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Degeneracy-aware Imaging Sonar SLAM
Eric Westman and Michael Kaess

Abstract—High-frequency imaging sonar sensors have recently
been applied to aid underwater vehicle localization, by providing
frame-to-frame odometry measurements or loop closures over
large time-scales. Previous methods have often assumed a planar
environment, thereby restricting the use of such algorithms
mostly to seafloor mapping. We propose an algorithm to generate
pose-to-pose constraints for pairs of sonar images, which may also
be applied to larger sets of images, that makes no assumptions
about the environmental geometry. The algorithm is sensitive to
the inherent degeneracies of the imaging sonar sensor model, and
may be tuned to trade off between providing more constraints
on the sensor motion and not over-fitting to noise in the
measurements. For real-time localization, we fuse the resulting
pair-wise sonar pose constraints with vehicle odometry in a
pose graph optimization framework. We rigorously evaluate the
proposed method and demonstrate improvement in accuracy over
previously proposed formulations both in simulation and real-
world experiments.

I. INTRODUCTION

Acoustic sonar sensors have long been used for under-
water sensing on ships and submarines, and more recently,
autonomous underwater vehicles (AUVs). Side-scan sonar,
synthetic aperture sonar, and multibeam echo-sounders are
often placed on AUVs or surface vessels facing downward
to image the seafloor on a large scale. These sonars have
been utilized for robotic tasks such as navigation [8], mapping
[6], and object tracking [25]. However, these sensors are
not well-suited for small-scale or complex 3D environments.
Autonomous exploration and inspection of scenes such as
bridge and pier pilings, shipwrecks and archaeological sites,
and other natural and man-made underwater structures requires
a different kind of underwater sensor.

The emergence of high-frequency acoustic imaging sonars,
or forward-looking sonars (FLS), in recent years (e.g. the
SoundMetrics Aris1 and DIDSON2 and the Teledyne Blue-
View3) has afforded AUVs much greater sensing capabilities in
such environments. The tasks that these sensors have enabled
AUVs to perform include localization [15, 3], mapping struc-
tured environments [33, 31], image mosaicing [13], obstacle
avoidance, and path planning [26]. These sensors have proven
to be particularly useful in turbid waters where underwater
optical cameras fail to see beyond very short ranges.

The focus of this work is using imaging sonar for high-
accuracy localization, or pose estimation, in previously un-
mapped environments by means of a simultaneous localization
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and mapping (SLAM) framework. The ultimate goal of a local-
ization algorithm is to estimate the 6 degree-of-freedom (DOF)
transformation that describes the sensor position and rotation
relative to some global coordinate frame. Many approaches to
imaging sonar localization simplify the problem formulation to
solving for the relative transformation between a pair of sonar
images. These transformations may be estimated sequentially
and composed in a dead-reckoning framework, or they may
be used to provide loop-closures to reduce drift over long-
term operation. We primarily consider this two-view approach
in this work for the sake of simplicity and computational
efficiency. However, our proposed methods easily generalize
to systems consisting of more than two sonar views, which
provide stricter constraints on the sensor poses at the expense
of greater computational complexity.

The standard imaging sonar sensor model is analogous to
a monocular camera – both provide 2D images of a 3D
environment. Under the pinhole camera model, each pixel
corresponds to a ray in 3D space that passes through the
camera center and the 3D point location that is imaged by
the pixel. The point’s range from the camera center is lost due
to perspective projection, but the azimuth and elevation angles
are directly measured by the pixel coordinates. In contrast, for
an image generated an imaging sonar, each pixel provides a
direct measurement of the bearing (azimuth) angle and range,
but the elevation angle is lost in projection, as depicted in
Fig. 1. Disambiguating the elevation angle of features is a
fundamental challenge for acoustic localization and mapping,
just as disambiguating the range is for the optical case.

Despite this analog to monocular cameras, there exist sev-
eral other factors that make imaging sonar SLAM generally
a more difficult problem than optical SLAM. First, imaging
sonar sensors have considerably lower resolution and sig-
nal to noise ratio than optical cameras. As active sensors
comprised of multiple transducers, imaging sonars do not
homogeneously insonify the environment, which often creates
unwanted patterns or artifacts in the images that ought to be
removed by a pre-processing step. Additionally, in contrast
to optical cameras, there does not exist a one-to-one pixel to
surface patch correspondence. Any surface patch that exists
along a pixel’s corresponding elevation arc may contribute
to the intensity measured at that pixel. A consequence of
this is that the same 3D scene may appear very different in
sonar images taken from different viewpoints. These factors all
significantly increase the difficulty of extracting point features
from sonar images to use in a feature-based SLAM system.
However, recent works have demonstrated the effectiveness
of automatically detecting and corresponding features from
multiple viewpoints by means of anisotropic diffusion [18, 30].
This makes it possible to use point features in our proposed
localization and SLAM algorithm.
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Figure 1: The imaging sonar sensor model. Each pixel provides direct mea-
surements of the bearing angle θ ∈ [θmin, θmax] and range r ∈ [rmin, rmax],
but the elevation angle φ ∈ [φmin, φmax] is lost due to the projection onto
the zero-elevation plane.

In this work we propose a novel imaging sonar SLAM
algorithm, with the end goal of high-accuracy sensor lo-
calization. We build upon the previous methods of acoustic
structure from motion (ASFM) [11, 12, 35], which propose
bundle adjustment-inspired frameworks for jointly optimizing
sensor poses and 3D landmark positions. While these ap-
proaches sufficiently address the mapping aspect of the SLAM
framework, we demonstrate that there remain degeneracies in
these previously proposed SLAM frameworks that result in
increased errors in the sensor pose estimation. The advantages
of our proposed SLAM framework are that it:
• makes no assumptions about the scene geometry
• is sensitive to the degeneracies of the imaging sonar

sensor model in the SLAM framework
• generalizes to systems consisting of any number of de-

sired poses
• may be easily incorporated in a pose graph-based SLAM

solution for long-term, high-accuracy localization with
loop closures

The remainder of this paper is organized as follows. Section
II introduces relevant imaging sonar localization algorithms
and relates these previous approaches to our proposed method.
Section III introduces maximum a posteriori estimation and
nonlinear least squares optimization which underlie our pro-
posed methods. Section IV presents the two-view acoustic
bundle adjustment problem, previous solutions to the problem,
and our novel, fully degeneracy-aware solution. Section V
describes how the result of this two-view bundle adjustment
may be incorporated into a pose-graph framework for real-
time, large-scale localization. Our simulated and experimental
results are shown and discussed in Section VI, and Section
VII closes with our concluding remarks.

