
HoloOcean: Realistic Sonar Simulation

Easton Potokar, Kalliyan Lay, Kalin Norman, Derek Benham, Tracianne B. Neilsen,
Michael Kaess, and Joshua G. Mangelson

Abstract— Sonar sensors play an integral part in underwater
robotic perception by providing imagery at long distances where
standard optical cameras cannot. They have proven to be an
important part in various robotic algorithms including local-
ization, mapping, and structure from motion. Unfortunately,
generating realistic sonar imagery for algorithm development
is difficult due to the high cost of field trials and lack of
simulation methods. To remove these obstacles, we present
various upgrades to the sonar simulation method in HoloOcean,
our open-source marine robotics simulator. In particular, we
improve the noise modeling using a novel cluster-based multi-
path ray-tracing algorithm, various probabilistic noise mod-
els, and material dependence. We also develop and integrate
simulated models for side-scan, single-beam, and multibeam
profiling sonars.

I. INTRODUCTION

Many algorithms for autonomous underwater vehicles
(AUVs) leverage the use of sonar imagery to localize, detect
objects, generate maps, or perform 3D reconstruction where
standard optical imagery can be unusable due to water tur-
bidity. These algorithms are useful for many applications of
AUVs such as marine infrastructure inspection, exploration
of oceans, and many others. These applications have the
potential to drastically increase safety, quality of life, and
general scientific knowledge.

Unfortunately, generating the required realistic sonar im-
agery for initial algorithm development can be difficult due to
field trials being expensive and high-risk. While simulation
has the potential to help with this, current simulation methods
lack the heavy noise present in real-world sonar imagery. In
real-world scenarios, this noise is derived from a variety of
sources including, but not limited to, reverberation, inaccu-
rate sensor readings, multi-path acoustic wave propagation,
and diffusion.

HoloOcean [1] is an open-source underwater simulator
built upon Unreal Engine 4 (UE4) [2]. It includes a novel
sonar simulation method leveraging an octree representation
of the environment as compared to computationally expen-
sive ray-tracing approaches. We have augmented the sonar
simulation in HoloOcean with the following features:

1) A novel cluster-based ray-tracing method to efficiently
compute significant multi-path noise found in sonar
imagery,

This work relates to Department of Navy awards N00014-21-1-2435 and
N00014-21-1-2272 issued by the Office of Naval Research.

E. Potokar, K. Norman, K. Lay, D. Benham, T. Neilsen and J. Man-
gelson, are at Brigham Young University; M. Kaess is at Carnegie Mellon
University.

{eastonpots, kalliyan, kalinnorman, derek.benham,
tbnbyu, joshua mangelson}@byu.edu, kaess@cmu.edu

EchosounderSide-scan

ProfilingImaging

HOLOOCEAN SONARS

Fig. 1: HoloOcean has been upgraded to include implementations of
multibeam imaging, multibeam profiling, side-scan, and echosounder sonars.
Further, the noise models have been significantly improved to provide more
realistic imagery.

2) Implementation of various probabilistic noise models
that more accurately represent reality and produce
realistic looking sonar imagery,

3) Easily editable material dependence built into the oc-
tree structure, and

4) Implementations of echosounder, side-scan, and multi-
beam profiling sonars all built upon the octree repre-
sentation.

The paper proceeds as follows. Section II reviews current
sonar simulation methods and models. In Section III, we
describe our novel cluster-based multi-path algorithm, as
well as demonstrate our implementation of acoustic reflection
models based on material properties. We also describe the
various probabilistic models chosen to perturb the data in
the same section. This is followed by our side-scan sonar
implementation details in Section IV, multibeam profiling
sonar in Section V, and the echosounder in Section VI.
Finally, Section VII concludes the article and proposes future
work. More information about HoloOcean can be found at
https://holoocean.readthedocs.io/.

https://holoocean.readthedocs.io/

r
ψ

(c)

τ
r1

ϕ
r2

2

ϕ1
1r

r2

(b)

θr
ϕ

(a)

Fig. 2: Geometric representation of various sonar types. (a) Geometry of a multibeam imaging sonar, where the intensities are projected onto the range r,
azimuth ϕ plane and elevation θ is lost. A multibeam profiling sonar functions similarly, with the exception that the elevation θ is so tight it’s negligible.
(b) Side-scan sonar geometry, where elevation angle is negligible, and the intensities are projected onto the r axis, and then concatenated. (c) Cone shape
of an echosounder ping, where intensities are projected onto the r axis, and semi-vertical angle ψ is lost. Central angle τ is used for shadowing purposes.

