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Abstract— Typically, the reconstruction problem is addressed
in three independent steps: first, sensor processing techniques
are used to filter and segment sensor data as required by
the front end. Second, the front end builds the factor graph
for the problem to obtain an accurate estimate of the robot’s
full trajectory. Finally, the end product is obtained by further
processing of sensor data, now re-projected from the optimized
trajectory. In this paper we present an approach to model the
reconstruction problem in a way that unifies the aforementioned
problems under a single framework for a particular applica-
tion: sonar-based inspection of underwater structures. This is
achieved by formulating both the sonar segmentation and point
cloud reconstruction problems as factor graphs, in tandem with
the SLAM problem. We provide experimental results using data
from a ship hull inspection test.

I. INTRODUCTION

HREE-dimensional maps of underwater scenes are crit-

ical to—or the desired end product of—many appli-
cations over a spectrum of spatial scales. Examples range
from microbathymetry and subsea inspection to hydrographic
surveys of coastlines. Depending on the end use, maps will
have different levels of required accuracy in the positions
of the features they capture: the THO Standards for Hydro-
graphic Surveys, for instance, require a maximum horizontal
uncertainty of 2m at a 95% confidence level [23]. Maps used
for proximity navigation around sub-sea infrastructure are
likely to have stricter requirements, as both the platform and
features of interest are significantly smaller. The accuracy of
a mapping platform depends mainly on the individual accu-
racies of: (i) its pose estimate in some global frame, (ii) the
estimates of offsets between mapping sensors and platform,
and (iii) the accuracy of the mapping sensor measurements.
Typically, surface-based surveying platforms will employ
highly accurate positioning sensors—e.g. a combination of
differential Global Navigation Satellite System (GNSS) re-
ceiver with an accurate Attitude and Heading Reference
System (AHRS)—to instrument the pose of a mapping sensor
such as a multibeam sonar. Surveying is performed after
a calibration of sensor offsets (usually through a set of
dedicated maneuvers) and the data is finally fed to a post-
processing tool to optimize. For underwater platforms, such
as autonomous underwater vehicles, the use of absolute
positioning systems is only possible when the survey area
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Fig. 1. Factor graph model for the reconstruction problem. Each vehicle
pose node x;, in blue, is connected to the previous pose by a relative
odometry measurement z{_; i (eq. [8). The node x; is also constrained
by the absolute depth, pltch and roll measurement z¢ (eq. P). The range
measurement z; (eq I) connects the vehicle pose x; to the correspondmg
scatterer posmon p;. represented by the gray node. A scatterer may be
associated with a surface element s, in which case it is constrained by
the measurement z & (eq. ) Finally, adjacent surface elements may
be constrained by a "smoothiiess measurement, zy, y (eq. [10). For clarity
purposes, only one of each type of factor has been labeled Tn this figure.

is small (O(lkm)) and, save for a few exceptions, the
accuracy of these systems is significantly lower than that
of differential GNSS. This performance reduction shifts the
accuracy burden to the Inertial Navigation System (INS)
and/or the position estimation framework, often necessitating
the use of techniques such as Simultaneous Localization and
Mapping (SLAM), as most INS will incur in drift over time.

In both surface and underwater survey platforms, there are
three tasks that take place (often in real-time for autonomous
platforms): (1) sensor processing, (2) pose estimation, and
(3) 3D reconstruction. Their purpose is as follows: sensor
processing aims at producing a set of measurements from the
mapping sensor(s) that can be used to produce a map (and
potentially by the pose estimation task as well, particularly
in the context of SLAM); pose estimation tries to obtain
accurate estimates of the platform pose over the entire survey
trajectory; finally, 3D reconstruction uses the outputs from
the previous two tasks to produce a map that is suitable to
one or more end uses (e.g. navigation or inspection). As this
description hints at, in many applications these tasks happen
in sequence, with the output of one process being fed to
the next with little to no feedback, potentially discarding
information from the preceding steps that could produce a



more accurate solution.

Unlike the sonar range measurement models found in
many surface platforms [29, Sec. 6.3], where the sensor
outputs a noisy range value, in most underwater mapping ap-
plications range estimates must be determined from single- or
multi-beam sonar data on echo strength over range, often by
taking the first or strongest return above a threshold. This is
commonly preceded by the use of standard image processing
operations as a pre-processing step to improve measurement
accuracy [13], [3], [14]. To address the effects of outliers
typically found in sonar data (caused by acoustic phenomena
such as noise, reverberation and multi-path propagation)
some of the proposed methods then look at the agreement
between the range measurements in consecutive beams [18].
Another group of techniques makes this relationship explicit
by modeling the problem of segmenting the full sonar image
into free and occupied space using graphical models, such
as Markov Random Fields [1], [28]. These dense methods,
while more accurate, are computationally more intensive, and
arguably less efficient for the purpose of obtaining a single
range measurement per beam.

