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Abstract—In this work, we present a novel method for
reconstructing particular 3D surface points using an imaging
sonar sensor. We derive the two-dimensional Fermat flow
equation, which may be applied to the planes defined by each
discrete azimuth angle in the sonar image. We show that the
Fermat flow equation applies to boundary points and surface
points which correspond to specular reflections within the 2D
plane defined by their azimuth angle measurement. The Fermat
flow equation can be used to resolve the 2D location of these
surface points within the plane, and therefore also their full 3D
location. This is achieved by translating the sensor to estimate
the spatial gradient of the range measurement. This method
does not rely on the precise image intensity values or the
reflectivity of the imaged surface to solve for the surface point
locations. We demonstrate the effectiveness of our proposed
method by reconstructing 3D object points on both simulated
and real-world datasets.

I. INTRODUCTION

Imaging sonars, or forward-looking sonars (FLS), have
been widely used as a core sensing modality for autonomous
underwater vehicles (AUVs). They prove particularly useful
in turbid waters, in which the range of optical cameras
is severely limited [14]. Mapping underwater scenes or
structures with imaging sonars has been a topic of increasing
interest, as rich 3D maps are crucial to many autonomous
tasks. The focus of this work is advancing the state-of-the-
art of 3D reconstruction with imaging sonars.

In many ways, the imaging sonar sensor is analogous
to the monocular optical camera. Both sensors provide 2D
measurements of a 3D environment. Just as the optical cam-
era measures azimuth and elevation angles, but loses range
in perspective projection, so the imaging sonar measures
azimuth and range, but not elevation. This is visualized in
Fig. [Ta] Recovering the elevation angle of imaged surfaces
is therefore the fundamental challenge of 3D imaging sonar
reconstruction.

A variety of previous works attempt to reconstruct the
3D location of sparse feature points by using an extended
Kalman filter (EKF) [13l 25] or nonlinear optimization
[9, 110 114 [15) 214 22]]. The evolutionary algorithm CMA-
ES has also been used to address the nonlinearity of the
problem and to avoid getting stuck in local minima [6].
These methods focus on minimizing the reprojection error of
feature points that are corresponded across multiple images.
One of the main drawbacks of this general approach is
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Fig. 1: (a) The imaging sonar sensor model. The coordinate frame of the
sensor is defined with the z-axis pointing forward and z-axis pointing
downward. An imaged 3D point (black dot) is projected into the zero-
elevation plane, where it is imaged by the pixel corresponding to its azimuth
angle 0 and range r. (b) The ith image column corresponds to a 2D plane
7; which contains the sensor’s z-axis.

the difficulty of reliably and automatically detecting and
corresponding feature points from different sonar viewpoints.
Many of these works rely on manually extracted features
or simulated features and correspondences. More recently,
A-KAZE features [1] have been used for real-time feature
detection and correspondence. However, correspondence is
usually only feasible between nearby sonar viewpoints, lim-
iting the variety of constraints that can be obtained on the
feature points [12, [16] 21].

Other efforts have been made to generate dense object
models using imaging sonar. Generative models have been
used to create a dense pointcloud surface estimate for each
sonar image [2, 4l], which may be fused from multiple view-
points in a truncated signed distance field (TSDF) to create a
single cohesive model [20]. However, these methods require
one or more 3D estimates of object edges and knowledge
of the reflectivity properties of the imaged surfaces, both of
which are difficult to obtain in real-world environments. Vol-



umetric methods such as occupancy grid mapping [18} [19] or
albedo-based models [8, 23] create a discretized volume of
the scene and use filtering or optimization to determine which
voxels contributed to the observed image measurements. The
principle of space carving [13} 5,7, 8] utilizes only the shortest
range high-intensity measurement at each azimuthal angle
to “carve out” free space. Capturing images from a wide
variety of viewpoints generates a surface or volume model
that, with no noise, completely encompasses the imaged
object. However, space carving requires a wealth of different
viewpoints in order to generate a useful object model, which
may not be feasible to obtain in the field. Additionally,
while a convex object may be reconstructed with arbitrary
accuracy given sufficient sonar viewpoints, there are a variety
of concave geometries that space carving is incapable of
reconstructing.

