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Abstract— In this paper, we propose a novel approach to
integrating inertial sensor data into a pose-graph free dense
mapping algorithm that we call GravityFusion. A range of dense
mapping algorithms have recently been proposed, though few
integrate inertial sensing. We build on ElasticFusion, a partic-
ularly elegant approach that fuses color and depth information
directly into small surface patches called surfels. Traditional
inertial integration happens at the level of camera motion,
however, a pose graph is not available here. Instead, we present
a novel approach that incorporates the gravity measurements
directly into the map: Each surfel is annotated by a gravity
measurement, and that measurement is updated with each
new observation of the surfel. We use mesh deformation, the
same mechanism used for loop closure in ElasticFusion, to
enforce a consistent gravity direction among all the surfels.
This eliminates drift in two degrees of freedom, avoiding the
typical curving of maps that are particularly pronounced in
long hallways, as we qualitatively show in the experimental
evaluation.

I. INTRODUCTION

Combining dense 3D mapping with inertial sensing pro-
vides significant advantages over pure vision-based mapping.
Dense 3D maps are relevant for mobile robot navigation and
manipulation, for augmented and virtual reality applications,
and for inspection tasks. And while most dense mapping
systems rely on only stereo or RGB-D cameras, inertial
sensors are becoming ubiquitous because of their low cost
and wide range of applications.

In the absence of a global reference such as GPS, mapping
algorithms suffer from drift, which can partially be mitigated
by loop closures in a simultaneous localization and mapping
(SLAM) context. Drift results from the accumulation of noisy
sensor data over time, where small errors add up over longer
trajectories to yield significant discrepancies between the
model and the physical world. A typical solution to reducing
drift is loop closure: When we re-observe a previously visited
area of the environment, we can create a constraint between
the earlier observations and the current sensor data, a loop
closure, that allows removal of some of the accumulated drift.

Incorporating loop closures into dense mapping requires
the right model representation: Volumetric representations
are not suitable, as translation and rotation of parts of the
model is computationally very expensive. Surface mesh rep-
resentation on the other hand can be deformed at relatively
low cost, but re-integrating two surface meshes after loop
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Fig. 1. GravityFusion produces a consistent model through a low-feature
corridor circuit, where other methods fail.

closure is challenging. The surfel representation used in
ElasticFusion allows for both, efficient deformation and re-
integration upon loop closure. We therefore use ElasticFusion
as the basis for our work.

Even with loop closures, some drift remains, and addi-
tional measurements, such as from an inertial sensor, are
needed to obtain accurate models. When mapping a single
floor of a building there is typically insufficient data to
constrain drift in some directions, yielding a curved map.
The poorly constrained degrees of freedom include pitch,
roll and z, while drift in x, y and yaw is bounded by the
loop closures. Incorporating additional sensor information
can help in limiting that drift. Inertial sensors provide com-
plementary information: by providing an estimate for the
gravity direction, they eliminate drift in pitch and roll.

Our contribution is a novel algorithm that integrates in-
ertial measurements directly into the map. Since the Elas-
ticFusion algorithm is pose-free, conventional inertial fusion
algorithms cannot be applied. Instead, we fuse inertial mea-
surements inside the map. We then use a mesh deformation
technique, used in ElasticFusion for loop closing, to enforce
a consistent gravity direction over the entire map, and thereby
eliminating much of the drift from the map.

II. RELATED WORK

Various dense mapping techniques have been proposed
over the past several years. One approach, BundleFusion
by Dai et al. [2], uses bundle adjustment for global frame
alignment combined with dense map generation, making it
very accurate but computationally expensive. Probabilistic
formulations account for estimation uncertainty and include
REMODE by Pizzoli et al. [14] as well as planar mapping



Fig. 2. Dataset of moving the camera through a long corridor. (Top) Kintinuous/RGBD SLAM [18] generates a map that bends. (Middle) ElasticFusion
[17] accumulates drift and loses tracking. (Bottom) Our approach, GravityFusion, frequently deforms the model using the measured gravity direction to
produce a consistent model.

approaches such as [5] that use infinite planes in a graph opti-
mization to model planar surfaces. Another set of approaches
are based on an implicit surface representation in the form of
a signed distance function, a volumetric representation that
allows fusion of multiple camera frames. The first real-time
system is KinectFusion by Newcombe et al. [13], which was
later extended in Kintinuous to large scale environments by
Whelan et al. [18]. Another common approach called point-
based fusion by Keller et al. [7] fuses sensor information
into small surface patches with orientation and scale that are
called surfels. ElasticFusion by Whelan et al. [17] combines
point-based fusion with mesh deformation for large scale
loop closure. Because it allows for reintegration of the model
after loop closure, we use ElasticFusion as the basis for our
inertial mapping system.