Considerably less common in the underwater domain is
the use of scene models to aid sensor processing: knowing
that the range measurements correspond to points along a
smooth surface, for instance, can help with the segmentation
process. Such approaches are commonplace in reconstruction
applications, where noisy range data is associated with some
form of surface representation, often based on geometric
primitives such as planes [30], [7], splines [12] or sur-
fels [33]. When not assumed fixed, the pose of the range
sensor (or equivalently, that of the reconstructed object) is
not usually measured; instead, sensor motion (egomotion)
is estimated through use of Iterative Closest Point (ICP)
variants from sequential range scans [33], [9]. Unfortunately,
the combination of the geometry of multibeam sonars with
platform motion frequently precludes the use of this family of
algorithms—as platforms move perpendicular to the scanning
plane to maximize coverage rate, overlap between consecu-
tive images is eliminated. In cases where there is overlap due
to in-plane motion, ICP can only provide partial (in-plane)
constraints [14], and these tend to be poorly informative in
the case of small fields of view. Thus, out-of plane motion
generally leads to the use of submap-based techniques, where
sensor measurements and odometry are accumulated over a
short time frame to produce a “virtual® sensor measurement
that can be registered with previous ones and produce a
relative motion estimate [18], [27], [32].

While some reconstruction methods assume drift-free sen-
sor trajectories, avoiding the loop closure problem [9], others
formulate it as a full SLAM problem, estimating both sensor
pose and primitive location and parameters. Planar SLAM is
a prime example of the latter, in which the proposed methods
take advantage of the ubiquity of planar features in man-
made environments to concurrently use as landmarks and
mitigate the effect of noise in the range measurements. Most
approaches estimate both the sensor pose and the parameters
of planes identified from two- and three-dimensional range

sensor data [30], [7] which, while noisy, is quite dense when
compared to typical sonar measurements (a notable exception
is the use of very sparse range data to track planar features
and derive navigation constraints [16]). One particularly
relevant set of techniques uses a similar approach to refine
the output of a SLAM system [20], [19]: modeling range
measurements as surfels, the method optimizes both sensor
pose and surfel parameters. This optimization is performed
iteratively: once range measurements are approximated by
surfels, pairwise correspondences are then determined; once
new pose and surfel estimates are available, the graph is re-
built and the process continues.

Drawing inspiration from these methods, the aim of this
paper is then to address some of the limitations in prior work
by the authors [27], [28] by formulating the reconstruction
problem in a manner that allows for concurrent modeling
and estimation of sensor pose, measurements, and model
parameters in a single, unified framework. We accomplish
this by formulating each of the three problems using the
language of factor graphs. Owing to this modeling choice,
we consider the proposed technique to be dense, as every
valid range measurement is explicitly modeled as variable in
the estimation problem.

After a more formal problem description in section [II} we
model sonar range measurements in section and tie those
with a standard pose estimation formulation in section
Section E] addresses the choice of surface representation, the
associated measurement model, and the algorithms required
for data association between the two. In section VI we
present some results from the use of our proposed technique
on a small segment of data taken from a larger inspection
data set. Finally, in section we conclude with some
remarks on the strengths and weaknesses of the technique,
and point at promising directions for future work.

II. PROBLEM STATEMENT

Our problem can be described as that of estimating the
position p of acoustic returns, as well as the pose x of
the sensor itself. Provided an adequate scene model S, we
would also like to estimate its parameters concurrently. The
inputs to our estimation problem comprise multibeam sonar
scans and navigation data, the latter provided either as raw
sensor measurements (e.g. from a combination of IMU,
DVL, and pressure sensor), or as odometry estimates X;
from an external navigation system. Multibeam sonar scans
contain a set of measured intensity values yy (1) defined over
the detection range [ymin, 'maz), Where k indexes the beam
in the scan (k € {1,..., B}). The choice of a scene model
is addressed later in the text (Sec. [V).

