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Abstract— Reliable detection and reconstruction of wires is
one of the hardest problems in the UAV community, with a
wide ranging impact in the industry in terms of wire avoidance
capabilities and powerline corridor inspection. In this work,
we introduce a real-time, model-based, multi-view algorithm to
reconstruct wires from a set of images with known camera
poses, while exploiting their natural shape – the catenary
curve. Using a model-based approach helps us deal with partial
wire detections in images, which may occur due to natural
occlusion and false negatives. In addition, using a parsimonious
model makes our algorithm efficient as we only need to
optimize for 5 model parameters, as opposed to hundreds of
3D points in bundle-adjustment approaches. Our algorithm
obviates the need for pixel correspondences by computing
the reprojection error via the distance transform of binarized
wire segmentation images. Further, we make our algorithm
robust to arbitrary initializations by introducing an on-demand,
approximate extrapolation of the distance transform based
objective. We demonstrate the effectiveness of our algorithm
against false negatives and random initializations in simulation,
and show qualitative results with real data collected from a
small UAV.

I. INTRODUCTION

Reliable wire and powerline detection is a critical capabil-
ity for flying robots, as wires pose a serious collision hazard
for vehicles of all size [1–3]. In addition, wire detection is
useful for inspection and monitoring tasks, e.g., in powerline
corridor inspection [4–7]. However, thin wires and power-
lines are among the hardest obstacles to detect, regardless
of sensor modality [3]. Due to their small cross-section and
low reflectance, detection with active sensors such as radar
and lidar is only reliable with high-resolution devices, which
are expensive and unsuitable for small UAVs due to their
weight and size constraints. Cameras – in either a monocular
or stereo configuration – are a better alternative, as they
offer high-resolution sensing at a comparatively low weight,
cost, and size. However, current vision-based methods still
struggle to detect wires in scenes with cluttered background,
low contrast, and wires of barely visible width [8–14].

In this work, we present an approach for detection and
3D reconstruction of wires using a single monocular camera.
For monocular detection, we leverage our previous work to
obtain pixel-wise wire segmentations from RGB images [14].
For reconstruction, we present a novel model-based multi-
view approach that represents wires as 3D catenary curves –
their natural shape under uniform gravity. The reconstruction
process attempts to recover these curves (or more specifically,
the parameters of these curves) by minimizing a reprojection
loss at runtime.
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Our key insight is that using a parsimonious model-based
approach allows us to reconstruct wires with more fidelity
by exploiting the natural physical structure of the problem,
even in the presence of errors (due to occlusion or missed
detections) in the wire segmentation process. Compared to
works that do not exploit this structure, such as voxel-grid
mapping (e.g., [15]) our method has several advantages.
Our algorithm can more effectively deal with spurious (false
positive) segments, and predict the presence of wires despite
missed (false negative) wire segments. This is not only useful
for obstacle avoidance, but also in applications where exact
reconstruction of wires is desired [16, 17]. We note that while
this paper uses a monocular camera setup – due to its relative
simplicity and reduced weight and cost requirements – the
algorithm can naturally be adapted to a stereo setup, which
we leave for future work.

To our knowledge, this is the first work presenting a multi-
view wire detection and reconstruction method exploiting
this kind of a model. While catenary models have been used
before for wire detection and reconstruction from airborne
lidar data [18, 19], recovering this model from images is
a considerably different task than recovering it from point
cloud data.

We evaluate our method by generating a dataset of prob-
lems with random camera views in simulation. We show that
our algorithm is robust against false negatives and arbitrary
initialization. We also demonstrate our method on real data
gathered with a small UAV.

Our key contributions are a real-time, model-based, multi-
view algorithm utilizing a minimal parameterization of the
catenary, which obviates the need for pixel correspondences
and is robust to arbitrary initializations.

II. RELATED WORK

While catenary models have been used before for wire
extraction from airborne lidar data [18, 19], this is the first
work proposing a multiview algorithm. [18] first proposed
to use catenary models and used numerical methods for
optimization. [19] used a catenary model for powerline
reconstruction from lidar data using non-linear least squares.
Catenary models have also found uses beyond the task of
wire detection; they have been used previously for analyzing
dental arches [20, 21] and breast curvature [22, 23].