In this work, we present a novel method for reconstructing
particular points on imaged surfaces, which we call Fermat
paths. We derive this from the fundamental geometric prin-
ciples of the imaging sonar sensor. In contrast to previous
methods, our proposed framework cannot be categorized as
inherently sparse or dense — the density of reconstructed
points depends on the geometry of the imaged surfaces
relative to the sensor. Our proposed method may be viewed
as an improvement on and generalization of space carving,
and is largely based on the seminal theory of Fermat paths
for non-line-of-sight reconstruction [24].

The specific contributions of this work are:

« relating the problems of imaging sonar reconstruction
and non-line-of-sight reconstruction,

e a derivation of the 2D Fermat flow equation, which
describes a novel method for estimating the 3D location
of surface points,

o a framework for estimating the spatial gradients of Fer-
mat pathlengths to solve the 2D Fermat flow equation,

« an evaluation of the proposed method on simulated and
experimental datasets.

The remainder of this paper is organized as follows:
Section [[] describes the fundamentals of the imaging sonar
sensor and analyzes relevant properties of Fermat paths for
imaging sonar reconstruction. The 2D Fermat flow equation
is derived in Section [III| as well as a method for solving it
to reconstruct 3D points. Section [[V| presents results of our
proposed method on simulated and real-world datasets and
Section [V] offers concluding remarks.

II. FERMAT PATHS FOR IMAGING SONAR
A. Imaging sonar sensor model

The imaging sonar is an active acoustic sensor that emits
pulsed sound waves and measures the intensity of sound
reflected back towards it. The known speed of sound in water
is used to measure the range r of returning sound waves
and a 1-D array of transducers is utilized to disambiguate
the azimuth angle 6. This results in a two-dimensional
image where the rows correspond to discrete range bins and
columns to discrete azimuth angle bins. Fig. shows the

image pixels projected onto the zero-elevation plane, and an
imaged 3D point projected into its corresponding pixel. The
sensor has a limited field of view in azimuth, range, and
elevation. A single sensor origin is considered the source of
emitted sound and the point of detection of reflected sound,
with the x-axis pointing forward towards the imaged volume
and z-axis pointed downward.

Since the sensor disambiguates the azimuth angle 6, we
consider the image formation model for an arbitrary azimuth
angle ;. Although each azimuthal beam images a slice of
volume with a small non-zero width, we can approximate
the image formation model in two dimensions. We consider
the 2D plane 7; corresponding to azimuthal beam 6;, which
intersects the sensor’s z-axis and is rotated off of the zz
plane by 6;, as shown in Fig. The rest of the discussion
on Fermat paths takes place within the 2D plane. Then, using
X to denote the 2D cross-section of the 3D scene defined
by m;, c to denote the imaging sonar origin, and x to denote
a surface point along X, the image formation model for
column 7 may be expressed as

I (r;c) = /Xf(x; c)d(r—r(x;c))dx (1)

where f (x;c) captures visibility, reflectivity, shading, and
the spatial propagation of sound. r (x;c) denotes the range
of a surface point x from the sensor origin.

For the sake of simplicity, we consider only single bounce
returns, disregarding that sound waves may be reflected off
of multiple surfaces before returning to the sensor, falsely
contributing intensity to pixels at longer ranges. Additionally,
we define a coordinate system in the plane ; as follows: the
z-axis is aligned with the sensor’s z-axis, and the forward-
facing w-axis lies in the sensor’s xy-plane, rotated from the
x-axis by 6;.

B. Fermat paths in imaging sonar sensing

Our theory follows the work of Xin et al. [24], which
derives the 3D Fermat flow equation for non-line-of-sight
(NLOS) reconstruction. Under this model, recovering a
point’s elevation angle is equivalent to 2D range-only map-
ping. This is akin to the problem of NLOS reconstruction,
which may be viewed as 3D range-only mapping, as the
azimuth angle is not disambiguated.