III. SONAR SEGMENTATION

The purpose of segmenting a sonar scan is to determine,
given yi(r), a belief over the range to the scattering object
or surface—py (r|y)—for each beam in the scan. In the
ideal case, determining the range to the object amounts to
detecting the presence and location (ry) of a transmitted
signal u(r) in the received signal y(r), subject to additive
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Fig. 2. Normalized empirical distributions obtained from the a typical

single-beam echo intensity measurement. The different curves show the
effect of removing the lowest 50, 90, and 99% quantiles.

noise and linear medium response: yi (1) = u(r—rg)+ng(r).
This is also known as matched filtering, and under these
assumptions p(r|y) can be recovered given the received and
transmitted signals [35]:
plrly) = 2~"'p(r) exp (q(r)) @)
where z is a normalizing constant, ¢(r) is the correlation of
the transmitted pulse with the received signal,
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and Ny is the energy in the noise signal (assumed white). If
the prior belief on r is uniform, then the MAP estimate of
r is simply the maximum of g(r).

In other situations, however, we may have no knowledge
of the transmitted pulse, and we are left with the problem
of recovering p(y|r) from y(r) alone. Here, we assume
p(rly) o< y(r) will not be Gaussian, or equivalently u(r) =
d(r) (impulse at 7). In fact, p(y|r) may contain more than
one mode due to reverberation, multi-path propagation, and
other acoustic phenomena, as illustrated in figure Q] with
normalized y(r). Figure [2| also highlights the multi-modal
nature of the measurement by removing the lowest 50, 90,
and 99% quantiles of y(r).

So far, we have concerned ourselves with modeling the
problem along the sonar beam’s main axis (i.e. range); to
pinpoint the position of the received echo in space, we must
also consider the remaining two directionﬂ azimuth (o)) and
elevation (3). The uncertainty associated with these axes
stems from the fact that the beam has a non-zero width.
We assume azimuth and elevation to be independent and
treat p(a) and p(f3) as static, approximated by a bivariate
normal with o, and o equal to the width of the main lobe
in the respective direction (usually on the order of 1°). The
measurement model for the sonar is

q(r)

z; = h(x;,pk) + vy

x5 — Prll2
Py—y
arctan(*—) | + vy 3)
arccos(p, — z,7)

=[rap"+v]

'Here we employ a spherical coordinate frame, as is typically the case
when working with sonar systems.

where the covariance matrix X = diag([o} o5 o3]") is
obtained from uncertainty in the range estimate (o,) and
main lobe width in the azimuth (o,) and elevation (og)
directions. x7 and py, are the sensor pose and return position
(respectively), expressed in the world frame.

Given the MAP estimate for the return position *py, (or,
equivalently, estimates for range, azimuth, and elevation—r,
«, and (3), the return can then be registered in the world
frame: R

" =32T §T°pr )
where W, P, and S denote the world, platform, and sensor
frames, respectively, and p denotes the homogeneous repre-
sentation of point liﬂ Figure shows the point cloud ob-
tained through registration of sonar returns from odometry-
based estimates of } 7.

IV. POSE ESTIMATION

To spatially register sonar returns (eq. we require
estimates of both sensor and platform poses to be available—
these must be obtained from measurements of the on-
board navigation sensors. In this section, we describe the
formulation of the navigation part of the estimation problem,
assuming a typical navigation payload comprising a Doppler
velocity log (DVL), inertial measurement unit (IMU), and
pressure sensor [10]. Absolute and relative measurements are
captured by unary and binary constraints in our factor graph
model, as illustrated in figure [I]

A. Absolute Measurements—Depth, Pitch, and Roll

Depth estimates can be obtained from pressure measure-
ments through the use of seawater models [4]. Pitch and
roll measurements, in turn, are available directly from the
platform’s AHRS. The measurement model is then

z? = h(x;) + v§
=z 00" +v¢
The measurement covariance is ¥ = diag([o? o3 Ui]), with

typical values of 0.1 m for deptlﬂ and 0.1° for pitch and
roll [10].

(&)

B. Relative Measurements—Horizontal Odometry
Horizontal odometry measurements are obtained through

integration of the platform velocity, “u = [u v w]? [34]:

oz tit1
oy = / WR(t) u(t)adt 6
0z iig1 ti (6)
~ ‘}/;VRl Puié t
and of the z-component of the angular velocity in the
platform frame (small-angle approximation):

t1+1
o~ / P, (t)dt
ti

~ PUJZJ‘(St

(7

2The homogenous representation of point p is the vector p = [p? 1]7.