In the realm of generic thin obstacle reconstruction, [24]
propose an incremental line-based 3D reconstruction algo-
rithm that performs Structure from Motion (SfM) to recover
camera poses and then attempts to recover a line-based
model. However their method is not real-time, as they
solve for a combinatorial number of possible matches of
line features using epipolar geometry. Similar combinatorial
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Fig. 1: (a) Catenary curves from Eq. 1 in the local catenary frame, Fcat with varying sag parameter (a) values. (b) Our 3D catenary model is obtained by
defining Fcat with respect to a world frame, Fw . (c) Schematic of problem statement.

matching is observed in curve matching in [25]’s work on
image based reconstruction of wire art.

The distance transform was first proposed as a solution to
address the difficulty of data association for line and curve
features by [26]. Subsequently, this idea has been used in
recent works on subdivision curve reconstruction [27] and
edge-based visual odometry [28, 29]. Recently, [30] devel-
oped a promising thin obstacle mapping approach building
on previous work on edge-based visual odometry [31].

III. APPROACH

Given a set of images with known camera poses containing
a single wire, we first perform pixel-wise wire segmentation
with a convolutional neural network (CNN) using our pre-
vious work [14]. We then binarize the wire segmentation
confidence maps by thresholding them. Further, we estimate
the catenary model parameters via non-linear least squares
optimization. To minimize the reprojection error, we use
a computationally inexpensive distance transform as our
loss function, thereby obviating the need to find wire pixel
correspondences.

Given N views observing a single wire with known
camera poses, the objective is to recover the wire model pa-
rameters Θ, minimizing the reprojection error f(Θ). Fig. 1c
depicts this visually. We are given N views of binary wire
segmentations (shown in red), along with their corresponding
camera poses {C1, C2, ..., CN}. The multiple curves in 3D
represent various model hypotheses. The blue curves in each
view denote the projection of the current hypothesis in each
frame.

In the following sections, we discuss the model Θ in
Section III-A, the objective function f(Θ) in III-B, and the
optimization process in III-C.

A. Catenary Model

A wire with uniform density and thickness, when sus-
pended by its two ends under uniform gravity, follows the
shape of the planar, single-parameter, catenary curve [32]:

zcat = a
(
cosh

(xcat
a

)
− 1
)
, ycat = 0 (1)

where a is the catenary sag parameter, and Pcat =
{xcat, ycat, zcat} are the coordinates of points on the curve
in the local catenary frame, Fcat. As the value of the sag
parameter (a) increases, the curve flattens, as visualized in
Fig. 1a. We define the catenary vertex to be the lowermost
point of the curve, which is also the origin of Fcat. Now,

this planar catenary can easily be extended to 3D by defining
Fcat w.r.t. an arbitrary world frame Fw, related to Fcat by a
relative translation and rotation.

Let the tuple Pv = (xv, yv, zv) be the 3D coordinates of
the catenary vertex in Fw. Note that the gravity vector lies
in the plane of the catenary; thus, if we choose an Fw such
that its +Z axis is anti-parallel to the negative gravity vector,
there is only one degree of rotational freedom to consider
when defining Fcat. We denote this rotational parameter,
expressing the relative yaw between Fcat and Fw, as ψ.
Therefore, the parameters of our catenary model are given
by the 5-tuple Θ = {xv, yv, zv, ψ, a}. The parametrization
encodes a 3D transform minus the roll and pitch in the
rotation part, in addition to the sag parameter. We can obtain
the points in Fw (Pw) from the points in Fcat (Pcat) by
transformation matrices R and T built from Θ:

Θ = {xv, yv, zv, ψ, a} (2)
Pw(Θ) = R (ψ) Pcat + T (xv, yv, zv) (3)

So far, we have not discussed the wire length. We assume that
it is known, and set it to an appropriately large constant, lcat.
Two possible alternatives, at the cost of extra parameters,
would be to add the length as an extra model parameter, or
to parameterize the two endpoints instead of the lowermost
point. We are also not (explicitly) modelling wire thickness.
Instead, we assume an ideal wire, and when computing
reprojection error, we render the wire to 2D by projecting
a fixed, uniformly sampled number of points M . Thus, Pcat

and Pw above are both matrices of size M × 3. For our
simulation experiments, M was chosen as 100 and lcat was
set to 50 m. The assumption of a fixed lcat can be relaxed
by using 3D geometry: finding the intersection of viewing
frustums and using the wire segmentations can give as an
upper bound on the length of the curve.