II. RELATED WORK

Creating a realistic underwater sonar simulation is a dif-
ficult problem, requiring many pieces for the image to be
usable as a fill-in for real-world data. These include accurate
modeling of the heavy noise often found in sonar imagery,
modeling of high fidelity environments, and modeling of the
various types of sonar sensors.

Current sonar simulation methods include ray-tracing [3,
4] or GPU-based methods [5], but little work has been
done on modeling the heavy noise present in sonar imagery.
This noise is a product of multi-path reverberations, acoustic
scattering, general sensor noise, ambient waves, and many
other phenomena. Many simulation methods model speckle
noise using additive and multiplicative methods, but ignore
other forms of noise [6, 7]. Attempts have been made to
leverage a generative adversarial network [8, 9] or style
transfer networks [10] to recreate this noise, but those lack
a clear way to extrapolate to more complex environments or
between varying sonar parameters.

Under our own observation, one of the primary noises
present in sonar imagery is largely due to multi-path reflec-
tions off of objects or structures in the environment. This
noise is difficult to recreate in real time due to the heavy
computational cost. Preliminary attempts to selectively ray-
trace multi-path reverberations have been done using a virtual
camera [11], but are limited due to the camera field of view
not matching that of a true sonar.

The intensities measured by sonars are dependent on
properties of the materials the acoustic waves reflected off of,
specifically acoustic impedance that depends on the material
speed of sound and material density [12]. While this acoustic
impedance has been included in sonar simulations previously
[4, 13], it has generally been in simple environments with
limited material variety.

Work has been done in simulating a side-scan sonar [14–
17], profiling sonar [18], and to a lesser extent echosounder
[19]. However, these approaches are all spread out across
numerous simulators, are generally ray-tracing-based meth-
ods that can be computationally expensive, and are often not
open-source.

HoloOcean [1] has an octree-based sonar simulation
method, allowing for fast simulation by avoiding ray-tracing,
and easy access to the structure of the environment. We

augment its simulation method by adding in a clustering-
based multi-path propagation algorithm; material dependence
in large, complex UE4-based environments; various proba-
bilistic models for noise introduction; and implementations
of the sidescan, profiling, and echosounder sonars.

III. MODELING NOISE IN IMAGING SONAR

A multibeam imaging sonar is a common sensor in un-
derwater robotics used for generating imagery of the envi-
ronment. It generates these images by sending out acoustic
pings, which upon return are categorized by their intensity,
range that is calculated from the time of flight, and azimuth
angle that is estimated via beamforming methods. Results
are used to create a 2D image where each pixel value is the
intensity for a range and azimuth interval. This geometry is
shown in Fig. 2(a).

A. Simulation Model

HoloOcean’s sonar simulation method is based upon an
octree structure of a UE4 environment [1]. At each timestep,
this octree is recursively searched for all the leaves that are in
the field of view. These leaves are then sorted in azimuth ϕ,
elevation θ bins which are then sorted by range in ascending
order. The leaves beyond the first cluster are removed as
they are in shadows, and all the resulting leaves have their
intensities calculated using surface normals. Intensities are
then averaged over each r, ϕ bin. We have built on this
simulation model by adding multi-path contributions and
various noise improvements, as explained in the following
subsections.

B. Multi-path

Building upon the octree structure that HoloOcean pro-
vides, after locating and sorting the octree leaves in the sonar
field of view into r, ϕ, θ bins, multi-path contributions are
then ready to be computed. Note each leaf has unit normal
n, location p represented in the sonar frame, and a return unit
vector v pointing to the sonar stored as part of its structure,
all of which are used throughout. We denote which leaf these
belong to through their subscript, for example leaf k has
values nk, pk, vk.