II. RELATED WORK

A fundamental component of any feature-based SLAM
system is feature detection. A variety of algorithms have been
used for detecting and computing descriptors for features in
optical images, such as SIFT [19], SURF [4], and ORB [27].
However, these methods tend to not translate very well to
sonar images due to the high levels of speckle noise [30].
Many previous works have simply bypassed this problem
by requiring manual extraction of feature points in order to

perform SLAM or 3D reconstruction [5, 11, 20, 22]. Other
feature detection methods have been developed for specific
objects of interest, such as using Canny edge detection and the
Hough transform to detect corners of a customized target in a
test tank environment [14]. Yet another approach has been to
find clusters of high intensity or high gradient pixels, which
often correspond to rocks or other small distinct objects in
a scene [15, 3]. Alternatively, man-made targets have been
placed in the environment to provide reliable, easily detected
blob-like features [9]. These methods mostly apply to seafloor
mapping scenarios, where objects protrude from the smooth
seafloor and induce shadows. A robust, general-purpose, fea-
ture point detection algorithm for imaging sonar has thus far
not been proposed to the best of our knowledge. However, A-
KAZE feature detection, which relies on anisotropic diffusion
for denoising, has been used previously on sonar imagery
to provide features for SLAM algorithms [18, 30]. Although
feature detection for sonar imagery remains an open research
topic, the A-KAZE algorithm suffices for the purposes of this
work and is utilized in our field experiments.

In order to handle the elevation ambiguity inherent to
the imaging sonar, many previous imaging sonar localization
algorithms have made use of some form of planar environment
assumption. One of the early works in this direction was [28],
which considered two-view acoustic homography. This work
is primarily concerned with the “backend” – the estimation of
sensor motion based on detected and corresponded points that
are taken as a given by some “frontend” module. The points
are assumed to lie on a plane, whose normal vector is jointly
optimized with the relative rotation and translation between the
two sensor poses. While this iterative, nonlinear-least squares
solution is similar to the bundle adjustment / ASFM framework
that our proposed method is built upon, it suffers from several
sources of error. First, the planar approximation introduces
error when the detected features do not lie on a planar surface.
Second, the proposed framework optimizes only over the pose
and surface normal parameters – it does not explicitly include
the 3D landmark positions in the state of the optimization.
[30] utilizes a similar bundle adjustment type of optimization,
but also assumes a globally planar surface to estimate the 3D
position of landmarks.

In [15], the planar assumption is also used to solve for a
3-DOF sensor motion between two sonar frames. As in [28],
extracted feature points are assumed to lie on a plane, whose
normal direction is either assumed to be exactly parallel to the
z-axis or estimated by other sensors. Clusters of high-gradient
pixels are used as feature points, and a normal distribution
transform (NDT) is used to iteratively align the two images.
While this method provides great flexibility for the frontend
as explicit feature correspondences are not required, its appli-
cation is restricted to the case of mapping flat seafloors and
does not provide a full 6-DOF pose constraint.

Further improvements in sonar pose estimation using the
planar assumption were made [2, 3, 21]. These works corre-
spond features detected on objects themselves and associate
them with the points at which the objects shadows are cast
upon the seafloor. This correspondence provides additional
constraints with which to estimate the sensor motion and dis-
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ambiguate the elevation angle of the object features. A novel
Gaussian cluster map is also proposed for the frontend feature
extraction and association, which demonstrates improvement
over the NDT-based map representation. However, this method
also utilizes a planar surface approximation, and is therefore
restricted to cases where the imaged volume is a mostly flat
surface, such as a seafloor.

The ASFM algorithm [11, 12] introduced the bundle ad-
justment framework common in the visual SLAM literature to
the problem of underwater acoustic SLAM. Similar to the case
of visual SLAM, ASFM optimizes a nonlinear least squares
objective function based on the reprojection error of feature
points in 2D acoustic images. The proposed formulation
optimizes over both the sensor poses and the observed 3D
landmark locations. This backend optimizer may be used with
any frontend module that extracts and corresponds features
across different sonar frames. The effectiveness of the ASFM
algorithm in recovering the 3D positions of landmarks was
demonstrated with both simulated data and real-world sonar
images using manually-selected feature points, complemented
with vehicle odometry measurements.

ASFM has recently been applied to localization during ship
hull inspection, in which common features observed over a
group of three frames (a “clique”) are used to perform a local
ASFM optimization [18]. The result of the optimization is
used to generate pose-to-pose constraints that are fused with
vehicle odometry in a pose-graph framework. This work uses
saliency-aware, high-dimensional, learned features [17] for
detecting potential high information gain loop-closure cliques
to optimize using ASFM. The purpose of this framework is
two-fold: (1) to generate loop closure cliques that provide
well-constrained systems for the ASFM optimization and (2)
to only include sonar-based loop closure constraints that add
significant information to the overall SLAM problem. While
this work provides a robust frontend for detecting sonar loop
closure candidates, it does not explicitly consider the inherent
degeneracies of the ASFM optimization, and in doing so
discards loop closure cases which may be able to provide valu-
able constraints to the overall SLAM solution. Additionally, it
double counts the vehicle odometry measurements, as they are
used in the overall pose graph as well as in the local ASFM
optimizations.

The effect of the ASFM algorithm on sensor localization
was investigated in [35]. This work demonstrated that point
landmarks may often be under-constrained in the elevation
angle depending on the sensor viewpoints, and that this degen-
eracy may lead to large errors in the sensor state estimate. A
semi-parametric representation of 3D landmarks was proposed
to handle this degeneracy – however, the degeneracy of the
sensor motion was not addressed.

Similarly to the ASFM algorithm, [36] proposed an acous-
tic localization algorithm that fuses constraints from feature
measurements with measurements from an inertial sensor in
an extended Kalman filter (EKF) framework using stochas-
tic cloning. This work also provides a linear triangulation
method for initializing the 3D positions of point landmarks
from multiple viewpoints. The observability analysis of these
triangulation equations provides insight into the degenerate

directions of sensor motion, but the degeneracy is not explicitly
handled in the proposed framework.

In contrast to all of the described previous works, our
proposed algorithm makes no assumptions about the scene
geometry and takes steps to account for the degeneracy of
both the full 6-DOF pose transformation as well as the land-
mark positions. Additionally, we propose a probabilistically
sound framework for fusing pose constraints between pairs
(or higher-order sets) of sonar images with measurements from
other sensors in a pose graph framework.

III. MAXIMUM A POSTERIORI ESTIMATION

In this section we derive the nonlinear least squares (NLS)
optimization that is used to solve the maximum a posteriori
estimation framework of the SLAM / bundle adjustment
problem. The optimization we derive underlies the methods
used in our two-view bundle-adjustment presented in Section
IV as well as the pose graph for large-scale localization, which
is presented in Section V.

Maximum a posteriori (MAP) estimation attempts to find
the most likely state x of the modeled system given a set
of measurements z = {z1, . . . zN}. We represent this type
of optimization graphically using factor graphs, as in Fig. 2.
Using this representation, the large, clear circles represent the
state variables x to be optimized. Small, colored circles are
factors, which represent the measurements z which constrain
the variables to which they are connected.

Following [7], the MAP estimation problem may be formu-
lated as

x∗ = argmax
x

p (x)

N∏
i=1

p (zi|x) (1)

where p(zi|x) is the measurement model for measurement zi.
Here we assume conditional independence of measurements,
which is encoded in the connectivity of the factor graph. Note
that although we use the notation p (zi|x), the measurement
zi is only conditioned on the subset of variables from the state
x to which it is connected in the factor graph. If there is no
prior knowledge of the state, which we will assume here, p (x)
may be dropped. As is standard in the SLAM literature, we
assume additive Gaussian noise in all measurement models:

p(zi|x) = N (hi(x),Σi) (2)

Here hi (x) is the prediction function, which predicts a value
ẑi of the measurement zi based on the state estimate x.
The covariance matrix Σi represents the uncertainty of the
measurement zi and may be derived from sensor specifications
or determined empirically. In principle, these are the three
components that the corresponding factor defines: (1) the
measurement itself (2) the prediction function and (3) the noise
model (taking the form of a covariance matrix or, as we see
later, square-root information matrix).