Inertial sensor measurements are often integrated into
mapping in the context of feature-based methods, some ex-
amples follow. Indelman et al. [6] provide a smoothing-based
solution to IMU integration with other sensors in a factor
graph framework. Forster et al. [3] improve upon the pre-
integration method used for integrating the inertial data into
the SLAM factor graph. Leutenegger et al. [9] also provide
an integrated SLAM solution based on smoothing. Mur-Artal
and Tardos [12] integrate the inertial measurements during
tracking over a local map.

Inertial sensing integrated with dense mapping is less
common to find in the literature. One way is to use a feature-
based inertial integration, such as Mur-Artal and Tardos [12],
to recover the camera trajectory, and then apply a separate
dense mapping system, such as Mur-Artal and Tardos [11].
Concha et al. [1] present a direct visual SLAM method
fused with inertial measurements. Usenko et al. [16] recently
presented a dense visual inertial odometry method, however,
by only using odometry it is not possible to incorporate
loop closures for consistent large scale mapping. Ma et al.
[10] present a KinectFusion-based inertial fusion, however,
without the capability to close loops as a deformation of the
dense volumetric representation is computationally expen-

sive. To retain the advantages of fusion while allowing loop
closures, we build on point-based fusion, and in particular
the ElasticFusion algorithm.

While all of the above methods incorporate inertial sensor
data at the level of camera motion, we present a novel
approach that directly fuses them with the map. In our
GravityFusion algorithm, correction of the map proceeds in
much the same way as loop closing in ElasticFusion, using
a deformation graph [15] to perform mesh deformation.

III. APPROACH

GravityFusion corrects accumulated drift in the map using
inertial information embedded in surfels. As the camera
moves, the system builds a map of surfels similar to Elas-
ticFusion. However, instead of just fusing RGB-D data
from multiple frames to create a surfel, GravityFusion also
includes orientation information from an inertial sensor at
the time of frame capture. This is done by including the
measured direction of earth’s gravity into the surfel that
is being created or updated. Similar to updating position,
orientation, and color of a surfel in ElasticFusion, a weighted
average is used to fuse gravity vectors of a surfel measured
at different times. The map created as a result has measured
gravity vectors embedded in every surfel.

While the mapping is being done, the GravityFusion sys-
tem triggers gravity vector realignment after a certain number
of frames to ensure that the map’s drift is corrected. This
correction is done using a mesh deformation graph, similar
to ElasticFusion. The mesh nodes are sampled surfels of the
map. These nodes, like surfels, contain gravity information.
The nodes of the deformation graph are reoriented to align
the gravity vectors to a common direction, while also taking
model constraints into account.

Subsequently, all surfels that are not part of the deforma-
tion graph are corrected based on neighboring deformation
graph nodes. The drift correction of a node is propagated
to its neighbouring surfels which reorients and repositions
them to ensure correct alignment. The extent of correction



is based on vicinity to a correcting graph node. It is possible
that multiple nodes affect a surfel and contribute to its
reorientation and repositioning. Since these corrections are
done for all surfels throughout the map, in the end we get a
map which is drift corrected.

Frequent gravity-based map corrections are performed in
real-time. While ElasticFusion applies graph deformation
only at loop closure, we regularly perform a mesh deforma-
tion to incorporate gravity measurements and eliminate drift.
To allow for real-time processing, the gravity correction is
added to the GPU-based loop closure algorithm in Elastic-
Fusion. Consequently, a good map is always available in our
pose-graph-free approach, without the need to maintain past
states or deal with issues often related to the marginalization
of previous state information.

IV. MAP CREATION

The mapping process in GravityFusion resembles Elastic-
Fusion’s with changes in camera tracking method and map
data structure. The map is represented as an unordered surfel
list similar to Whelan et al. [17] and Keller et al. [7]. A
surfel S consists of gravity vector g 2 R3, position v 2 R3,
normal n 2 R3, color c 2 N3, confidence l 2 R, radius
r 2R, initialization timestamp t0 and last updated timestamp
t. Sections A and B explain how inertial information is
integrated into the tracking and mapping systems.