First, each leaf is sorted into a cluster. Clusters are made
by choosing an octree leaf o and selecting all corresponding
leaves within ϵ bins that have normals that are within δ

�

q
n

v -roh

h

n
C

o

vo

ro

po

ph
Fig. 3: Visualization of cluster-based multi-path algorithm. A cluster C is
created around an octree leaf o, which has normal, position, reflection, and
return vector of no, po, ro, vo, respectively. Leaf o is ray-traced to leaf h
along ro, where when impact is found −ro is reflected into q. The surface
at leaf h is then approximated using a plane created from nh, ph, off of
which the remaining leaves in cluster C will be reflected.

degrees of the original leaf. In practice, we have found values
of ϵ = 5, δ = 15◦ have given good results.

The original leaf is then ray-traced. This is done by
rotating the return vector vo by 180◦ about its normal no
as follows [20]

ro = −vo + 2(no · vo)no. (1)

We then step along the bins in the direction of ro until either
we step out of the field of view of the sonar or hit another
leaf h.

If we hit a leaf h, we make the assumption that the small
region about h is planar and defined by the location ph,
normal nh, and return vector vh. This assumption implies
that any leaf i in the cluster will bounce off this same
plane. Ray-tracing i then simplifies to finding the intersection
between the line given by pi, ri and the plane ph, nh reducing
computations significantly. A closed form solution is given
by [21]

p = pi + ri

((ph − pi) ·nh
ri ·nh

)
. (2)

These steps are all visualized in Fig. 3. From this p, a final
azimuth angle can be computed, as well as the resulting
distance as follows

d =
||pi||+ ||p− pi||+ ||pi||

2
. (3)

We compute q by reflecting −ri off of nh as in eq. (1).
Using q, the resulting intensity value is found by dotting the
return ray of p with q, and scaling by both materials’ power
reflection coefficients as in Section III-C. This intensity value
is then averaged along with all the other leaf and multi-
path contributions in the same r, ϕ bin. These steps are
summarized in Fig 4.

C. Material Dependence

The intensities measured by the sonar are dependent on
the materials that the acoustic waves reflected off of. Given
normal incidence, the power reflection coefficient off leaf k
is given by [12]

RΠ =
Ir
Ii

=
(zk − zw
zk + zw

)2

(4)

zk = ρkck, (5)

Algorithm 1: Clustering-Based Ray-Tracing

1 F ≜ Leaves found in field of view;
2 Ci ≜ Cluster i;
3 i = 0;
// Notation

4 n represents normals;
5 p represents positions;
6 r represents reflection vector;
7 v represents impact normal;
8 idx represents r, ϕ, θ bin index;
9 while F is not empty do

10 A = Pop F;
11 foreach B in F do
12 if ∥idxA − idxB∥ < ϵ and nA ·nB > cos(δ) then
13 Add B to Ci;
14 Remove B from F;
15 i += 1;
16 foreach Ci in C do
17 A = Pop Ci;
18 H = Raytrace from pA in direction rA;
19 if H then
20 foreach B in Ci do

// Find intersection plane & line
21 t = (pH − pB) ·nH/rB ·nH ;
22 p = pB + nBt;

// Find return bounce & intensity
23 q = rB − 2(nH · rB)nH ;
24 i = q · vH ;

// Find total length
25 d = (∥pB∥+ ∥p∥+ ∥pB − p∥)/2;
26 Add i to r, ϕ bin;

Fig. 4: Pseudocode for clustering-based multi-path algorithm. Lines 4-10
correspond to the actual basic clustering algorithm, lines 11-14 to the ray-
tracing of a single cluster element, and lines 15-21 to the ray-tracing of the
rest of the cluster.

where Ir, Ii are the reflected and incident intensities respec-
tively; zk, zw the specific acoustic impedance of leaf k and
water respectively; and ρk, ck are the density and the speed
of sound, respectively, of leaf k.

Using this relation, we have the following approximation
for the returned intensity of leaf k as follows

Ik =
(zk − zw
zk + zw

)2

(vk ·nk) (6)

where Ik is the return intensity, vk the return vector, and nk
the surface unit normal all of the octree leaf k. Note vk ·nk
results in the angle between the two unit vectors.

Material names are pulled directly from UE4 and the
material properties ρk, ck for each material are saved in a csv
file for easy editing without the need for recompilation. This
allows for on-the-fly tweaks to materials’ properties between
simulation missions.