Consider a scene & that is formed as the union of smooth
surfaces. This theory focuses on a subset of surface points,
defined as follows, which possess unique properties that
make them amenable to 3D reconstruction.

Definition 1. Let x € X be a point on the scene surface, c
the sonar sensor origin, and r (x;c) = ||x — c|| the range
(or pathlength) of the surface point x from the sensor. Then,
the Fermat set F (c) is the set of all points x for which the
range function r (X; c) is a local extremum or a saddle point.

We refer to points in F (c¢) as Fermat paths because they
correspond to paths that satisfy Fermat’s principle.
Proposition 2. The Fermat set consists of two disjoint sets,
the boundary set B (c) and the specular set S (c), such that
F(c) 2 B(c)US(c). B(c) contains all points on X for
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Fig. 2: A surface X observed by an imaging sonar located at ¢ in the
2D plane corresponding to a particular azimuth angle. The first return is
generated by x 7 2, which is the only point in the specular set in this
example. The two boundary points are X 7 1 and X 7 3. Below the drawing,
the range measurement is plotted as a function of the surface point and the
image intensity is shown as a function of the range.

which a normal vector is not defined. S (c) consists of points
that create a specular reflection.

Proof: Let s € [0,1] be a parameterization of the object
surface X'. By fundamental principles, the range function
r(x(s);c), has extrema at s = 0, s = 1. Other extrema
or saddle points only occur where Irix(skic) — Boundary
points correspond to s = 0 and s = 1 and are thus clearly
extrema. For a specular point x(s) € S(c), consider the
derivative of the range:

or(x(s);c) [/ x(s)—c
o = (o) @
1
= - oI (x(s) —c,x5(s)) (3
where x, (s) = 8’525), and ||-|| denotes the f3-norm. The

vector X, (s) is by definition parallel to the tangent of the
curve X at x. The surface normal at x (s) must be parallel
or anti-parallel to x(s) — ¢ in order to create a specular
reflection. Therefore, x (s) — ¢ is orthogonal to the tangent
vector, so (x (s) — ¢, x5 (s)) =0 and

or (x(s);c) _o @

Os
Therefore, x (s) is either a local extremum or saddle point
in the range function. ]

A simple example is shown in Fig. 2] A convex surface is
imaged, resulting in three Fermat paths. The two boundary
points correspond to extrema in the range from the sensor.
The first-detected surface is the specular point xr 5, which
is a local minimum in the range function.

Note that points in the specular set are not necessarily
points of specular reflection in 3D. The orthogonality condi-

tion need only hold in the 2D cross section of the 3D surface
defined by the azimuthal plane of interest.

Next we describe how Fermat paths may be detected in a
sonar image.

Proposition 3. Assume that the reflection of sound off the
surface X is non-zero in the specular direction. Then, for
all x € F(c), the image intensity I, (r;c) will have a
discontinuity at pathlength r (x;c).

For brevity, we omit the full proof and refer the reader to
[24] for the proof in the 3D scenario, which also applies
directly to our 2D scenario. However, Section will
provide some insight into how the proof works in the
boundary case. In particular, the Fermat flow constraint can
be obtained by differentiating Eqn. [I3] for j = 1 point, and
assuming that b is independent of sensor location.

For specular points, consider the example in Fig. 2} For
a convex surface, if the shortest-range measurement is not a
boundary point, it will be a specular point, as is xr ». For a
noiseless sensor, this will result in a jump from zero-intensity
to some non-zero intensity at the corresponding range. This
generalizes to specular points on concave portions of the
surface, but the jump is from higher intensity to lower
intensity.

With this observation, we have now identified the Fermat
paths and noted that they can be detected in individual sonar
image columns as discontinuities in the intensity values.

III. FERMAT FLOW EQUATION
A. Fermat flow derivation

Here we derive the Fermat flow equation, which is stated
as follows and can be used to solve for the 3D locations of
Fermat paths.