A. Tracking

Our camera tracking approach closely resembles Elastic-
Fusion’s [17] where combined depth tracking and photomet-
ric alignment is initialized with photometric alignment only.
Our approach differs as it informs this photometric alignment
with an inertial measurement from the IMU rotation, thus
leading to a more robust camera pose estimation. We only
make use of rotation values from the inertial data because
incremental angular motion is available with greater accuracy
using standard IMUs.

In the RGB-D incoming frame we define the image
domain as W�N2 and the depth map D as the depth of pixels
d : W! R. The 3D back-projection of a point u 2 W for a
given depth map D is given by p(u;D) = K�1ud(u), where
K is the camera intrinsic matrix and u is the homogeneous
form of u. The perspective projection of a 3D point p =
[x;y;z]> (in camera frame Fc), is represented as u = p(Kp).
Here p(p) = [x=z;y=z]> represents the de-homogenization
operation. The normal map is computed for every depth map
using central differences.

The color image C is represented as c : W ! N3. The
color-intensity value of a pixel u 2 W, given a color image
C with color c(u) = [c1;c2;c3]>, is defined as I(u;C) =
(c1 +c2 +c3)=3. The global pose of the camera Pt (in global
frame Fg) is determined by live registration of a depth map
and a color frame with the model. The pose estimation
iteratively minimizes tracking error Etracking as a weighted
sum of geometric error Eicp and photometric error Ergb.
These errors are calculated between the raw live depth map
Dt from the sensor and the active model’s depth map using

the last frame, D̂t�1, in order to find the optimal motion
parameter x , where x 2R6 and exp(x )2 SE(3). The tracking
error is expressed as

Etracking = Eicp +wrgbErgb; (1)

Eicp = å
k

((vk� exp(x )T:vk
t ):nk)2; (2)

Ergb = å
u2W

(I(u;Ct � I(p(K exp(x )Tp(u;Dt));Ct�1)))2 ; (3)

where wrgb is the weight of photometric error Ergb over ICP
error Eicp. Here, vk

t is the back-projection of the kth vertex
in Dt , vk represents the corresponding vertex in the model,
and nk is the normal of vk. T is the current estimation of
transformation of camera pose and exp(x ) is the incremental
motion with parameter x to be optimized in the current
iteration. Similarly the color from the live frame Ct at the
current time t and model Ct�1 is used to find the optimum
motion parameter x using photometric error—the intensity
difference between pixels. For more detailed understanding
of the above equations we refer to Whelan et al. [17].

Similar to ElasticFusion, the energy terms from (2) and
(3) are jointly optimized to calculate the least squares so-
lution for the optimal x to get an accurate camera pose
estimate Pt = exp(x )TPt�1. Unlike ElasticFusion, before the
optimization begins, the initial estimate T is modified to
incorporate the measured inertial-orientation Rimu 2 SO(3)
for a more accurate initialization of T. We call this the SO(3)
initialization step.

B. Adding Inertial Information into Surfels

The inertial information is incorporated into the map by
embedding gravity direction into every surfel. This is done
as the frame is being aligned and fused to the model.
To orient the gravity vector into the model frame, a unit
vector [0;0;1]>, in model frame, is transformed into the
IMU (camera) frame using the inertial readings from the
IMU. The inertial data (orientation) is obtained as filtered
output of an attitude heading reference system (AHRS) of
the IMU, denoted as Rimu. We denote this gravity vector in
IMU frame as gi

imu 2 R3 where i 2 R is the surfel’s index.
We then transform gi

imu back to the model frame using the
tracking estimate of the camera orientation represented as
Rtracking 2 SO(3). We denote this gravity vector as gi

model .
The gi

model is added into every surfel, providing constraints
on two degrees of freedom from the inertial measurements.

gi
imu = (Rimu)�1 �

0 0 1
�> (4)

gi
model = Rtrackinggi

imu (5)

C. Updating Gravity Direction Information

When new frames are fused to the model, surfels are
updated for gravity, position, normal and radius according to
the confidence of the current and incoming surfels, similar
to ElasticFusion. The surfel correspondences are built with
map registration of the incoming frame. A confidence value
l is initialized along with the creation of the surfel and
accumulates each time we observe the same surfel in the



camera frame. The confidence parameter acts as a weight: a
measure of the extent to which we should retain the surfel
in an update. The update equations for the surfel parameter,
given the new incoming surfel’s parameters, gravity direction
g0, position v0, normal n0 and confidence l 0 are:

ĝ =
l �g +l 0 �g0

l +l 0
(6)

n̂ =
l �n +l 0 �n0

l +l 0
(7)

v̂ =
l �v +l 0 �v0

l +l 0
(8)

l̂ = l +l
0 (9)

The updated gravity direction g of the surfel is a weighted
average of the current estimate with the gravity reading of
the incoming surfel g0.