3 Assuming shallow depth (< 100 m), and o around 0.1% of full scale.



where dt is the sampling period. The horizontal odometry
measurement model is then

z] = h(xi,Xi11) + v{
= [6z 6y oy]" + ¢

Due to noise in the measurements u, w, as well as bias in the
latter, the covariance associated with z? will grow with time,
modeled by 3> = t-diag([o? o}, o7, ]). Note that the equations
above necessitate a prior transformation of the linear and
angular velocity vectors from their respective frames to the
platform frame, thus requiring proper calibration so that

P..T and I T can be accurately determined [11].

®)

C. Sensor Offset

Like the DVL and IMU, the mapping sensor payload also
requires calibration to determine }SDT, as lever arm effects
can introduce registration errors in the order of tens of
centimeters when mapping at a long range. To address the
issue, we model the offset between sensor and platform
as part of the estimation problem: with every new sonar
measurement a new measurement is added:
z{ = h(x!, x5, ¢) +vf ©)

Py Wrin—1 Wt :

=sT g Ty pTi+vi
This measurement model describes what is essentially a
“consistency check” between the platform and sensor poses
and the sensor offset; if all three estimates are correct, the
measurement should yield the identity transformation.

V. RECONSTRUCTION

Thus far, we have considered a point-based representation
of the scene, where the position of the sonar returns in the
world frame can be obtained by projecting the most likely
range value (eq. @) from the sensor to the world frame.
What this formulation has not yet captured, however, is
that these points are, in fact, noisy samples of some object
surface. Given a surface representation, we can model this
as a constraint between the surface and the point sample.

Common candidates for discrete representation include
simple geometric primitives, such as lines, planes, and surfels
[15], as well as parametric surfaces [12]. As mentioned in
Section [I] the choice of a particular primitive (or set of
primitives) is tied to the characteristics of the scene: while
planes tend to be a good fit to man-made environment, the
same does not hold true for less structured environments,
such as underwater scenes. Other methods eschew geometric
primitives in favor of a (minimal) set of features derived
from the actual scene [21], but approach the problem from
a data compression perspective, taking the representation as
the fixed output of a mapping system.

For these reasons, we use the small-scale, spatially
bounded version of planes—surfels—as the discrete repre-
sentation of choice. Modeled by an origin o and a surface
normal n of unit length, surfels are also characterized by
their spatial support rg, which we consider a reconstruction
parameter instead of part of the estimation problem. Thus,
we implicitly make the assumption that, for the desired

level of accuracy, the scene can be approximated by a
piecewise planar set of primitives; in other words the scale
of characteristic features in the scene is comparable to, or
larger than, the spatial support 7g.

A. Surfel Correspondence

Given a point p; and a surfel s, we model a correspon-
dence or assignment measurement as a combination of the
point-to-plane (d,) and in-plane (d;) distances between the
two, which can be written as

z; ), = h(pj,s) +v
=[do d;]T +v

(nkT(Pj - Ok))2 +v
p; — oxkl[? — d2

(10)

If p; is considered to be a sample of sj, then the expected
measurement value should be zero, with covariance of ¥ =
diag([o2 o02]), where o, should be closely related to the
variance (width) of the sonar return chosen as the range
measurement (Sec. [[II). While not strictly necessary, the
in-plane distance component of the measurement model
serves to address the degeneracy issues associated with
over-parameterized plane representations [7]; for this reason,
o; should not dominate over o,, and should in fact be
proportional to the surfel support rg.

B. Smoothness constraints

Another implicit assumption in the approximation of a
surface with a set of surfels smaller than (or comparable to)
the characteristic scale of its features, is that these should be
somewhat evenly distributed, and that their orientation should
vary smoothly. To model this potential smoothness constraint
between neighboring surfels, we use a two-dimensional mea-
surement comprising the pairwise point to plane distances
between one surfel’s origin and the other’s plane:

z;k = h(s;j,sk) + Ve
(n;” (0 — 05))?
(nk” (05 — ox))?

The noise model for smoothness constraints is governed by
a single parameter, . = 0252, controlling how tightly the
constraints are enforced.

(an
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C. Segmentation

Having described the measurement models for both the
sonar range measurement (eq. [3) and the associated scat-
tering surface element (eq. , we now turn to the data
association problem of how to pair points to surfels. Starting
from a set of scans and associated odometry, which we use
to spatially register the range measurements and obtain an
initial point cloud (figure dp), we would like to derive a
segmented cloud comprising (i) the pairwise assignments
between points and surfels, and (ii) the adjacency between
these patches, which will inform the use of continuity
constraints.