D. Probabilistic Contributions

Apart from the noise contributed by multipath, A number
of other sources of noise are present in sonar imagery. We
chose to perturb our imagery using various distributions to
introduce these noise sources.

The time of flight is measured by the sonar and is
proportional to the reflection distance. This measured value
often suffers from diffusion, meaning it may result in some

Fig. 5: Comparison of real world and simulation sonar imagery taken in our testing tank. (a) Comparison of our real tank, and the UE4 environment of
our tank. (b) Sonar image taken from a Blueprint Subsea Oculus M1200d [22] on the HF setting with a 60◦ azimuth, 12◦ elevation, and 10m max range
and (c) our simulation method with identical parameters and a cluster size of ϵ = 5. The multi-path differences in (b) and (c) at the 9m marks are likely
due to differences in sonar pose between real world and simulation. (d) Computation steps of our model from (1) initial octree image, (2) multi-path, (3)
range diffusion, (4) additive and multiplicative noise, (5) scaling the additive noise, and finally the azimuth artifact is shown in (c) at about the 8m mark.
The figures in (d) are saturated to more easily visualize the changes.

returns longer than the actual time of flight, but none shorter
since that would be physically impossible. This phenomenon
has previously been modeled with a K-distribution [23], but
for computational efficiency, we approximately perturb r
with the similar, easy to sample from exponential distribution

r̃ = r + wr, wr ∼ Exp(λ). (7)

Not only is the time of flight perturbed by the exponential
distribution, but the intensity returns diminish the more r is
perturbed. We model this by scaling the intensity using a
scaled probability density function fWr

Ĩk = IkfWr (wr)λ = Ik exp(
−wr

λ
). (8)

These intensities are then averaged over all leaves in a bin
to produce a single pixel intensity,

Iij =
1

n

n∑
k=0

Ĩk. (9)

These resulting intensities are often scaled onboard the sonar
to produce uniform pixel intensities. Since acoustic intensity
is proportional to 1/r2 [12], it is often normalized on
board the sonar using r2 to get uniform pixel density. This
processing method has the effect of increasing the magnitude
of the noise as range increases. Also, the lobe shape of the

transducer is often used as a normalization factor. Since our
intensity is already normalized, these scale factors will only
influence the speckle noise. We thus modify the additive
noise wsa,

w̃sa =
r2ij
r2max

(
1 + 0.5 exp(−ϕij)

)
wsa (10)

wsa ∼ R(σsa), (11)

where ϕij , rij are the azimuth and range of the i, j bin;
rmax is the maximum range of the sonar; and R is the
Rayleigh distribution. This additive noise is then combined
with multiplicative noise wsm,

Ĩij =Iij(0.5 + wsm) + w̃sa (12)
wsm ∼ N (0, σsm). (13)

E. Azimuth Streaking

Occasionally, a sonar can receive too many reflections
from normal incidences with the same time of flight and
make the beamforming problem ill-conditioned. In these
scenarios, sonars often return intensities at all azimuth angles
for a given range, resulting in an azimuth streak. Some sonars
attempt to subtract out these differences, but in doing so can
cause more artifacts. We estimate when this ill-conditioning

Fig. 6: Example of multibeam sonar simulation and uses. (a) Example of simulated multi-beam sonar imagery taken over an ocean floor looking down.
(b) The x,y coordinates extracted from (a), and (c) 120 of these scans placed side by side to create a bathymetry map. Note the techniques used to extract
x,y coordinates were rather simple, and the added noise naturally impacted the results. A more advanced bathymetry algorithm is beyond the scope of this
paper.

Fig. 7: Example of output of the side-scan sonar simulation. This was taken
over 1600 timesteps, each of which results in a row of the image.

occurs by checking if a certain percentage of leaves found
in a given range interval with near parallel n and v exceeds
a given threshold ζ. This range interval is then modified as
follows to introduce the azimuth artifact,

Îij = 1− (1− Ĩij)
2, (14)

and if the sonar has on-board gain reduction as follows
instead,

Îij = Ĩ2ij . (15)

An example of the resulting image with the contributions of
multi-path, diffusion, additive noise scaling, and removal of
azimuth streaks can be seen in Fig. 5. Our approach generates
approximately 12 images per second at ranges of 10m in the
tank environment.