The monotonic logarithm function and Gaussian noise
model allow us to simplify the optimization into a nonlinear
least squares problem:

x∗ = argmin
x

N∑
i=1

‖hi (x)− zi‖2Σi
(3)
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Figure 2: Factor graph representation of the two-view sonar optimization. In
our two-view configuration, we optimize the relative 6-DOF transformation
between the two views and the positions of all observed landmarks. xA is
dotted to signify that it is treated as a constant and is therefore not explicitly
modeled in the bundle-adjustment optimization.

where we use the notation ‖v‖2Σ = vTΣ−1v to denote
Mahalanobis distance.

The Gauss-Newton algorithm (GN) is commonly used to
solve the nonlinear least squares problem in Equation 3
by iteratively solving linear approximations of the nonlinear
system. Given some initial state estimate x0, the prediction
function is linearized as

hi (x) = hi
(
x0 + ∆

)
≈ hi

(
x0
)

+ Hi∆ (4)

Hi =
∂hi (x)

∂x

∣∣∣∣
x0

(5)

where ∆ = x − x0 is the state update vector and Hi is the
Jacobian matrix of the prediction function hi (x). Substituting
this linearized approximation into Equation 3 yields

∆∗ = argmin
∆

N∑
i=1

∥∥hi (x0
)

+ Hi∆− zi
∥∥2

Σi
(6)

= argmin
∆

N∑
i=1

‖Ai∆− bi‖2 (7)

= argmin
∆

‖A∆− b‖2 (8)

where Ai = Σ
−1/2
i Hi and bi = Σ

−1/2
i

(
zi − hi

(
x0
))

are
the whitened Jacobian matrix and error vector. A and b are
obtained by simply stacking all the terms Ai and bi into a
single matrix and vector, respectively.

Setting the derivative of Equation 8 to zero results in the
so-called normal equations:(

ATA
)
∆∗ = ATb (9)

which may be solved for the current iteration’s update ∆∗

directly by means of the pseudo-inverse

∆∗ = A†b =
(
ATA

)−1
ATb (10)

or by using the Cholesky or QR decomposition. The update
∆∗ is applied to compute the updated state estimate, which is
used as the linearization point for the next iteration in the GN
solver. The solver terminates after the magnitude of the update
vector falls below a threshold or after a maximum number of
allowed iterations.

The Levenberg-Marquardt algorithm (LM) is often used
as an alternative to GN, particularly for systems that may

be poorly conditioned. LM solves a “damped” version of
the normal equations

(
ATA + λI

)
∆∗ = ATb, where λ

is an adaptively selected scalar. If the computed update ∆∗

increases the overall residual, then the step is not taken, λ
is increased, and the system is resolved. Increasing λ steers
the solution away from the GN update direction and towards
the steepest descent update direction. Additional details of the
factor graph representation, nonlinear least squares SLAM for-
mulation, and GN and LM algorithms are discussed thoroughly
in [7].

This nonlinear least squares optimization for MAP esti-
mation underlies both of the frameworks we present in this
paper: (1) the two-view acoustic bundle adjustment and (2)
the pose-graph framework for large-scale localization. These
two optimizations are distinct processes, and we will use the
general notation introduced in this section to discuss each
framework individually. For both frameworks, we will describe
the specific factors utilized in the optimization and define
their required components: the measurement, the prediction
function (and its corresponding Jacobian matrix), and the noise
model.

IV. TWO-VIEW ACOUSTIC BUNDLE ADJUSTMENT

A. Setup

The goal of our degeneracy-aware bundle adjustment algo-
rithm is to generate a 6-DOF pose-to-pose constraint using
only corresponding bearing-range measurements from two
sonar viewpoints. Note that this contrasts with the previ-
ously proposed ASFM methods [11, 12, 35], which include
odometry measurements in the optimization. We choose this
approach so that the sonar-based pose-to-pose constraints may
be fused with the odometry constraints in a computationally
efficient pose-graph framework without double-counting any
measurements.

The state of a bundle adjustment optimization is normally
comprised of all involved poses and landmarks. Fig. 2 shows
the factor graph representation of a two-view bundle adjust-
ment optimization, consisting of two poses xA and xB as well
as N 3D point landmarks l1, . . . , lN . A 6DOF pose xA may
be represented as a transformation matrix

TxA
=

[
RxA

txA

0 1

]
(11)

where RxA
is the rotation matrix and txA

is the translation
vector. While xA is not a vector, it may be updated by vector
values using the exponential map, as discussed in greater detail
in Section V-B as well as in [1].

A standard approach to solving a feature based SLAM
problem is to place a prior measurement on the first pose,
as represented in the dotted portion of the Fig. 2. However,
since we are seeking to solve for a single relative 6-DOF
transformation between the two poses, we eliminate xA from
the state. This may be thought of as equivalent to taking the
limit as the uncertainty on the pose prior approaches zero. The
solid portion of the factor graph shows the true representation
of our optimization: only pose xB and the landmarks are
explicitly represented as variables in the state. The sensor pose
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xA is treated as constant in the corresponding bearing-range
measurements.

Therefore the state which we wish to optimize is x =
{xB , l1, . . . , lN}. We follow [12] and parameterize the land-
marks using spherical coordinates li =

[
θi ri φi

]
(bear-

ing, range and elevation) relative to xA, which we de-
fine as the reference coordinate system. We denote the set
of bearing-range measurements used in the optimization as
z =

{
zA1 , . . . , z

A
N , z

B
1 , . . . z

B
N

}
, where zPi is the bearing-

range measurement corresponding to li taken from pose P .
We assume feature correspondences are provided by some
frontend module.

Recall the three components that must be defined by a
factor: (1) the measurement (2) the prediction function and
(3) the noise model. The measurement zi =

[
zθ,i zr,i

]T
is simply a bearing-range observation of a feature point,
and the covariance matrix representing the Gaussian noise
model assumes independent noise in the bearing and range
components:

Σi =

[
σ2
θ 0

0 σ2
r

]
. (12)

The Gaussian noise model for bearing and range measure-
ments is not based on empirical characterization of the noise,
but is a rough approximation. This is assumed primarily for
theoretical convenience to fit the NLS optimization framework.
We leave it to future work to investigate the effects of
different noise models for bearing-range measurements in this
framework.