With our model, the optimization variables are limited
to five in number, instead of tens to thousands of points
common in bundle-adjustment problems [33]. This parsimo-
nious parameterization makes the model interpretable and
allows efficient optimization, potentially allowing the current
formulation to scale to multiple wires.

B. Objective Function

In order to recover the model parameters Θ, the projections
of our inferred catenary model on each view should be as
consistent as possible with the observed wire detections. To
find the reprojection error, the challenge lies in defining the
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Fig. 2: (a) L-R: Input image with a single wire, wire segmentation confidence map (red is higher), distance transform of binarized segmentation. Pink
curve represents the catenary hypothesis' projection. (b) However the pink projection may fall outside the image coordinates. (c) Extrapolating from the
image center leads to discontinuity at the image boundary. (d) Extrapolation from the boundary pixels mitigates this issue. The base of the arrows indicate
the corresponding boundary pixel for the pixel at the arrow head. The white lines divide the area outside the image into 8 regions.

wire-to-wire pixel correspondences, which is a known issue
when performing reconstruction with thin features like lines,
edges, and curves. To address this problem, we draw on the
distance transform approach used in previous works [26–29].

Specifically, we first binarize the wire segmentations ob-
tained via [14], and then compute the distance transform for
each view. We normalize it by its maximum value in the
image to obtain Di, such that Di ∈ [0, 1]. We can then define
a residual vector, r ∈ RMN , by projecting the M catenary
points, Pcat onto each of the N views, and stacking the
distance transform values. For each ith point Pi in Pcat, let
its projection in the jth view be the pixel, pij = (uij , vij).
The residual for a pixel pij is then given by rij = Di(pij).
We can then obtain r by stacking all the rij values. This is
visualized in Fig. 2a.

Another issue we must address in this formulation is
defining a loss value for any invalid pixels, whose coordinate
values fall outside the image height and width limits (h,w),
as shown in Fig. 2b. A naive option is to apply padding on the
images before computing the distance transform. However,
it is difficult to choose the appropriate amount of padding
a priori, and excessively large padding increases the com-
putational cost of the optimization. We propose instead an
on-demand, approximate extrapolation of Di for such invalid
pixels. The extrapolation is continuous and differentiable at
image boundaries, aiding the non-linear optimization.

For any ith invalid pixel in the jth view, given by pij ,
we first find a corresponding boundary pixel pbij by defining
eight regions around the image as shown in Fig. 2d. Then, we
compute the Euclidean distance between the pixels pij and
pbij , d(pij , p

b
ij), and divide it by the maximum possible value

of the distance transform, the image diagonal
√
h2 + w2 .

Finally, the loss value at any invalid pixel is obtained by
adding this value to the residual value at the corresponding
boundary pixel, by Di(p

b
ij).

This can be expressed formally as:

rij =

{
Di(pij), if uij ∈ [0, h), vij ∈ [0, w)

Di(p
b
ij) +

d(pij ,p
b
ij)

√
h2+w2

, otherwise
(4)

ubij =

{
0, if uij < 0

h− 1, if uij ≥ h

}
, vbij =

{
0, if vij < 0

w − 1, if vij ≥ w

}
We need to compute Di for each of the N views only once,

and reuse it for each iteration of the optimization. This takes
less than 1 ms. For any pixel that falls outside the image,
we can compute the residual by extrapolating Di in an on-

Fig. 3: Chain of transformations and Jacobians

demand fashion.