IV. SIDE-SCAN SONAR

There are other types of sonar sensors that are also
common in underwater robotics, such as the side-scan sonar.

In order to increase the data generation capabilities of
HoloOcean, we have leveraged the existing robust octree
structure to simulate side-scan sonar as well.

A. Operation

Side-scan sonars also send out acoustic waves to capture
imagery of their environment. They generally operate by
pointing down at the seafloor and emitting two separate
pulses, one off each side of the sensor. Upon reflection
and return, time of flight and intensity are both measured.
In contrast to the imaging sonar sensor, angle of arrival is
not estimated, so no azimuth is measured. These pulses are
generally sent over a large azimuth angle and over a much
tighter elevation. This results in a known range and elevation,
but unknown azimuth.

The resulting intensities are then binned from max range
to 0m on the left and appended to the array of 0m to max
range on the right [17]. A blank portion always occurs in
the middle of this data since no objects exist within a certain
distance of the sonar.

When visualizing side-scan imagery, each time-step is
stitched together to form a waterfall plot; where the y-axis
denotes the time-step of the ping, x-axis is the range from
max range on the left to 0 in the center to max range on
the right, and each pixel value is the given intensity. This
geometry is summarized in Fig. 2(b).

B. Simulation Model

The side-scan sonar simulation model is built upon the
existing octree structure and the imaging sonar implementa-
tion including the existing recursive leaf searching method,
shadowing algorithm, and noise models.

It does differ in how the found leaves are sorted. If ϕ < 0,
a leaf is added to the right beam, and to the left beam if
ϕ > 0. The left beam’s leaves are binned from largest to
smallest range on the left, and the right beam’s leaves from
smallest to largest range. These beams are then concatenated,
and the resulting intensity computed as in eqs. (6) and (9).
Resulting imagery can be seen in Fig. 7.

Fig. 8: Comparison of real-world and simulation data of an echosounder in our tank. Simulation and real-world data were taken pointing at the bottom of
the tank from the surface, submerging about 0.5m, then returning to the surface. (a) The single-beam data from the BlueRobotics Ping Sonar [24], where
the x-axis is the timestep and y-axis is range and (b) the simulation data. Note that these images appear to have extremely heavy noise, but this is mostly
due to the small max range used to measure the bottom of the tank.

V. MULTIBEAM PROFILING SONAR

For mapping large areas of the seafloor, a multibeam pro-
filing sonar is used for generating low resolution bathymetry
maps quickly. Due to its excessive size, weight, and high
power consumption, profiling sonars are typically mounted
to surface vessels instead of AUVs. The sonar is mounted to
the underside of the vehicle pointing downwards towards the
seafloor where it scans a broad sweep of the seafloor directly
beneath. A systematic survey pattern can then be used for
mapping larger areas.

A. Operation

The sonar is comprised of multiple physical sensors, called
a transducer array, that send and receive sound pulses that
reflect off the seafloor or other present objects. Similar to
the imaging sonar, the profiling sonar has a wide azimuth
angle that allows a wide field of view, but differs in that the
elevation angle is much narrower. With a narrow elevation
angle, typically 1 to 3 degrees, the profiling sonar can esti-
mate the true distance and return an array of measurements
of the environment scanned below. While surveying an area,
by saving the sonar measurements with the estimated pose
of the robot at each time step, a 3D representation of the
environment can be created from these 2D slices.

B. Simulation Model

Due to the similar characteristics of the imaging sonar,
the profiling simulation model implementation is nearly
identical, utilizing the recursive leaf searching method and
noise models. The models differ in that the profiling only
utilizes one elevation bin for shadowing. To demonstrate the
use of the profiling sonar in simulation, a simple mission
was planned gathering bathymetry data shown in Fig. 6. An
example profiling sonar image is shown, along with extracted
x, y coordinates, and a resulting bathymetry map.

VI. ECHOSOUNDER

Echosounders, or single-beam sonar sensors, are common
systems used for determining water depth, which is useful
for mapping and navigation. Echosounders are often cheaper
than other sonars and have wide field of view condensed in
a single beam. Although echosounders do not produce maps
as detailed as those from a multibeam sonar, they can detect
schools of fish and even plankton. They can also be used to
prevent collisions with large objects beneath ships. Similar
to the multibeam sonar, echosounders are usually mounted
to the bottom of vehicles pointed towards the seafloor or on
the nose of an AUV pointing forward. However, single-beam
sonars take longer to map an area than a multibeam sonar
because the resolution of the data depends on the speed of
the vehicle on which the sonar is mounted.