The last component to define is the prediction function.
Here we define two separate prediction functions for the
measurements taken from xA and xB : ẑAi = hAi (li) and
ẑi
B = hBi (xB , li). Note that rather than writing the predic-

tions as functions of the entire state (as in hi (x)), we specify
the particular components of the state that are used in the
prediction. The predicted measurement of landmark li from
pose xA is simply

hAi (li) =

[
θi
ri

]
(13)

as li is represented by spherical coordinates relative to xA.
The measurement function hBi (xB , li) is:

hBi (xB , li) = π (qi) =

[
atan2 (qi,y, qi,x)√
q2
i,x + q2

i,y + q2
i,z

]
(14)

qi = TxB
(pi) = RT

xB
(pi − txB

) (15)

pi = C (li) =

 ri cos θi cosφi
ri sin θi cosφi
ri sinφi

 (16)

where pi is the landmark in Cartesian coordinates relative to
xA and qi =

[
qi,x qi,y qi,z

]T
is the Cartesian represen-

tation of the point in the frame of xB . RxB
and txB

are the
rotation matrix and translation vector for pose xB . Finally, we
must be able to evaluate the Jacobian matrices HA

i and HB
i .

While these may be computed numerically, it is usually more
computationally efficient to use analytically derived Jacobians.

These closed-form Jacobians are presented in Appendix A for
reference.

The most straight-forward way to solve this optimization
would be to use GN or LM. The previous formulations of
ASFM use LM to solve this type of optimization, largely
because the optimization is often poorly conditioned. In this
two-view optimization framework, there are 6 + 3N variables
and 4N constraint equations (two from each bearing-range
measurement in each sonar image), so at least six bearing-
range measurements from each image are needed for the
optimization to be fully constrained. However, even with
six or more measurements, the optimization may be poorly
constrained, depending on the geometry of the sensor motion
and the initial state estimate.

B. Landmark elevation degeneracy

The first type of degeneracy we consider in the two-view
acoustic bundle adjustment optimization is that of a point land-
mark’s elevation angle. Our previous work in [35] proposed
a modification to the standard optimization to handle this
degeneracy. This method calls for removing the elevation angle
of each landmark from the state vector, so that a landmark
only constitutes two variables in the state. We replace each 3-
vector landmark in the state with a 2-vector parameterization:
mi =

[
θi ri

]T
. This decouples the elevation angle from

the Gaussian parameterization, and allows us to treat the
elevation angle in a non-parametric fashion. We also introduce
slightly modified notation for the measurement functions:
hAi (mi) and hBi (xB ,mi).

Practically, there is no difference in the measurement func-
tion corresponding to pose xA: hAi (mi) =

[
θi ri

]T
. How-

ever, the elevation angle φi is no longer explicitly modeled by
mi, yet some estimate of the elevation angle is still needed
to compute a projection of the landmark in the frame of xB ,
using the new measurement function hBi (xB ,mi). We address
this performing a direct search over the valid range of φi to
find the elevation angle with the lowest reprojection error:

hBi (xB ,mi) = π (TxB
(ci,φ∗)) (17)

φ∗i = argmin
φ∈Φ

∥∥π (TxB
(ci,φ))− zBi

∥∥2

Σi

where Φ = {φmin, φmin + ∆φ, . . . , φmax−∆φ, φmax}, ∆φ is
selected such that we select nelv uniformly spaced angles from
the valid range, and ci,φ denotes the Cartesian coordinates
corresponding to the spherical coordinates

[
mT
i φ

]T
. This

direct search lets us treat the belief of the elevation angle
as a uniform distribution over the valid range, which is a
much more appropriate treatment than a unimodal Gaussian
representation that may result in the optimization getting stuck
in local minima. Additionally, as the search is over a bounded
one-dimensional space, it is computationally efficient for small
systems such as the two-view scenario we consider.

C. Sensor pose degeneracy

In contrast to a landmark’s elevation angle, the relative pose
between the two viewpoints may often be under-constrained
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in multiple degrees of freedom. Considering the multivariate
space of potentially valid sensor poses, and the fact that no
inequality constraints exist on the sensor pose parameters as
in the case of the elevation angle, a search over the parameter
space is not a suitable solution to this type of degeneracy.

We adopt the general approach of solution remapping in
nonlinear optimization, as presented in [37]. This technique
operates on the linear approximation of the nonlinear system
at each step in the optimization. Therefore, we follow the same
formulation of the two-view optimization presented in Section
III, up until the linear approximation in Equation 8. We make
use of the singular-value decomposition (SVD) of the whitened
m× n measurement Jacobian matrix: A = USVT , where U
is an orthogonal m×m matrix, S is a diagonal m×n matrix
of singular values σ1 ≤ · · · ≤ σn, and V is an orthogonal
n × n matrix. The pseudoinverse of A may be computed as
A† = VS†UT , where S† is an n ×m diagonal matrix with
diagonal

[
1/σ1 . . . 1/σn

]
. Using this decomposition, the

linearized least squares problem in Equation 8 may be solved
as ∆∗ = VS†UTb, which yields the same update vector
∆∗ as by solving with Cholesky or QR decomposition, or by
directly computing

(
ATA

)−1
AT .

However, the SVD provides valuable information that the
Cholesky and QR do not: singular values. A small singular
value σi denotes a poorly constrained direction in the state
space specified by the corresponding column of V, vi. The
idea of solution remapping is to only update the state in
the directions that are well-constrained. This is achieved by
setting a threshold σmin below which a singular value and
its corresponding update direction will not be added to ∆∗.
In this formulation, we solve the linear least squares problem
using a modified pseudoinverse

∆∗ = A†Db = VS†DUTb (18)

where S†D is an n × m diagonal matrix with diagonal[
0 . . . 1/σs . . . 1/σn

]
and σs is the smallest singular

value greater than the threshold σmin. This procedure generates
an update vector ∆∗ only using the well-constrained directions
of the state [37]. Under this framework, there is no need to
dampen the system heuristically as in LM. These degeneracy-
aware updates are applied successively using GN until the
magnitude of the updates falls below a threshold, or until
a maximum number of iterations are performed. We x∗B to
denote the final optimized pose.

V. POSE GRAPH SLAM FRAMEWORK

A pose graph is a type of factor graph in which the only
variables are poses. Rather than explicitly modeling landmarks
detected in sonar images and maintaining the bearing-range
measurements in the overall factor graph, the landmarks are
marginalized out locally in our two-view bundle adjustment
optimization. While this is sub-optimal from an information-
theoretic point of view, the sparsity of this formulation allows
for much more efficient optimization than a full SLAM
representation such as in [11, 35]. A visual representation of
such a pose-graph with a large-scale loop closure is shown in
Fig. 3.

Similar to the two-view bundle adjustment problem, the
pose graph is framed as a MAP estimation problem and
solved by means of nonlinear least squares, as presented in
Section III. The state consists only of vehicle and sonar poses
x = {x0, . . . , xn, s0, . . . , sn} and no landmarks are explicitly
modeled. We utilize three different types of measurements in
this pose graph framework for localization – two to model
the vehicle odometry and one for pairwise sonar constraints
derived from the two-view bundle adjustment optimization.
Two additional factor types are trivial: the prior on the first
vehicle pose to tie the trajectory down to the global frame
and the vehicle-sonar extrinsics. The vehicle-sonar extrinsics
are modeled using a constant transformation and very low,
constant uncertainty since the sonar is kept at a fixed pose
relative to the vehicle frame throughout our data sets.