V. MAP CORRECTION: GRAVITY BASED DEFORMATION
GRAPH

To correct the model for drift and tracking inconsistencies
we use a deformation graph. The deformation model used
here is general enough to be applied to any map and still
provides intuitive manipulation while preserving surface con-
sistency. This formulation allows stretching and realignment
of the map while maintaining surface continuity. The nodes
of the deformation graph are created by sampling existing
surfels from a full model. As a result, the graph created
is a sparse model of the original map. The deformation of
this graph is a set of affine transformations of graph nodes
providing spatial reorganization. These affine transformation
influence the neighboring nodes, having an overlapping ef-
fect.

Our deformation graph is similar to that in Sumner et al.
[15] and Whelan et al. [17] with an essential addition that
each node contains inertial information in the form of gravity
direction. A single graph node contains a gravity vector Gg 2
R3, its position Gp 2 R3 and a timestamp. The graph node
also stores an affine transformation as rotation GR 2 SO(3)
and translation Gt 2 R3 to be applied to itself, while also
influencing surfels and graph nodes in its neighborhood. This
affine transformation is initialized as Gt = 000 and GR = I at
the time of graph creation, and again after completion of
graph optimization. We consider the total number of graph
nodes to be m and each having at most K neighbors. As
explained in below subsections, the influence of graph nodes
can be broken down into two stages: firstly, how graph
nodes affect surfels in their vicinity, as shown in Fig. 3 and
secondly, how graph nodes influence each other during graph
optimization for deformation as shown in Fig. 4.

A. Influence of Deformation Graph on Surfels

An affine transformation of a graph node is centered
around itself. As a graph node rotates (GR) and translates
(Gt ), its influence causes the nearby surfels to spatially
reorient. The effect of graph node’s affine transformation on
a nearby surfel at location v is shown in Fig. 3. This principle

Fig. 3. Influence of affine transformation (GR,Gt ) of a graph node (in
green) on a neighboring surfel (in blue) by spatially reorienting the surfel
to a new location.

is used throughout the deformation graph to obtain the new
location v̂ given by:

v̂ = GR(v�Gp)+ Gp + Gt (10)

The extent of this influence is limited by the distance of surfel
i from the graph node j. The influence here is represented
as a weight w j

w j(vi) = (1�jjvi�G j
pjj=dmax); (11)

where dmax is the distance of the surfel to the Kth nearest
graph node. To smoothly blend the effect of multiple graph
nodes on a surfel, we sum over the combined influence. The
resultant final position of the surfel is written as

v̂i =
m

å
j=1

w j(vi)G j
R(vi�G j

p)+ G j
p + G j

t (12)

Any rotation applied to a surfel effect the orientation of
its normal ni. Similar to the position update, the combined
influence of graph node’s rotation on the surfel’s orientation
is expressed as

n̂i =
m

å
j=1

w j(vi)(G j
R)�1ni (13)

As surfel and its normal orientation get updated, a similar
update is applied to the gravity direction associated with that
surfel. This update ensures that after deformation the gravity
direction remains consistent to the surfel’s orientation.

ĝi =
m

å
j=1

w j(vi)(G j
R)�1gi (14)

We sample the graph nodes densely, ensuring that graph
nodes have an accurate representation of the entire map. This
dense sampling assures that when deformation is applied, its
influence reaches all desired surfels in the map.