While there are several potential methods to address
this necessity [25], Voxel Cloud Connectivity Segmentation



(VCCS) [17] stands out, as it fulfills both requirements. Still,
due to the different clustering criteria in this application
(explained later in the text), we opt for implementing an
arguably simpler (but potentially less efficient) method. Fur-
thermore, if real-time operation is desired, the method must
support incremental execution, as new, unsegmented, sensor
data arrives.

To facilitate the description of our incremental segmen-
tation approach, we represent sonar returns as points p =
[xT AT [ ], where x = [z y 2]T and & = [n, n, n.]* are
the point’s location and (unit length) normal. [ and ¢ are the
point’s label and acquisition time. We denote as P; the set of
points with label [ (setting [ = O for unlabeled points), and
Np(P) as the points in P that neighbor point plﬂ Similarly,
we define the set of seed points as S, containing exactly
one point per label. To keep track of adjacency between
patches, we use the graph G = (S, E), where & is the set of
undirected edges (i,j) connecting patches ¢ and j. Finally,
we define a comparison operator C(p;,p;), which equals
true when p;, p; are similar [31]. This definition requires
that p; and p; are expressed in a common reference frame;
this is accomplished by registering each of the points in the
world frame using the associated (odometry-based) platform
pose estimate.

The first step in the algorithm is to generate new seed
points from the subset of unlabeled points, Py. This is
accomplished by subsampling the point set through the use
of a voxel grid with a resolution of 7.4, Which we set
to be equal to twice the spatial support rg. If, in addition,
each voxel is required to contain a minimum number of
points, some level of outlier rejection can be achieved at
the expense of not segmenting sparsely mapped areas. Once
new seed points s’ have been added to the seed point set S,
the adjacency graph G is updated by looking, for each new
seed point, for similar seed points in its neighborhood: if
C(s',s), s € Ny(S), then the two are considered adjacent
and the edge (s',s) is added to £. Similarly, pairing points
with seed points is also performed using a greedy approach:
for each unsegmented point p € Py, we iterate from the
closest to farthest seed point within a search radius, and
set its label to that of the first similar seed point, i.e.
l(p;) = I(sk) if C(pj,sk) is true. Since we are trying
to approximate the scene by a set of small planar patches,
two points should be considered similar if their normals are
aligned, i.e., if N; - Ny > o8 (Wmayz), Where Qg is the
maximum allowable angle between the two normals. Due
to the issue of drift in the sensor position estimate, it may
happen that the odometry-based estimates of two separate
points p; and pj end up in close proximity. To avoid this
scenario, two points should only be considered similar if the
time span between their acquisitions is short - in other words,
they must be close in space and timeﬂ Thus, we define the

4 Typically, the neighborhood of q in P comprises all points p in P
within a distance r from q: Nq(P) ={p € P :|p—q| <7}
SThis time difference criterion is used to determine the points in Np (P)
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Fig. 3. Principal component distribution for valid patches in the dataset—
these are planar (A2/ > A < 1), and nearly circular (Ao &~ A1).

comparison operator as:

O(pu p]) = (|tz - tj| < 5tmax) A (ﬁ1 : ﬁj Z COs amam)

12)
Given an updated point set P (with new unlabeled points),
the three steps above are repeated until there are no new
pairings, at which point the potentially non-exhaustively
labeled point set P and graph G are used to update the
factor graph through the addition of new patch nodes, point
and patch associations for newly paired points (eq. [I0), and
smoothness constraints (eq. [[T) for adjacent surfels. To keep
with the definition of surfel, only patches with curvature
below a maximum value are added to the factor graph.
Finally, it is also worth noting that the need for iterative
segmentation within each incremental update is driven by
the seed point generation mechanism: if a voxel contains
two sets of dissimilar points, acquired around ¢; and ¢, just
one of these sets will be segmented after one step, as only
one seed point will have been chosen from each voxel per
iteration. By iterating seed point generation, we minimize
the number of unlabeled points.

VI. EXPERIMENTAL RESULTS

A. Dataset

The data used for experimental evaluation of the proposed
method is a segment of a ship hull inspection test with
the Hovering Autonomous Underwater Vehicle (HAUV) [6],
comprising 750 scans from a DIDSON multibeam sonar [2]
acquired over a span of approximately two minutes.