A. Odometry constraints

Many different types of odometry measurement constraints
may be utilized in conjunction with our pose-to-pose sonar
constraints. Here, we will describe the specific odometry
measurements that we use with our robotic platform, which
is described in detail in Section VI-B. We follow [33, 34]
in using two types of measurements to model the onboard,
odometry-based state estimate: (1) a relative 3-DOF pose-to-
pose constraint on x and y translation and yaw rotation (head-
ing), abbreviated as XYH and (2) a unary 3-DOF constraint on
z translation and pitch and roll rotations, abbreviated as ZPR.
The use of an IMU allows for globally observable, drift-free
(but noisy) observations in the ZPR directions, but the XYH
directions will drift over large time-scale operation. See [34]
for additional information on these measurements.

B. Sonar constraint - measurement

We model the two-view sonar constraint between poses xi
and xj as

p(zij |xi, xj) = N (hij(xi, xj),Ξij) (19)
hij(xi, xj) = x−1

i xj (20)

where the measurement zij is an element of the SE (3) Lie
group that represents the pose-to-pose sonar constraint from
xi to xj and Ξij is the corresponding covariance matrix.
hij(xi, xj) generates the measurement prediction by comput-
ing the relative 6-DOF pose transformation from xi to xj .
Following a linearization procedure similar to that taken in
Equation 4, we express the squared error term corresponding
to this factor as∥∥Hij∆− log

(
z−1
ij hij

(
x0
))∥∥2

Ξij
(21)

or more explicitly as∥∥Fijξi + Gijξj − log
(
z−1
ij hij

(
x0
))∥∥2

Ξij
(22)

where ξi and ξj are minimal 6-DOF local vectors that repre-
sent updates to xi and xj , respectively, which are computed
using the exponential map, as defined in [1]. Fij and Gij are
the Jacobian matrices of the exponential map with respect to
ξi and ξj , respectively. log (·) denotes the logarithm map, the
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Figure 3: The pose graph framework we propose for long-term navigation. A two-view bundle adjustment problem is optimized, and the resulting pose-to-pose
loop closure constraint is added to the pose graph along with the XYH and ZPR odometry measurements obtained from the onboard navigation.

inverse of the exponential map, which computes a minimal 6-
DOF vector in tangent space. Using this linear approximation,
the remainder of the NLS derivation in Section III may be
followed, proceeding with the “whitening” step and ultimately
solving the optimization with GN or a similar algorithm. See
[7] for a comprehensive treatment of this formulation of the
6-DOF poses.

Note that while we define the measurement model for the
two-view sonar constraint using a 6-DOF pose constraint zij
and a covariance matrix Ξij , the NLS optimization underlying
the pose graph actually requires the square root information
matrix Ξ

−1/2
ij . While the mean of the sonar measurement is

simply the optimized relative pose from the two-view bundle
adjustment problem, recovering the square-root information
matrix is significantly more involved, and is detailed in the
following subsection.

C. Sonar constraint - information

To compute the square-root factor corresponding to x∗B ,
we utilize the information matrix of the overall degeneracy-
aware linearized system at the final iteration of the two-view
optimization as described in Section IV-C:

Γ = AT
DAD (23)

= VSTDUTUSDVT (24)
= VSTDSDVT (25)

=

[
Γ11 Γ12

Γ21 Γ22

]
. (26)

Here we use Γ11 to denote the top left 6 × 6 block of the
information matrix corresponding to the pose x∗B , Γ22 to
denote the bottom right block that corresponds to the landmark
terms, and Γ12 and Γ21 to denote the cross-correlation terms.
In order to condense the information from the entire system
into a single information matrix on x∗B , we marginalize out the
landmark variables. This is done using the Schur complement:

Λ = Γ11 − Γ12Γ
−1
22 Γ21. (27)

The block Γ22 is always invertible due to our 2-vector
parameterization of the landmarks - the bearing and range of
every landmark are directly observed and are well-constrained.
The resulting information matrix Λ may very likely be singular
and not positive definite, due to the use of the degeneracy-
aware AD = USDVT . In the case that any singular values

were zeroed out, AT
DAD will be a singular matrix. The only

directions of the state that may be in the null-space of AD

would be in the space of the transformation xB (since all of the
landmarks are well-constrained by construction). Therefore,
if AT

DAD is singular, Γ11 and Λ will also be singular and
not positive definite. In this case, the standard method of
computing the square root information matrix by Cholesky
decomposition of Λ = RTR will fail. Instead, we can utilize
the LDL decomposition of Λ to obtain:

Λ = PLDLTPT (28)

=
(
PLD1/2

)(
DT/2LTPT

)
(29)

= RTR (30)

where P is a permutation matrix, L is a lower triangular
matrix, D is a diagonal matrix, and R is the square root factor
of Λ. P is necessary for numerical stability when decomposing
a non positive-definite matrix. Therefore, R has the unusual
property of not being an upper-triangular matrix, as it normally
is for an invertible information matrix. However, this non-
triangular square root information matrix is compatible with
the nonlinear least squares optimization and may be used
to “whiten” the Jacobian matrices and error vectors, as in
Equation 7.

With the square-root information matrix and the measured
relative pose transformation x∗B , we can easily incorporate
the two-view sonar constraint between poses xi and xj into
the pose graph framework as described in Section V-B, using
zij = x∗B and Ξ

−1/2
ij = R = DT/2LTPT . The pose graph

may be solved efficiently using the state-of-the-art iSAM2
algorithm [16] for real-time localization. The only criterion
that must be met in order to be able to solve the pose graph
is that the overall measurement Jacobian matrix A, as defined
in Equation 8, must not be singular. A particular square root
factor R corresponding to a two-view sonar constraint may be
singular and provide no constraints in some directions as long
as the other measurements (odometry in this case) do provide
constraints in those directions. Therefore, it is important to
utilize these two-view sonar constraints in conjunction with
complementary measurements that provide some information
in the directions that are not constrained by the two-view sonar
measurements. Our proposed framework always meets this
criterion, as the combination of the XYH and ZPR odometry
measurements fully constrain each pose.
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D. Frontend: feature detection and association

All of the work discussed thus far has dealt with the
backend of our proposed feature-based bundle adjustment al-
gorithm: the optimization of sensor poses and landmarks given
measurements and correspondences. The frontend of such a
system is the component responsible for the detection and
association of features. While the frontend feature detection
and association is not the focus of this work, we propose a
novel implementation for associating point features between
two sonar frames.

Joint compatibility branch and bound (JCBB) [23] has often
been considered the gold standard algorithm for probabilistic
association of landmarks in a SLAM context. Several more
recent works have made improvements to the original JCBB
algorithm for the purpose of feature cloud matching [24, 29].
Assuming that features are independently measured from two
different poses, these algorithms use joint compatibility tests
to evaluate the error of potential data association hypotheses.
This is more robust to noisy measurements than data associ-
ation algorithms based on individual compatibility because it
evaluates the compatibility of the entire set of feature matches,
rather than separately considering pair-wise compatibility for
each feature matching.