Proposition 4. Consider a range measurement vz (c) cor-
responding to a Fermat path. Assume that there is a single
unique point xx € F (c) with r (xr;¢) =rx (c) . Then,

X]::C—T]:VCT]:(C). (5)

Proof. We prove this for a point xz € S (c) in the specular
set, and omit the proof for the boundary set for brevity. We
will use v = [v*,v%]" to denote the 2D coordinates of a
point v in the plane. Let s € [0,1] be a parameterization
of the surface X in the neighborhood around xr, so that
xr = x(s(c)). Then, considering the derivative of 7z (c)
with respect to ¢, we have

orx(c) _ d||xr — ¢l
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where x;(s(c)) is tangent to the surface X at xz by
definition. Since xz € S (c) and from the definition of the



specular set S (c), the vector xx—c is parallel to the surface
normal at x . Therefore, x r — ¢ is orthogonal to x; (s (c)),
and (9) becomes

orr (c)
oc?
The same derivation may be used to show that holds

for the z-coordinate as well, and therefore that

Verr(c) = —

. (xF-9)"
" e el 1o

Xr—C
xF —c|’
This may be rearranged in the form of (3). [ |

The significance of this result is that Fermat paths may
be reconstructed in the 2D plane, and therefore in 3D, with
“single-shot” estimation. Only the gradient of the Fermat
pathlength is required, which can be estimated with short
baseline motion. This yields what may be thought of as a
“differential stereo” algorithm for reconstructing points in

F (c).

Y

B. Fermat flow estimation

An interesting result of (TI) is that the gradient of the
Fermat pathlength is a unit vector, with just one degree of
freedom. This gradient with respect to the acoustic center of
the sensor may be computed as

- 87”]: 2 87‘]:
Verz(€) = Vl‘(az)vaz

where, ag; is the gradient along the sensor’s z-axis, esti-
mated by translating the sensor in that direction. The direc-
tion of the gradient in the plane’s w-axis is inferred, using
the unit norm property of V.rx (c). Alternatively, %UE could
be estimated by translating in plane’s the w-axis. However,
since the 3D direction of the w-axis for each azimuthal plane
in the sonar image is different, each translational direction
would yield a direct gradient estimation for only one image
column. Additionally, as the sensor translates, the surface
point imaged by the discontinuity in each image column
may change due to translation outside the plane. Therefore,
it is best to translate the sensor along its z-axis so that
the azimuthal plane for each column does not change, and
directly estimate 85'; for all image columns simultaneously.

To generate a gradient estimate that is robust to noise in the
Fermat pathlength measurement and the sensor pose, we fit a
quadratic polynomial to the Fermat pathlength measurements

rz as a function of z:

12)

Cc

rr(z) = a2’ + a1z + ao (13)
and compute the gradient as
0
BT a0z +ay. (14)
0z

This smoothing procedure is applied to a window of local
values around each point of interest. Note that this is a
heuristic used to provide robust gradient estimates in the
presence of noise, and a variety of other filtering techniques
could be used instead. Fitting a quadratic to the Fermat

pathlength can also be viewed as placing a prior on the
smoothness or curvature of the surface.

C. Boundary points

A significant distinction between points in B (c) and
those in S (c) is that in the 2D plane, B (c) consists of
only up to two points for each continuous surface for all
sensor locations c. These same boundary points in B (c)
are observed repeatedly from different viewpoints and cor-
respondence may be established across these viewpoints.
This is in contrast to points in S (c), of which there are
infinitely many and which cannot be corresponded between
different viewpoints. If the same point b € B (c) is observed
from multiple sensor locations, a nonlinear least squares
optimization may be used to estimate its location in the
plane:

min E
b -
J

where 7, (c;) is the range measurement of the point from
sensor location c;.