C. Optimization Problem

As described in the previous sections, we first obtain the
3D curve in the world frame, Pw ∈ R3M from the model
parameters Θ, using Eq. 1 and 3. Then, each point in Pw is
transformed to each view’s frame via the respective extrinsics
matrices, to get PCi

∈ R3M×N . Next, the camera intrinsics
are applied to get the projected pixels, pCi ∈ R2M×N .
Finally, we use Eq. 4 to get a vector of residuals, r ∈
RMN . Our objective function, f(Θ) is given by the squared
sum of the vector of residuals. The chain of mappings is
visualized in Fig. 3. Each mapping is differentiable and lends
us a corresponding Jacobian. We can obtain the analytical
Jacobian of r w.r.t. Θ by the chain rule:

f(Θ) =
1

2
r>r , J =

∂r

∂Θ
=

∂r

∂pC

∂pC

∂PC

∂PC

∂Pw

∂Pw

∂Θ
(5)

The derivation of J is shown in the Appendix. We use
the subscript C to indicate stacking of pixels or points
corresponding to all camera views. The analytical Jacobian
is faster and more stable as compared to the numerical one;
moreover, we observed that due to the hyperbolic term in the
catenary’s equation, the numerical Jacobian can be unstable
for certain combinations of a and ψ values.

We optimize for this non-linear least squares objective
using the Trust Region Reflective algorithm [34, 35] to
recover Θ∗:

Θ∗ = arg min
Θ

f(Θ) (6)

D. Implementation Details

We use OpenCV’s distance transform function, which
implements [36]. Specifically, we use a 3× 3 mask and the
Euclidean distance as the metric. This means that the distance
is defined by the shortest path to the nearest wire pixel, when
horizontal, vertical, or diagonal moves are allowed.



(a) (b) (c)
Fig. 4: Effect of (a) number of views (N ) on the Hausdorff distance, and (b) time taken for optimization, over our datasets of 100 random scenarios. (c)
Robustness to random initializations. Here we repeat the experiment for (a) but for 10 different intializations for each of 100 scenarios, and show the 75th

quartile Hausdorff distance, along with one standard deviation.

(a) (b) (c)
Fig. 5: Effect of systematically adding false negatives in wire segmentations on the Hausdorff distance for N = 3, 5, 7.

IV. EXPERIMENTS AND RESULTS

A. Simulation

We simulate two types of scenarios:

• Random scenarios: Random camera views allow us
to simulate inspection scenarios, where the goal is to
reconstruct the wire with high accuracy by flying a
drone around it. We first sample a look-at point on the
catenary where the camera will be pointing towards.
Then, we sample a random viewing direction relative
to this point, via cylindrical coordinates. Once we have
a viewing direction and a look-at point, we sample
a distance along this vector which tells us where the
camera will be placed relative to the wire.

• Wire avoidance scenarios: For avoidance scenarios, we
limit the scope of the viewing direction, such that the
cameras are all within a small angle, thereby mimicking
the kind of views one might expect while flying a UAV
head-on towards a wire.

A few qualitative results are shown in Fig. 7. For quan-
titative evaluation, we generate a dataset of 100 problems
with random scenarios. We choose discretization M = 100,
length lcat = 50, and sample a distance between 50 to 150
m from the catenary to place cameras. We generate 100 such
scenarios, for varying number of camera views, given by N .

Evaluation: We use the symmetric Hausdorff distance [37,
38] between the 3D point sets of the ground truth catenary
Pgt and the resultant catenary solution returned by optimiza-
tion Pres, to evaluate the reconstruction accuracy:

H(Pgt,Pres) = max
(
h(Pgt,Pres), h(Pres,Pgt)

)
(7)

where h(X,Y) = max
x∈X

min
y∈Y

d(x, y)

Accuracy: Fig. 4a shows the performance of our method
over the 100 problem instances of the random scenario
dataset. We can see that our method works well for more
than 90% of the cases, for which H is less than 5 m. We
believe that the effect of adding more views is somewhat
inconclusive owing to the small dataset size, relative place-
ment of the camera views, ground truth catenary parameters,
and initialization of the optimization. The high H values
for a small percentage of cases indicate the failure of our
method in a few cases. We investigate whether such failures
are consistent despite of a different initialization, or can be
mitigated by doing so in the upcoming paragraphs.

Time: Fig. 4b shows the time taken (in milliseconds)
for optimization versus percentage of problem instances.
As number of views increases to 10, we are always under
200 ms. The wire segmentation runs at approximately 3
Hz on a portable GPU (Nvidia TX-2), and our algorithm
needs less time than that taken by monocular segmentation.
Additionally, we stress test our algorithm for large number of
views, as shown in Fig. 6. For N = 50, we converge within
1100 ms, and within 1500 ms for most cases with N = 75.