For the real-world experiments described in Section VI-B,
we use the joint compatibility framework described in [29]
for efficient data association between the two sonar frames
in our two-view bundle adjustment problem. In Section IV,
our notation assumed zAi and zBi correspond to the same
landmark. Here we will use zBji to denote the measurement
from pose xB that is considered as a possible match to zAi . The
entire framework is built on the measurement function, which
evaluates the error between zAi and its proposed matched
feature zBji :

fiji
(
xB , z

A
i , z

B
ji

)
= hiji

(
xB , z

A
i

)
− zBji . (31)

Here hiji
(
xB , z

A
i

)
projects measurement zAi into the coordi-

nate frame of pose xB using the optimal elevation angle as
found by direct search, as in the two-view optimization:

hiji
(
xB , z

A
i

)
= π (TxB

(ci,φ∗)) (32)

φ∗i = argmin
φ∈Φ

∥∥π (TxB
(ci,φ))− zBji

∥∥2

Σji

(33)

where ci,φ denotes the Cartesian coordinates corresponding to
the spherical coordinates

[
zAθ,i zAr,i φi

]T
. We implement

the joint compatibility framework described in [29] using
this measurement function, assuming that the features are
independently measured at both poses. The only other required
input is a relative pose estimate and pose uncertainty, which
may be estimated from the pose graph and by propagating the
uncertainty of odometry measurements. For the numbers of
features used in our experiments (up to a few dozen features
per frame), the algorithm is very quick and finds a robust
correspondence between the feature clouds in real-time. This
is approximately the maximum number of reliable features that
are expected in a sonar image, considering the low resolution
and poor signal-to-noise ratio.

VI. RESULTS AND DISCUSSION

The two-view sonar bundle adjustment is implemented in
C++ using the Eigen library [10] for efficient matrix operations
and decompositions. We implement the pose graph framework
using the GTSAM library,4 which includes an implementation
of iSAM2 that we utilize for optimization. To evaluate our
proposed algorithms we conduct simulated experiments as
well as real-world experiments in both a test tank environment
and in the field. All computation is performed on a consumer
laptop computer with a 4-core 2.50GHz Intel Core i7-6500U
CPU and 8 GB RAM.

A. Simulation: two-view

We conduct various Monte Carlo simulations of our two-
view sonar bundle adjustment algorithm. In all of our simu-
lations we assume ground-truth feature correspondences are
known between the two sonar frames, which allows us to
isolate the bundle adjustment algorithm in the evaluation.
Gaussian noise is added to the bearing-range feature mea-
surements (σθ = 0.01 rad, σr = 0.01 m). We simulated the
characteristics of the DIDSON imaging sonar used in our test
tank experiments, by using the same azimuthal field of view
(28.8◦) and elevation field of view (28◦ using the spreader
lens) and a range of 1 − 3 m. In each simulation random
3D point landmarks are generated, with a minimum of 6
points and an average of 12 viewed per two-view optimization.
We use a constant threshold of σmin = 50 throughout all
simulations.

The first quantity that we sample in our simulations is
the ground-truth relative pose transformation. We sample
random small transformations with Euler angles drawn from
U (−0.3 rad, 0.3 rad) and translation components drawn from
U (−0.3 m, 0.3 m). Small transformations generally result in
a two-view optimization that is poorly constrained - mostly
in the ZPR directions. This allows us to demonstrate the
advantage of our proposed degeneracy-aware algorithm over
two previous approaches. The evaluated approaches are:
• ASFM1 - The formulation presented in Section IV-A and

[11, 12], which solves the optimization via LM.
• ASFM2 - The formulation presented in Section IV-B and

[35] which models the elevation angle non-parametrically
and solves the optimization via LM.

• Proposed - Our formulation presented in Section IV-C,
which utilizes the non-parametric elevation angle formu-
lation as well as the degeneracy-aware GN algorithm for
optimization.

The initial estimate of the transformation is corrupted with
Gaussian noise: N (0, 0.05 rad) in the three Euler angles and
N (0, 0.05 m) in the three translation directions. The box and
whisker plots in Fig. 4 show the errors in each of the six
degrees of freedom for the three pose estimation methods as
well as the error of the initial estimate, over 1000 Monte Carlo
simulations. The plots are separated into the well-constrained
DOF in Fig. 4a and the poorly constrained DOF in Fig.
4b. In the well-constrained XYH directions, the proposed

4https://bitbucket.org/gtborg/gtsam/
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Figure 4: Absolute value of pose error of the various estimation methods over 1000 Monte Carlo simulations. The error in the well-constrained directions is
shown in (a) and the error in the poorly constrained directions is shown in (b). The notch denotes the mean and the colored boxes indicates the 25th and 75th
percentile. The whiskers extend to the most extreme data considered inliers, and outliers are marked in red.

method significantly decreases the error compared to the initial
estimate and the previous methods ASFM1 and ASFM2. In
the poorly constrained ZPR directions, our proposed method
makes hardly any updates to the initial estimate at all, while
the previous methods actually significantly increase the error.
While these previous formulations are quick to reach incorrect
local minima and overfit the solution to noise in the measure-
ments, our method cautiously provides updates to the state
estimate in only the directions that are well-constrained by
the underlying geometry.

We repeat the previous simulations, but vary the noise
levels of the initial pose estimate in rotation and translation
over a wide range. Fig. 5 shows the average error in the
well-constrained XYH directions of each evaluated approach
for each of these noise levels. These simulations rigorously
demonstrate that our proposed method outperforms the previ-
ously proposed algorithms in terms of the mean and variance
of the pose estimation error.

B. Experimental: test tank

We validate our proposed pose graph formulation by con-
ducting real-world robotic experiments in a controlled test tank
environment. The test tank is cylindrical - 7m in diameter and
3m in height. The robotic platform we use is the hovering
autonomous underwater vehicle (HAUV)5, as shown in Fig.
6. This vehicle is equipped with several sensors for onboard
navigation: a 1.2MHz Teledyne/RDI Workhorse Navigator
Doppler velocity log (DVL), an attitude and heading reference
system (AHRS), and a Paroscientific Digiquartz depth sensor.
The AHRS utilizes a Honeywell HG1700 IMU to measure
acceleration and rotational velocities. The DVL is an acoustic
sensor that measures translational velocity with respect to the
water column or a surface, such as the seafloor, ship hull,
or in our case, the test tank floor. The vehicle also has a

5https://gdmissionsystems.com/products/underwater-vehicles/bluefin-hauv

SoundMetrics DIDSON 300m sonar6 mounted on the front
of the vehicle, with 90◦ range of tilt motion controlled by an
actuator. Lastly, there is an optical stereo camera pair mounted
beside the DVL.

For ground-truth sonar localization, we use the fiducial-
based visual SLAM algorithm presented in [34]. This work
combines vehicle odometry measurements with camera obser-
vations of AprilTag fiducials which are placed on the floor of
the test tank. It uses the familiar factor graph SLAM formu-
lation to optimize for the vehicle poses, the fiducial poses, as
well as for the vehicle-camera extrinsics. The vehicle odome-
try consists of a proprietary algorithm that fuses information
from the DVL, AHRS, and depth sensor to calculate a state
estimate in the frame of the DVL. In order to produce a good
estimate of the vehicle-camera extrinsics, the visual SLAM
system was used to calibrate extrinsics before collecting the
data sets we use in these experiments. The extrinsics are
then modeled as constant when collecting ground-truth data
for our experiments. For these experiments, we compare the
trajectories of each localization method in the vehicle frame,
as both the sonar and visual SLAM based solutions explicitly
model and estimate the vehicle poses.