This estimation method may be thought of as a 2D
equivalent of the nonlinear optimizations previously used to
solve for the 3D locations of sparse features under general
sensor motion [9} 15} 22]]. The main drawback of these previ-
ous methods is reliably detecting and corresponding feature
points between different viewpoints. However, restricting the
sensor motion to translation in the z-axis provides an implicit
solution to this problem: boundary points may be detected
as discontinuities in the image and tracked within the same
image column as the sensor moves. However, discontinu-
ities corresponding to boundary points can generally not be
distinguished from discontinuities corresponding to specular
points, without the aid of prior information.

D. Field of view

In our derivation of the Fermat flow equation, we disregard
the sensor’s field of view, assuming that either the sensor
has an unlimited elevation field of view or that the entire
surface X’ lies within the sensor’s frustum. In reality, imaging
sonars have a limited elevation field of view. For example,
the SoundMetrics DIDSONE] can be configured for up to 28°
elevation aperture and the Oculus M—seriesﬂ sonars for up
to 20°. If a surface lies partially within the sensor’s field
of view, our analysis remains intact and visible specular
and boundary points may still be reconstructed using the
Fermat flow equation. The one complicating effect is that the
intersection of the surface with the end of the sensor’s field of
view in the elevation direction may generate additional dis-
continuities in the image that correspond neither to specular
points nor boundary points. If the Fermat flow equation is
applied to all discontinuities in a sequence of sonar images,
the presence of such a geometry could potentially introduce
false estimated surface points, since the Fermat flow equation
does not hold for these points.

2

b (Cj) — \/(bw - c}”)2 + (b — 05)2 (15)

www.soundmetrics.com/Products/DIDSON-Sonars/DIDSON-300m
2www.blueprintsubsea.com/oculus/index.php
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Fig. 3: Reconstructed points of surfaces from simulated datasets using our solution to the Fermat flow equation. (a) - (c) depict isometric views of the
ground truth surface points (yellow to blue colored) and the reconstructed surface points (red) for sections of a plane, sphere, and concave cylinder,

respectively. (d) - (f) depict side views of the same reconstructions.

E. Relation to space carving

The application of the Fermat flow equation to reconstruct
specular points may be viewed as a generalization of the
theory of space carving for imaging sonar reconstruction
(3L [3]]. Space carving considers the first high-intensity return
for each image column, which is generated by the closest
surface in the 2D plane defined by the azimuthal beam. All
volume along the entire elevation field of view between the
sensor and this range measurement is “carved out” as free
space, while all volume behind this measurement remains
potentially occupied. While the closest high-intensity mea-
surement is generally caused by one surface point, the surface
point is not explicitly determined or solved for. The estimated
surfaces are simply the exterior of the potentially occupied
regions that remain after repeating the carving process from
a variety of viewpoints.

The point generating the first return is, by definition, one
of the many Fermat paths of a surface. When the surface is
convex (e.g., a cylinder, sphere, or plane), all of its Fermat
paths will also be points generating first returns. In this
case, it can be shown that, assuming an infinite density of
sensors, our method and space carving will generate the same
surface. However, when a surface is sufficiently concave, it
will contain Fermat paths that do not generate first returns.
In this case, space carving will generate a hull containing
the surface within its interior, but will fail to reconstruct
its concave parts. By contrast, our method will successfully

reconstruct the entire surface. This relationship is discussed,
in the context of NLOS imaging, in [17] 24].

1V. EVALUATION

We present results from simulation and real-world datasets
to demonstrate and evaluate the proposed framework for
imaging sonar reconstruction. For both simulated and real-
world sonar images, we detect discontinuities using Canny
edge detection and use several heuristics to reject false
positives due to noise.

A. Simulation

We generate simulated datasets of a variety of simple
surfaces. We simulate an imaging sonar with an artificially
wide elevation aperture of 180° for two purposes. First, a
wider elevation aperture allows for great coverage of surfaces
during a single sweep along the z-axis. Second, this also
demonstrates that wider elevation apertures do not affect
the accuracy of our proposed algorithm, as long as the
discontinuities are detectable in the image. This contrasts
starkly with volumetric albedo [8, 23] or occupancy grid
(18 methods which perform significantly worse with
wider elevation apertures. We use a simple projective image
formation model that does not model occlusions or shading
as the precise pixel intensity is not used to solve the Fermat
flow equation. Pixel intensities are only used for detecting
discontinuities that correspond to points in the specular or
boundary sets.