B. Parameters

Based on the sonar properties [2], we set o, = 0.3°
and og = 1.0°, and use a conservative o, = 0.05m
for range. For odometry measurements, we let 3, =
diag([0.12 (1°)2 (1°)Y])T) and X, = 6t - diag(l x
1073[3 3 1]T) for absolute and relative odometry measure-
ments, respectively, where dt; = t; —t;_1. For this particular
segment, the platform moves laterally (perpendicular to the
sonar plane) with |v| ~ 0.2 m.s~1, so we let rs = 0.15 m
and Otpar = 2 s, and require a minimum of 10 points to
generate a seed.
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Fig. 4. Segmentation output: input point cloud (a), adjacency graph G =
(S,E) (b), segmentation output (c), and output point cloud (d). Input and
output point clouds (a,d) are colored by local curvature (¢ = + )\3
The reconstruction, with a scale of 7 = 0.15m, generated 1014 se:ed2 points
and 868 valid (planar) patches. Vertical gaps in the point cloud are caused
by missing sonar measurements.

C. Reconstruction Results

We implemented the methods described in sections [[TI]
through [V] leveraging iSAM [8] for factor graph optimiza-
tion, and PCL [22] for point cloud processing and visualiza-
tion. The results of the algorithm on the ship hull data set
are shown in figures [3] through [5]

Out of the initial 51,018 points, the resulting reconstruc-
tion generated 1020 seed points, but only 868 valid patches
and 2198 edges, shown in figures and respectively.
Only 896 points were left unsegmented—a loss of approxi-
mately 2%. Figure [3| shows the distribution of the principal
components of valid patches, which are planar (and nearly
circular), as assumed in Section [V}

Figures [@a] and show the impact of the choice of
rg: while most of the surface roughness induced by range
measurement noise has been removed, so have some of the
small scale detail, such as the four zinc anodes (< 7g)
forward of the propeller. The larger object (= rg) between
the propeller and anodes, however, is still noticeable. This
is visible in figures [@a] and where the local curvature
of the output point cloud has been significantly reduced.
The support parameter rg governs the spatial accuracy of
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Fig. 5. Odometry- (top) and SLAM-based (bottom) map estimates,
where each point is colored by the associated uncertainty—-+/tr(3). The
uncertainty is initially dominated by the vertical (z) component; as the
vehicle moves (left to right), the horizontal uncertainty grows and dominates.

The proposed method improves map accuracy by reducing uncertainty by
a factor of 2-5.

the reconstruction—a large value acts as a spatial low-
pass filter. On the other hand, decreasing rg can lead to
poor segmentation performance in sparsely covered areas,
as few to no seed points will be generated. Similarly, the
parameters o, and o, govern the trade-off between reliance
on the original sonar measurement versus the piecewise
planar approximation.

VII. CONCLUSION AND FUTURE WORK

The proposed method addresses the artificial separation
between sensor processing, pose estimation, and model re-
construction in the scope of sonar-based mapping. Leverag-
ing scene information to aid in sonar processing requires
a shared model between the two tasks—we choose one
commonly used for pose estimation: factor graphs. The
surfel-based, piecewise planar approximation of a scene was
proven to work experimentally, increasing map accuracy
without loop closures, relying instead on scene and sensor
models. Still, it requires that some attention be paid to
certain parameters, namely, the spatial support/characteristic
scale rg, and the relative weight of range and surfel sample
constraints, o, and o,. In particular, o, is likely to be pre-
determined by the sonar and scene properties, as the return
signal will depend on them.

One of the limitations of the approach presented in this
article is that it does not contemplate long-term loop closures,
needed to mitigate the growing uncertainty in the pose
estimate. This has since been addressed by leveraging the



surfel graph S to derive loop closures as sets of pairwise
correspondences between surfels [26]. Ongoing work aims at
improving these techniques by leveraging relevant methods
to extract higher-level features from the surfel graph [24].
Another important area for future work is the scalability
of the proposed approach: by modeling every valid range
measurement, pose, and surfel, the size of factor graph will
quickly grow to the point where real-time performance is not
feasible for all but the simplest problems. To mitigate this
growth in complexity, we plan on modifying the proposed
approach to avoid explicitly modeling point variables—the
dominant factor in problem dimensionality. Finally, future re-
search could also aim at leveraging non-parametric methods
[5] to relax the Gaussianity assumptions made in the sonar
measurement model (eq. [3). Such methods would capture the
inherently multi-modal distributions associated with a sonar
measurement.
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