In the DVL frame, the x axis points directly forward from
the vehicle, with the y axis directed toward the right and z
axis down. We use a measured, fixed transformation to model
the extrinsics of the sonar sensor relative to the vehicle frame
(DVL frame). Due to the configuration of the vehicle, the
sonar’s xy plane is parallel to the vehicle’s xy plane, but the
z axis points up rather than down. This configuration is ideal
for correcting drift in the vehicle localization: the directions
in which the dead reckoning state estimate drifts (XYH in the
DVL frame) are precisely aligned with the directions that are
best constrained by sonar loop closures (XYH in the sonar
frame).

6http://www.soundmetrics.com/Products/DIDSON-Sonars/DIDSON-300m
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Figure 5: Average error over 100 Monte Carlo simulations for various levels of noise in the initial pose estimate. All plots in a row show the errors for a
single pose estimation method and each column shows the error in one particular degree of freedom. The x-axis for each plot shows the value of the standard
deviation σrot corresponding to the distribution of the noise N (0, σrot) that is added to all rotation degrees of freedom, and likewise for the y-axis and σtrans.

Figure 6: The Bluefin HAUV which is used in our real-world experiments.
The DVL and DIDSON imaging sonar are mounted in front of the vehicle.
The DVL points downward to measure velocity relative to the tank floor or
seafloor, while the DIDSON may be tilted through a 90◦ field of view.

In these experiments we evaluate four different localiza-
tion methods. In all of these methods, we add zero-mean,
time-scaled Gaussian noise in the XYH directions of the
vehicle odometry measurements to simulate a state estimate
from a vehicle with a consumer grade IMU and no DVL:
N (0, 0.02 m/s) in the XY directions and N (0, 0.02 rad/s)
in the yaw direction. The four localization methods are as
follows:
• Dead reckoning - Using the noisy odometry measurements.
• Li modified - We consider a modified version of the

method proposed by Li et al. [18]. In the original work,
Li et al. perform an optimization using the original ASFM
formulation [11] using cliques of 3 imaging sonar frames.
This framework also includes the odometry measurements
in the ASFM optimization, thereby double counting the

odometry information. We use this same framework on pairs
of sonar frames but utilize the non-parametric landmark rep-
resentation, which is necessary to prevent the optimization
from becoming too degenerate to solve.

• ASFM2 - The same as Li modified but without the odome-
try measurements in the optimization, which eliminates the
double-counting of the vehicle odometry information.

• Proposed - Our novel, fully degeneracy aware method
detailed in Section V.

As our test tank environment consists of very smooth
surfaces and lacks distinguishable features, we added features
artificially. We placed an aluminum frame near the surface of
the water. Magnets were placed protruding from the frame and
are visible to the sonar when the sensor is approximately level
with the frame. The features are detected in the sonar images
by using adaptive thresholding and blob detection, which is
shown in Fig. 7.

Test tank experiments - absolute trajectory error (ATE) (m)
Dead reckoning Li modified ASFM2 Proposed

Short trajectory 0.230 0.290 0.558 0.074
Long trajectory 0.519 0.252 0.769 0.159

Table I: The localization error (ATE) in units of meters for the three tested
data sets. The short and long data sets used 37 and 66 loop closures,
respectively, for all evaluated algorithms since the frontend feature detection
and association is distinct from the backend optimization. Our proposed
method produces a significantly more accurate localization result than the
other evaluated methods for both data sets. The overall lengths of the full
trajectories are approximately 60 and 180 meters.
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(a) (b) (c) (d) (e)

Figure 7: (a) Sample polar coordinate sonar image. The magnet features may be seen clearly by the eye. The section of high intensity at the top of the
image is the test tank wall. (b) Adaptive thresholding creates a binary image. (c) Using various criteria on the size, shape, and distribution of the blobs, blob
detection is able to identify most of the magnets as features of interest without falsely detecting features on the tank wall. (d) Features from this frame are
matched with features from a previous keyframe (e) using the joint compatibility data association algorithm described in Section V-D.
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Figure 8: Top-down view of the trajectories of the dead-reckoning and proposed pose graph SLAM solution as compared to the ground truth for Short data
set (a) and Long data set (b). The pose-graph significantly reduces drift throughout the sequence despite only making loop closures at one corner of the
rectangular trajectory.

(a) (b)

Figure 9: (a) Feature matches between two frames in a loop closure proposal
clique, as determined by Li et al [18]. (b) Our proposed joint compatibility-
based feature association method rejects several incorrect feature matches,
resulting in a significantly more reliable set of feature correspondences.

We recorded two data sets, 6 and 18 minutes in duration,
in which the vehicle repeats a rectangular trajectory in the xy

plane. The features are visible only when the vehicle is near
one particular corner of the rectangle. The AprilTag fiducials
are also visible only near this corner of the trajectory. Vehicle
and sonar poses are added to the pose graph at least every
two seconds, and loop closures are added between sonar poses
when a positive association is made between sonar frames with
at least five matched features. The oldest compatible sonar
pose is preferred when making a loop closure, to provide
longer time scale loop closures. To prevent adding unnecessary
loop closures, a minimum time difference of one second is
required in order to add a loop closure constraint to the pose
graph. Fig. 8 shows a top-down view of the trajectories of
the dead-reckoning and proposed pose graph solution. While
the dead reckoning state estimate drift from the ground-truth,
the pose graph solution corrects drift by adding loop closures
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at one corner of the rectangular trajectory. Note that we only
consider poses in which at least one AprilTag is observed for
the ground-truth trajectory, so that it is not affected by drift.
Therefore, only poses near the top-left corner of the trajectory
are shown.

Table I shows the absolute trajectory error (ATE) [32] of the
four evaluated methods. The Li modified method may actually
increase overall localization error, due to the degeneracy of the
ASFM optimizations and double-counting the noisy odometry
measurements. ASFM2 degrades localization accuracy com-
pared to dead-reckoning due to pose degeneracy in the two-
view optimizations. Finally, our proposed method decreases
the localization error compared to all other methods as we
have taken proper care to solve the bundle adjustment problem
in a degeneracy aware fashion and only provide constraints
in the well-constrained directions, without double-counting
odometry measurements.

C. Experimental: ship hull

To demonstrate its applicability to real-world applications,
we test our pose graph localization algorithm on the ship
hull inspection data sets presented by Li et al. in [18]. We
compare our pose graph optimization method to both dead
reckoning localization as well as Li et al.’s proposed approach.
In [18], the authors generated a dead reckoning trajectory
by sequentially adding noise in all degrees of freedom to
the ground truth odometry measurements, causing the state
estimate to drift in all directions. To more accurately model the
HAUV’s dead reckoning-based state estimate, we add relative
noise between poses in the X, Y, and yaw directions and noise
to global observations in the Z, pitch, and roll directions [34].

