gives a slightly better
result than BnB and Briales’s algorithm when 6 = 0.11m.

In the last experiment, we compare the computational time
of different algorithms. We vary the effective number of
correspondences N from 10 to 2000. For every N, we run
each algorithm 100 times to calculate the average running
time. Fig. 7 provides the result. We did not run the BnB
algorithm [4], because it is too slow for a large N. It is clear
that our algorithm is the fastest one among the compared
algorithms.

B. Experiments with Real Data

We generated our real-world dataset from the KITTI
dataset [38]. The characteristics of the dataset is in Table II.

Next, we generate the point-to-line correspondence. For
each frame, 2D lines are detected by the Line Segment
Detector (LSD) [40] and described by the Line Band De-
scriptor (LBD) [41]. A 2D line is represented by two
endpoints. The two 3D endpoints of a line are calculated
as it is done for the 2D feature point described above. We
generate 3D line correspondences by matching their 2D LBD
features. Given a line-to-line correspondence, two point-to-
line correspondences are generated for the 2 endpoints.

Finally, we get the point-to-plane correspondence. For
each frame, planes are extracted from the LiDAR point cloud
by the region growing algorithm [42]. Then we find the
nearest plane point in the previous frame to generate the
point-to-plane correspondence.

Given the initial correspondences as described above, we
run at most 3 ICP iterations to handle the outlier. In each
iteration, we eliminate the correspondences with distance
larger than 5cm as outliers. We evaluate the performance
of different algorithms on sequences 03, 04, and 07 of the
KITTI dataset. We did not test BnB [4], as it is extremely
slow on this large dataset. Our algorithm achieves the same
or slightly better result as the state-of-the-art algorithm [1]
while being about 7 times faster, as shown in Table I.

VI. CONCLUSIONS

This paper presents an efficient and accurate solution
for the 3D registration problem. We proof that there exists
ambiguous configurations for any number of point-to-plane
and point-to-line correspondences. This requires an algorithm
should have the ability to reveal local minimizers. We use
the CGR parameterization to represent the rotation, removing
the constraints on the rotation. However, this results in a
rational form cost which is hard to solve. We introduce 4
intermediate variables to simplify the first order optimality
conditions. We evaluate our algorithm through synthetic and
real data. The experimental results show that our algorithm
is more stable for a small NV, and is as accurate as the state-
of-the-art algorithm [1] when IV is large, but is much faster.
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