A. Operation

The echosounder generally uses a single transducer to
transmit and receive acoustic signals in the shape of a cone.
Because the speed of sound in water is known, echosounders
can use the round-trip time of a signal to calculate the
distance traveled. This distance can then be divided in two
to determine the distance from the boat to the seafloor, and
returned in an array of intensities where each array element
corresponds to a different range interval. This geometry is
shown in Fig. 2(c).

B. Simulation Model

The echosounder simulation also heavily inherits from
the previously mentioned imaging sonar sensor in terms of
octree leaf searching and shadowing. However, because of
the inherent cone shape of the echosounder, it does not have
an elevation or azimuth angle. Instead, only the range and
semi-vertical angle ψ of the cone are used to determine if a
leaf is within the field of view of the sonar. An additional
angle, which we will call the central angle τ , is also used
to create bins for shadowing purposes. These angles are

visualized in Fig. 2(c). The signal intensities are sorted into
ψ, τ bins, and shadowing is computed with these bins in an
identical manner as the imaging sonar ϕ, θ bins, as described
in Subsection III-A. After shadowing, the remaining leaves
are sorted into range bins, the intensities in each bin are
averaged, and then returned.

The range calculations are perturbed using the exponential
distribution, similar to the imaging sonar case. The intensities
are not scaled by the probability density function though, as
there is little intensity drop-off for this diffusion.

Fig. 8 shows comparison of real-world data and our
simulation model, with an opening angle of 30 degrees, or
a semi-vertical angle of 15 degrees.

VII. CONCLUSION

Based on the octree simulation techniques developed in
our previous work [1], we augment HoloOcean, our open-
source marine robotics simulator, with a side-scan, multi-
beam profiling, and echosounder sonar implementations.
These are all built upon the existing octree structure to
provide realistic imagery of the complex environments in
UE4 engine. Further, we improve the noise modeling through
a cluster-based ray-tracing method for multi-path genera-
tion, as well as various probabilistic contributions for bin
diffusion, additive noise scaling, material dependence, and
azimuth streaking. The resulting imagery is realistic and can
be used for underwater algorithm development. Future work
includes a GPU implementation of the sonar algorithms,
additional agents including autonomous surface vessels, and
additional custom environments.

REFERENCES
[1] E. Potokar, S. Ashford, and J. Mangelson, “HoloOcean: An underwater

robotics simulator,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots and
Syst., 2022.

[2] Epic Games, “Unreal engine,” https://www.unrealengine.com, 2021.
[3] J.-H. Gu, H.-G. Joe, and S.-C. Yu, “Development of image sonar

simulator for underwater object recognition,” in 2013 OCEANS - San
Diego, Sep. 2013, pp. 1–6.

[4] S. Kwak, Y. Ji, A. Yamashita, and H. Asama, “Development of
acoustic camera-imaging simulator based on novel model,” in 2015
IEEE 15th International Conference on Environment and Electrical
Engineering (EEEIC), Jun. 2015, pp. 1719–1724.

[5] R. Cerqueira, T. Trocoli, G. Neves, S. Joyeux, J. Albiez, and
L. Oliveira, “A novel GPU-based sonar simulator for real-time ap-
plications,” Computers & Graphics, vol. 68, pp. 66–76, Nov. 2017.

[6] K. J. DeMarco, M. E. West, and A. M. Howard, “A computationally-
efficient 2D imaging sonar model for underwater robotics simulations

in Gazebo,” in OCEANS 2015 - MTS/IEEE Washington, Oct. 2015,
pp. 1–7.

[7] A. Rascon, “Forward-Looking Sonar Simulation Model for Robotics
Applications,” Thesis, Monterey, CA; Naval Postgraduate School, Sep.
2020.

[8] M. Sung, J. Kim, J. Kim, and S.-C. Yu, “Realistic Sonar Image Sim-
ulation Using Generative Adversarial Network,” IFAC-PapersOnLine,
vol. 52, no. 21, pp. 291–296, Jan. 2019.