We utilize several components of the frontend presented
in [18] to allow for a direct comparison of our proposed
work’s contributions. First, we only consider sonar images
that are deemed sufficiently salient for potential loop closures.
We also utilize the same A-KAZE features that are detected
by Li’s method. While Li’s method utilizes an information-
gain approach to sampling poses for potential loop closures,
we simply uniformly sample poses that are close to the
current pose for potential loop closures. We use the feature
matches resulting from Li’s method, which utilizes descriptor
and geometric information, as input to our joint compatibility
feature association algorithm to further refine the matches.
This helps eliminate outlier matches that are accepted by
Li’s method, as depicted in Fig. 9. Finally, Li et al. propose
generating a loop closure by using a clique of three sonar
images in a local ASFM optimization. This is done in order
to decrease the degeneracy of the optimization, making it more
likely to converge to a stable solution. While our degeneracy-
aware solution makes this clique formulation unnecessary, we
still consider cliques of three sonar images for loop closures,
but we treat each clique as two pairs (1-2 and 1-3). If at least
seven features are matched between both pairs of images, we
perform two separate acoustic bundle adjustment optimizations
and add both resulting constraints into the overall pose graph.

Table II shows the localization error metrics used to evaluate
(1) dead reckoning localization (2) the method of Li et al. and

(3) our proposed method on the six ship hull data sets. We
consider the error of each pose in the trajectory in the global
X, Y, and yaw directions, as these are the directions that drift
with dead-reckoning. Our method significantly decreases the
localization error compared to dead-reckoning and the method
of Li et al. in almost all cases. The method of Li et al.
often increases the error due to the degeneracy of the ASFM
optimizations, despite taking multiple steps to alleviate this,
including using the clique-based formulation. Additionally,
our method achieves lower error despite making significantly
fewer loop closures in comparison to Li et al. (fewer than
100 compared to over 200 on average). The reduction in the
number of loop closures is attributed to our joint compatibility
feature association framework, which rejects a large number
of potential loop closures due to poor feature matching.

Fig. 10 visualizes top-down views of several trajectories
resulting from dead reckoning and our proposed method com-
pared with the ground truth. Nearly all of the loop closures are
made between consecutive passes in the lawnmower pattern
of the trajectory, which limits the amount of drift that can be
corrected. Additionally, the ship hull generally lacks distinctive
acoustic features, which makes it difficult to establish sufficient
correspondences to perform a loop closure. While the ship hull
setting may not be the ideal test case for our acoustic bundle
adjustment algorithm, these results demonstrate the advantages
of our formulation of acoustic bundle adjustment over previous
attempts.

VII. CONCLUSION

In this paper we have presented a novel solution to the
feature-based imaging sonar bundle adjustment problem that
emphasizes accurate pose estimation. We focus on analyzing
the case of pairwise bundle adjustment, but our framework
is easily applicable to systems with three or more sonar
viewpoints. We also propose a pose graph framework that
efficiently combines odometry measurements with pose-to-
pose constraints derived from our two-view sonar bundle
adjustment algorithm. The pose-to-pose constraints may be
added for local or large–scale loop closures to correct drift in
the trajectory that inevitably accumulates with dead-reckoning
localization. Our two-view bundle adjustment algorithm is
evaluated extensively in simulation and is proven to outper-
form previous algorithms [18, 35]. We use test tank experi-
ments and field tests to demonstrate the effectiveness of our
pose graph algorithm in correcting drift that accumulates from
the vehicle odometry.

It is clear that the main limiting factor of this work is
achieving accurate and robust feature detection and correspon-
dence from multiple viewpoints. This is fundamentally a more
challenging problem for acoustic sonar sensors than optical
cameras due to the image formation process and the poor
signal to noise ratio. This should still be considered an open
research topic, and further advancements may significantly
improve the performance of our acoustic bundle adjustment
algorithm in environments where distinctive point features are
present.
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Ship hull localization error
Mission 1 2 3 4 5 6

Error in X [m]
DR 0.587 0.354 0.662 0.234 0.357 0.783
Li 0.606 0.270 1.595 1.367 0.547 1.500

Prop. 0.579 0.603 0.389 0.427 0.356 0.457

Error in Y [m]
DR 0.352 0.687 0.565 0.406 0.414 0.496
Li 0.350 0.771 0.615 0.489 0.530 1.625

Prop. 0.344 0.291 0.370 0.288 0.285 0.484

Error in yaw [degrees]
DR 0.383 0.579 2.842 1.803 3.177 1.918
Li 0.392 0.852 3.392 2.941 2.792 4.149

Prop. 0.381 1.21 2.029 1.479 1.647 1.998

Table II: The localization errors of dead reckoning (DR), the method of Li et al. (Li) and our proposed method (Prop.) on the six ship hull data sets presented
in [18]. Each error metric denotes the mean error of all poses in the trajectory over 10 trials of each data set. Our proposed method achieves the lowest error
on 14 out of 18 metrics.

(a)

(b) (c)

Figure 10: (a) Isometric view of the six ship-hull data sets, each plotted with a distinct color. (b) and (c) show sample ground truth, dead reckoning, and
SLAM trajectories for data sets 2 and 3, respectively.

APPENDIX

In this appendix we present the Jacobians of the sonar
prediction functions hAi (li) and hBi (xB , li). Note that while
in Section III we use the notation Hi = ∂hi(x)

∂x , the partial
derivatives of the measurement functions w.r.t. all landmarks
except li are zero. Therefore, we will only examine the block
components of HA

i and HB
i corresponding to the partial

derivative w.r.t. xB and li.
First, we examine the Jacobians of the measurement func-

tion utilizing the full 3-vector parameterization li of a land-
mark. Since li is parameterized in spherical coordinates rel-

ative to pose xA, the Jacobians of the measurement function
hAi (li) =

[
θi ri

]T
are trivial:

∂hAi (li)

∂xB
= 0

∂hAi (li)

∂li
= I2×3.

The Jacobians of hBi (xB , li) may be computed using the chain
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rule:

∂hBi (xB , li)

∂xB
=

∂ẑ

∂q

∂q

∂xB
∂hBi (xB , li)

∂li
=

∂ẑ

∂q

∂q

∂p

∂p

∂li

where

∂ẑ

∂q
=

 −qy√
q2x+q2y

qx√
q2x+q2y

0
qx√

q2x+q2y+q2z

qy√
q2x+q2y+q2z

qz√
q2x+q2y+q2z


∂q

∂xB
=

[
[q]x − I3×3

]
∂q

∂p
=

[
RT
xB

]
∂p

∂li
=

 −ri sin θi cosφi cos θi cosφi −ri cos θi sinφi
ri cos θi cosφi sin θi cosφi −ri sin θi sinφi

0 sinφi ri cosφi

 .
Here [·]x denotes the 3 × 3 skew-symmetric cross-product
matrix of a 3-vector. With these computed, the Jacobians of
hAi (mi) and hBi (xB ,mi) are trivial, as we simply remove
the last column of the appropriate Jacobians that corresponds
to φi, which is no longer part of the state:

∂hAi (mi)

∂xB
= 0

∂hAi (mi)

∂mi
= I2×2

∂hBi (xB ,mi)

∂xB
=

∂ẑ

∂q

∂q

∂xB
∂hBi (xB ,mi)

∂mi
=

∂ẑ

∂q

∂q

∂p

∂p

∂mi

where

∂p

∂mi
=

 −ri sin θi cosφ∗i cos θi cosφ∗i
ri cos θi cosφ∗i sin θi cosφ∗i

0 sinφ∗i

 .
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