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Abstract— Underwater robots typically rely on acoustic sen-
sors like sonar to perceive their surroundings. However, these
sensors are often inundated with multiple sources and types
of noise, which makes using raw data for any meaningful
inference with features, objects, or boundary returns very
difficult. While several conventional methods of dealing with
noise exist, their success rates are unsatisfactory. This paper
presents a novel application of conditional Generative Adver-
sarial Networks (cGANs) to train a model to produce noise-
free sonar images, outperforming several conventional filtering
methods. Estimating free space is crucial for autonomous robots
performing active exploration and mapping. Thus, we apply
our approach to the task of underwater occupancy mapping
and show superior free and occupied space inference when
compared to conventional methods.

I. INTRODUCTION

Autonomous Underwater Vehicles (AUVs) are useful in
a broad range of applications that are otherwise tedious
or potentially dangerous for humans to perform. A major
aspect of AUVs is to perform underwater mapping which
assists in tasks like subsea infrastructure inspection, ship hull
inspection [1], seafloor surveying, and bathymetry [2].

In most conditions, AUVs cannot rely on optical sensors
like cameras and laser range scanners due to limitations
arising from turbidity and light absorption. Visibility in deep
water is often constrained to a few meters (1-2 meters) at
best. Thus, acoustic sensors like sonar are better suited for
tasks involving mapping and free space estimation, often
providing range information from several meters (10 meters
and up) depending on the type and frequency of the sonar.

Different tasks need different sonar types. For seafloor
mapping, side scan sonar (SSS) is commonly used as in [2],
[3], whereas in more structured and complex 3D environ-
ments, imaging sonars are found to be more prevalent as
shown in [4]-[7]. Teixeira et al. [8] also used an imaging
sonar with a concentrator lens in profiling mode, utilizing
submaps to obtain occupancy and subsequently perform
simultaneous localization and mapping (SLAM).

While sonar is the preferred sensing modality for under-
water environments, it is far from ideal due to noise from
random and systematic errors. The sources for these errors
can be due to the environment, temperature, an imperfection
in calibration, cross-talk between transducers and receivers,
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Fig. 1: Real-world experiments performed in a test tank.
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Fig. 2: Real-world sonar image filtering by our method.

multipath reflections, as well as delayed signal returns during
vehicle motion [9]. The most common noise pattern observed
is speckle noise. It mainly originates from coherent and
random patterns of constructive and destructive interference
of backscattered signals creating pixels with low and high in-
tensity in the image. This is mainly due to wave propagation
characteristics and the material properties of the objects in
the frustum of the sonar. It is also a primary source of visual
noise for many wave propagation-based sensors [10]-[12].
Reduced noise in sonar images is important for AUVs.
It enables the robot to infer its environment better, through
observing features or objects and performing SLAM. It is
also important in the estimation of free space, as noise in
the image can be incorrectly defined as an occupied space.
Conventional speckle noise filters operate on the premise that
the actual signal and noise are statistically independent and



can be differentiated on this basis. While most conventional
filters are capable of performing some degree of noise
reduction, often it is at the cost of degradation of important
image features such as corners and high contrast boundaries.

The remainder of the paper is organized as follows. After
discussing related work in the next section, Section m
introduces imaging sonar geometry in both Cartesian and
polar space. Section subsequently describes our filtering
method, followed by an evaluation of the filter performance
in Section [V] In Section we apply our method toward
underwater occupancy mapping and show that our method
outperforms conventional methods used for sonar denoising
for both simulated and real-world sonar image data. Finally,
Section closes with our concluding remarks and future
directions for this work.

II. RELATED WORK

There have been several attempts at filtering sonar images
through a multitude of methods. Some of the earliest attempts
have been the Lee, Kuan, and Frost filters for synthetic
aperture sonar images as described by [13]. The filters’ mea-
sure of image homogeneity are based on the multiplicative
speckle model, which is not always accurate causing failures
for small details in images like corners. Lopes et al. [14]
improved upon these methods by adding two thresholds on
the coefficient of variation, allowing better homogeneous
averaging and heterogeneous feature preservation. Variations
of wavelet transforms have also performed well in denoising
sonar images as seen in [15], [16]. The transforms work
by concentrating the original signal and image features in a
few large-magnitude wavelet coefficients, where the smaller
magnitude coefficients represent the noise. Negahdripour et
al. [17] proposed using multiple images taken from a single
viewpoint and averaging to obtain refined intensity returns.
Anisotropic diffusion has shown success for feature-based
methods [18], [19] as well as for dense 3D reconstruction
using sonar [20]. Teixeira et al. [8] utilize a two-dimensional
Wiener filter [21] to deconvolve a custom point spread
function for their sonar. Despite the variety of filtering
algorithms, there is no consensus on what method is best
since performance varies with the application of interest.