[9] D. Liu, Y. Wang, Y. Ji, H. Tsuchiya, A. Yamashita, and H. Asama,
“CycleGAN-based realistic image dataset generation for forward-
looking sonar,” Advanced Robotics, vol. 35, no. 3-4, pp. 242–254,
Feb. 2021.

[10] S. Lee, B. Park, and A. Kim, “Deep Learning from Shallow Dives:
Sonar Image Generation and Training for Underwater Object Detec-
tion,” arXiv:1810.07990 [cs], Oct. 2018.

[11] R. Cerqueira, T. Trocoli, J. Albiez, and L. Oliveira, “A rasterized ray-
tracer pipeline for real-time, multi-device sonar simulation,” Graphical
Models, vol. 111, p. 101086, Sep. 2020.

[12] S. L. Garrett, Understanding Acoustics. S.l.: Springer Nature, 2020.
[13] J. Kim, M. Sung, and S.-C. Yu, “Development of Simulator for

Autonomous Underwater Vehicles utilizing Underwater Acoustic and
Optical Sensing Emulators,” in 2018 18th International Conference on
Control, Automation and Systems (ICCAS), Oct. 2018, pp. 416–419.

[14] D.-H. Gwon, J. Kim, M. H. Kim, H. G. Park, T. Y. Kim, and
A. Kim, “Development of a side scan sonar module for the underwater
simulator,” in 2017 14th International Conference on Ubiquitous
Robots and Ambient Intelligence (URAI), Jun. 2017, pp. 662–665.

[15] Y. Pailhas, Y. Petillot, C. Capus, and K. Brown, “Real-time sidescan
simulator and applications,” in OCEANS 2009-EUROPE, May 2009,
pp. 1–6.

[16] E. Coiras, A. Ramirez-Montesinos, and J. Groen, “GPU-based simula-
tion of side-looking sonar images,” in OCEANS 2009-EUROPE, May
2009, pp. 1–6.

[17] J. M. Bell, “A model for the simulation of sidescan sonar,” Thesis,
Heriot-Watt University, Sep. 1995.

[18] T. Henderson and S. Lacker, “Seafloor profiling by a wideband sonar:
Simulation, frequency-response optimization, and results of a brief
sea test,” IEEE Journal of Oceanic Engineering, vol. 14, no. 1, pp.
94–107, Jan. 1989.

[19] B. R. Biffard, “Seabed remote sensing by single-beam echosounder:
Models, methods and applications.” Thesis, University of Victoria,
2011.

[20] C. GRUBIN, “Derivation of the quaternion scheme via the Euler axis
and angle,” Journal of Spacecraft and Rockets, vol. 7, no. 10, pp.
1261–1263, 1970.

[21] E. W. Weisstein, “Line-Plane Intersection,” From MathWorld–
A Wolfram Web Resource. https://mathworld.wolfram.com/Line-
PlaneIntersection.html.

[22] Blueprint, “Blueprint Subsea Oculus M1200d,” https://www.
blueprintsubsea.com/oculus/oculus-m-series, 2021.

[23] D. Abraham and A. Lyons, “Novel physical interpretations of K-
distributed reverberation,” IEEE Journal of Oceanic Engineering,
vol. 27, no. 4, pp. 800–813, Oct. 2002.

[24] BlueRobotics, “BlueRobotics Ping Sonar,” https://bluerobotics.com/
store/sensors-sonars-cameras/sonar/ping-sonar-r2-rp/, 2021.

https://www.unrealengine.com
https://www.blueprintsubsea.com/oculus/oculus-m-series
https://www.blueprintsubsea.com/oculus/oculus-m-series
https://bluerobotics.com/store/sensors-sonars-cameras/sonar/ping-sonar-r2-rp/
https://bluerobotics.com/store/sensors-sonars-cameras/sonar/ping-sonar-r2-rp/

	Introduction
	Related Work
	Modeling Noise in Imaging Sonar
	Simulation Model
	Multi-path
	Material Dependence
	Probabilistic Contributions
	Azimuth Streaking

	Side-scan Sonar
	Operation
	Simulation Model

	Multibeam Profiling Sonar
	Operation
	Simulation Model

	Echosounder
	Operation
	Simulation Model

	Conclusion