Figure [3] visualizes the reconstructed specular and bound-
ary points compared to the ground truth surface models. The
specular points are reconstructed nearly perfectly while there
is a small amount of noise in the boundary point estimation,
due to the smoothness prior enforced in estimating the
Fermat pathlength gradient.

B. Real-world experiments

We also conducted real-world experiments using a Bluefin
HAUVE| robotic test platform in a test tank environment. Data
was collected using a SoundMetrics DIDSON imaging sonar
with a spreader lens to increase the elevation aperture to 28°.
The vehicle’s odometry, which makes use of a high-end IMU
and Doppler velocity log (DVL), is used for sensor pose
estimates at each sonar frame.

We image a planar plywood target, as shown in Fig. ] with
the sonar oriented nearly perpendicular to the target. A single
sweep along the sonar’s z-axis allows for reconstructing
a dense set of points on along the surface and boundary
of the target. The boundaries of the square cut-outs are
not easily detected due to the perpendicular viewing angle.
Some surface points are reconstructed in these gaps due
to the violation of the assumption in Proposition 4 that a
detected discontinuity is due to a single surface point — some
discontinuities are the result of simultaneous returns from the
plane above and below the cut-out. Nevertheless, the side
view of the reconstruction demonstrates that the elevation
angle of the surface points is estimated quite accurately and
the planar structure is recovered despite making no assump-
tions regarding planarity of the scene. As expected, many
noisier boundary points are reconstructed due to repeated
observation. The mean absolute error of the reconstructed
points is 1.3 cm, which is mostly due to the noisy estimation
of boundary points. The range resolution of the sonar in this
experiment is approximately 0.5 cm per pixel. Fig. [5] shows
detected boundary points reconstructed using Eqn. [T3]} with
the plane imaged at a steeper angle to aid the detection of
the interior boundaries.

V. CONCLUSION

In this work, we have presented a novel framework for
reconstructing surface points observed by an imaging sonar
sensor. We have derived the 2D Fermat flow equation, which
may be applied to reconstruct 3D surface points from single
observations by simply translating the sensor to estimate
spatial gradients. While this approach is primarily useful for
reconstructing points of specular reflection in the 2D cross-
sectional plane, we describe how the same sensor motion
may be used to accurately reconstruct boundary points based
on multiple observations. We demonstrate the effectiveness
of our proposed algorithm in simulation as well as on real-
world datasets collected in a test tank environment.

In future work, objects with some convex surfaces should
be reconstructed with our proposed method in real-world

3https://gdmissionsystems.com/products/underwater-vehicles/bluefin-
hauv
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Fig. 4: (a) Top-down view and (b) side view of a planar target imaged
in a test tank. The ground-truth point cloud (gray) is shown alongside the
reconstructed surface points for comparison, which are colored blue for
lower error and red for higher error. The reconstruction is incomplete due
to the limited azimuthal field of view of the sonar (28.8°).
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Fig. 5: Reconstructed boundary points from a single sweep along the sensor
Z-axis.

experiments to highlight its advantage over space carving.
We note that the detection of discontinuities corresponding to
Fermat paths is one of the main sources of error in our real-
world experiments and could be improved in future works
as well.

We have treated image columns as separate sensors in this
work and solve for the 3D location of points across image
columns independently. Information from Fermat paths in
neighboring image columns could be used as a form of
regularization to improve the estimation of surface points.
Additionally, Xin et al. [24] describe an optimization pro-
cedure to generate more accurate surface estimates in the
presence of noise in the Fermat pathlength gradient estimates
in the NLOS scenario, which could be applied to the problem
of imaging sonar reconstruction.
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