B. Optimization of Deformation Graph

We optimize the deformation graph to find the affine
transformation of graph nodes, which when applied to our
model will correct its drift and make it consistent. This
optimization utilizes the direction of gravity vectors in the



Fig. 4. We highlight here the effect of each energy term on the spatial
orientation of the graph nodes in deformation graph. The top image (i) shows
constraint energy term of the type pin constraint Epin. The Epin freezes the
graph node in its location (in red), acting as a standard reference. The
middle figure (ii) shows the effect of the realignment of the gravity vectors
caused by the additional Egravity term. The bottom figure (iii) shows the
effect of inclusion of regularization Ereg term. The Ereg causing the graph
nodes to remain consistent with each other, enforcing a surface geometry,
and keeping the model consistent.

graph nodes to inform the deformation. In an ideal case
where there is no drift, all of the gravity vectors on each
of the graph nodes will be parallel to each other. However,
since the model accumulates drift over time, the nodes’
gravity vectors become misaligned as shown in Fig. 4 (i), the
optimization explained below penalizes this inconsistent ori-
entation. The graph optimization finds the unknown variables
which describe a corrective rotation and translation of every
graph node. These rotations and translations, when applied
back to graph nodes and in turn onto surfels, addresses the
drift by correcting the model.

The optimization of the deformation graph is done using
minimization of the combined cost of four components:

1) Constraints: The constraints cost term Econ, ensures
that these graph nodes are either allowed to move or to
remain stationary. A single constraint on a graph node l
is a tuple containing its transformed source location as
f(Gl

p(source)) and its destination location as Gl
p(dest). These

constraints are of three types: A) Pin constraint: They freeze
graph nodes at their position, making them unable to rotate
or translate during graph deformation. This constraint type
is expressed in (15) as Epin = Econ. Here the graph node’s
source and destination location are kept identical. B) Generic
constraint: The graph nodes having a generic constraint, spa-
tially re-locate from their source location to their destination
location. Generic constraints are used for loop closures as
they deform the map from its current location (source) to a
similar previously visited location (destination). The system
ensures that graph nodes at destination location remain fixed
and do not snap towards source location by adding a pin

constraint on destination graph node. C) Relative constraint:
This type of constraint is similar to a generic constraint with
the exception that neither source graph node nor destination
graph node are constrained via a pin constraint. The relative
constraint is required in to ensure that previous loop closures
remain consistent and are not torn off due to newly added
generic constraints. Out of the three constraint types, our
approach uses pin constraints actively to freeze certain graph
nodes, locking their gravity vectors in place to serve as a
reference.

Econ = å
l



f(Gl
p(source))�Gl

p(dest)



2
2 (15)

2) Gravity Alignment: In the process of map creation, the
model accumulates drift due to small errors in tracking and
the gravity vectors diverge as shown in Fig. 4 (i). These vec-
tors in a drifted model are not entirely parallel. The gravity
alignment cost term Egrav penalizes this incorrect alignment
and minimizes the alignment error by realigning gravity
vectors to a standard reference. The standard reference is the
direction of gravity vector Gk

g, from a graph node k with a pin
constraint, shown in red in Fig. 4. This standard reference
graph node remains frozen in its orientation and location
and is usually sampled from the recently acquired parts of
the model. The graph optimization results in a corrective
rotation G j

R required for every graph node j in the model,
such that gravity vectors of these nodes become parallel as
shown in (ii) of Fig. 4.

Egrav =
m

å
j=1
j 6=k



(G j
RG j

g)>:Gk
g�1



2
2 (16)

3) Regularization: The regularization term is added to
the graph optimization to ensure that the model remains
consistent and the surface geometries are enforced. To
highlight this, Fig. 4 (ii) shows the effect of inconsistent
geometry while not using regularization, and (iii) shows a
more consistent geometry with the inclusion of regularization
term. The distortion free map deformation is achieved by
ensuring overlapping influence of affine transformation from
neighbouring graph nodes to be consistent to one another.
The regularization term Ereg is described in (17), where
graph node j influences affine transformation of graph node
k, with k one of the neighboring nodes N ( j). The cost
Ereg is calculated as a sum of squared difference between
the position of graph node k predicted by influence from
graph node j and the position of graph node k when its
affine transformation is applied to itself. The weight a jk is
proportional to the degree of which the influence of nodes
j and k overlap. For more details, we refer the reader to
Sumner et al. [15].

Ereg =
m

å
j=1

å
k2N ( j)

a jk


G j

R(Gk
p�G j

p)+G j
p +G j

t �(Gk
p +Gk

t )


2

2

(17)
4) Rotation: Lastly we want to ensure that the optimized

variables are orthonormal to form a valid rotation matrix,