Robustness to arbitrary initializations: We verify the
effectiveness of our objective function against arbitrary ini-
tializations – a common issue for mapping and localization
algorithms – by repeating our experiment over the 100 sce-
narios, however by testing 10 different random initializations
for each instance this time. We visualize the 75 percentile



Fig. 6: Time taken by optimization for large number of views.

Hausdorff error, and 1 standard deviation in the resultant
error plot in Fig. 4c. For N = 3, 4, we can see high accuracy
of reconstruction for more than 95% of the problems. For
N ≥ 5, almost all the instances converge within a small
error.

The occasional spikes in the standard deviation highlight
that sometimes our algorithm fails to converge due to drastic
initializations. However, the overall low number of the 75th

quartile indicates that our algorithm converges most of the
time if one changes the initialization. This property can be
leveraged in critical scenarios – if our algorithm fails, one
can try a different random initialization due to the short
term required for finding a solution, or run our algorithm
in parallel with multiple initializations.

Robustness to false negatives: We test the robustness
against false negatives by systematically removing true pos-
itive pixels from the projections of the ground truth curve
in each view. We refer to the ratio of number of the pixels
removed to the original number of projected pixels as FNR
(false negative rate) in the context of this experiment. For
each view, we select the pixels to remove randomly. We vary
FNR from 0.0 to 0.9, in increments of 0.1, and show the
results for N = 3, 5, 7 as shown in Fig. 5, due to constraints
of space.

We can see that the hausdorff distance degrades as FNR
increases, however it still within 10 m even when we remove
90% of the true positives. This indicates the effectiveness
of our method in real world scenarios to predict where a
wire could be in cases when it is partially detected, which
is interestingly also a cause of wire strike accidents due to
pilot error [1, 2].

B. Real Data

We collect and use a dataset logged on the DJI Matrice
M100, retrofitted with in-house developed sensor suite con-
sisting of a stereo camera, an FPGA stereo processor [39], a
monocular color camera, an IMU, and a Nvidia TX2 ARM
computer as shown in Fig. 8. For this section, we only use the
monocular camera for detection and reconstruction. Camera
pose estimation is obtained with a filtering approach using
the IMU and built-in GPS. As the ground truth is hard to
obtain, we demonstrate qualitative results on real data.

We extract and analyse 16 chronological views from the
dataset, with a relative translation of at least 0.5 m, or a rela-
tive orientation of at least 18◦(quaternion geodesic distance)

between consecutive views. Fig. 9 shows two handpicked
views to help examine the segmentation result.

Fig. 10a shows that the projection of the converged cate-
nary hypothesis match the observed segmentations closely.
Fig. 10b shows the odometry of the real data, along with
the randomly initialized and the resultant curve. The real
segmentations (in green) have a lot of false negatives, as
expected. Our method is however able to handle this, unlike
a voxel grid mapping method which would not be able to
predict the presence of wires where they are not detected.
Also, note that because the odometry is not ideal, we are not
able to fit to the projections exactly.

We encourage the reader to look at the supplementary
video for simulation and real results.

V. CONCLUSION

We proposed a multiview algorithm for wire reconstruction
using a 5 parameter catenary model. Our algorithm is robust
to bad initializations, which we validate on both real data,
and simulated data with random camera poses and realistic
scenarios.

VI. FUTURE WORK

To close the loop with a motion planner for tasks like
wire avoidance and active perception, we need an estimate
of the uncertainty of the reconstruction. This can be achieved
by modeling Pv in the inverse-depth coordinates in the first
view [40]. This new model, Ψ = {uC1

v , vC1
v , dC1

v , ψ, a} is
related with Θ by camera intrinsics and the extrinsics. We
start by estimating the covariance of the solution Ψ∗ with
non-linear least squares theory: Σ∗Ψ = (JΨ7→rJ

>
Ψ7→r)−1.

Then, we can get a first order estimate of the covariance of Pv

by linearizing the Ψ 7→ Θ mapping: Σ∗Θ = JΨ7→ΘΣ∗ΨJ
>
Ψ7→Θ.

Similarly, we can linearize the catenary equation to get an
estimate of the covariance for each point on the curve.

Secondly, real-world scenarios have multiple wires, and
their projected curves may intersect each other. This can
resolved by obtaining instance segmentations of the wires (by
imposing a model in the image space itself via a polynomial),
as well as curve-to-curve correspondences across all views.
Then we can simply isolate each curve, and run our proposed
algorithm on a per-wire basis.
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APPENDIX

Analytical Jacobian Derivation: In the following subsec-
tions, we show each component of J from Eq. 5.

A. Residual value rij w.r.t. ith pixel in the jth view, pij
rij is obtained from pij = {uij , vij} as shown in Eq. 4.

Differentiating Eq. 4, we get:

∂rij
∂pij

=


[

∂Di
∂uij

∂Di
∂vij

]
, if uij ∈ [0, h), vij ∈ [0, w)

1√
h2+w2

[
uij−pbij

d(ub
ij ,pij)

vij−ub
ij

d(pbij ,pij)

]
, otherwise

(8)



Fig. 7: Qualitative results on our simulation dataset. We show both random (first two columns) and avoidance scenarios (last two columns) here. The top
row demonstrate situations where the wire is almost a straight line, which happens with large values of the sag parameter. The bottom row show results
for lower values of a, where the catenary shape is evident.

Fig. 8: Quadrotor platform used for experiments, equipped with a color
(middle) monocular camera and an onboard ARM computer.

Fig. 9: Wire segmentation in 2 views from real data.

B. Coordinates of any pixel pCi w.r.t. corresponding 3D
point PCi

in the ith view

pCi
= {ui, vi} is obtained from PCi

= {Xi, Yi, Zi} by
camera intrinsics. Here, u0, v0 is the principal point and
fx, fy are focal lengths.

pCi =

[
ui

vi

]
=

[
fx(Xi/Zi) + u0

fy(Yi/Zi) + v0

]
(9)

(a)

(b)
Fig. 10: Results with real data. (a) Montage of the 16 views used for
reconstruction. Green shows detected wires, red shows the projection of
the resultant catenary model. (b) 3D visualization: random initialization of
catenary is shown in red, and the resultant catenary is shown in green.

We can differentiate the above to get:

∂pCi

∂PCi

=

[
fx/Zi 0 −fx(Xi/Z

2
i )

0 fy/Zi −fy(Yi/Z
2
i )

]
(10)

C. 3D Points in the ith view’s frame PCi
w.r.t. 3D points

Pw in the world frame

PCi
can be obtain from Pw via camera extrinsics:

PCi = RextPw + Text (11)

In our case, we assume to know the camera poses, hence
extrinsics matrices are fixed. So the differentiating the above
results in a constant term. We exploit this fact to make our
implementation fast:

∂PCi

∂Pw
= Rext (12)

D. Pw in the world frame w.r.t. catenary parameters Θ

From Eq. 1 and 3, we can write Pw in terms of Θ.
Below, Xcat, Ycat, Zcat refer to coordinates of the curve in
the catenary frame.

Pw(Θ) = R(ψ)Pcat + T (xv, yv, zv) (13)
XW

YW
ZW

1

 =


cos(ψ) −sin(ψ) 0 xv
sin(ψ) cos(ψ) 0 yv

0 0 1 zv
0 0 0 1




Xcat

0
a
(
cosh

(
Xcat

a

)
− 1
)

1

 (14)


XW

YW
ZW

1

 =


Xcatcos(ψ) + xv
Xcatsin(ψ) + yv

a
(
cosh

(
Xcat

a

)
− 1
)

+ zv
1

 (15)

Differentiating the above, we get:

∂Pw

∂Θ
=

 −Xcatsin(ψ) 0
I33 Xcatcos(ψ) 0

0 cosh
(
Xcat

a

)
− Xcat

a
sinh

(
Xcat

a

)
− 1

 (16)

Now, we can write Xcat to get the above Jacobian expres-
sion in terms of the corresponding output (XW ) and input
variables (xv): Xcat = (XW − xv)/cos(ψ)
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