More recently, machine learning-based methods have
gained popularity for general image denoising. Lu et al. [22]
use a deep convolutional network to reduce speckle noise.
Their results show a great improvement for SSS images.
Imaging sonars, especially forward-looking sonars would
typically only have partial occupation from the viewed object
with the rest of the image being empty with noise. Whether
this network could handle this phenomenon is unknown.

The work of Isola et al. [23], pix2pix, showed how a
conditional adversarial network can be used for image-to-
image translation, performing tasks like generating photos
from edge maps, style transfer, and background removal
to name a few examples. For applications to underwater
imaging sonar, Lee et al. [24] have recently used pix2pix
to produce imitation sonar images to augment their training
data for a fully convolutional object segmentation network.

Our proposed method utilizes pix2pix in a different way.
We train the conditional Generative Adversarial Network
(cGAN) to generate binary masks of the actual returns.
These masks when used to segment the original raw image
help preserve the high-intensity objects detected in our sonar
image, while eliminating most of the noise in the process as
seen in Fig. 2} The effectiveness of our method is showcased
by using the filtered images to construct an occupancy map.

III. BACKGROUND: IMAGING SONAR GEOMETRY

Consider a point P(6,r,¢) in the field of view of the
imaging sonar, parameterized in the local spherical sonar
coordinate system as seen in Fig. Here, 6, r, and ¢
represent the bearing, range, and elevation angle of the point
respectively. The conversion of P to the Cartesian frame to
point C(z,y, z) and vice versa is
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Imaging sonars generate partial spherical measurements
by sending out acoustic signals into a frustum. Time of
flight measured from the reflected signals observed by the
transceivers provide the range r and bearing 6, of the
reflecting surface. However, these measurements are unable
to disambiguate the elevation ¢ of the reflected signal. Due to
this, all detected returns from a single elevation arc project
onto the same pixel of a range image I(0,r). For a pixel
corresponding to a certain bearing and range in I, the pixel’s
intensity corresponds to the intensity of the reflected signal
from all returns along the elevation.
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Fig. 3: Geometry of a single sonar image. Point P is represented by range
r, elevation ¢, and bearing 6. Tmax, Tmin, ®max> Pmin> Omax, and Opin
are respectively the maximum and minimum ranges, elevation angles, and
azimuth angles of the imaging sonar.

Along with elevation ambiguity, shadow zones also ap-
pear when objects closer to the sonar obstruct the view of
obstacles behind them. Hence, low pixel intensity values in
the sonar images do not necessarily mean the absence of
obstacles. A pictorial representation of shadow zones and
elevation ambiguity can be seen in Fig.
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Fig. 4: Elevation ambiguity and shadow zone of imaging sonar. Green points,
B and C, intercepted by sonar lie in the shadow zone and are thus not visible
in the generated range image. Blue points (D and E) and red points (F and
G), lying on the same elevation arc, cannot be distinguished in the image.

IV. SONAR IMAGE FILTERING WITH CGANS

We present an approach which uses cGANS to filter imag-
ing sonar images. GANs consist of two networks, a generator
G and a discriminator D. The generator’s task is to produce
data that closely matches the training distribution and the
discriminator has the task of distinguishing real images from
those produced by the generator. The generator in GANS tries
to learn the underlying training image distribution with no
additional constraints. Hence, the generators are free to learn
any mapping from the noise distribution p(2) to pgata, which
are the sonar images and corresponding mask pairs.

Pix2pix, like other cGANSs, conditions the output of the
generator model on an input image through the discriminator
model. In cGANSs, the training data is in the form of a
pair (z,y), where x and y represent the original image and
labeled image that x is conditioned on respectively. The
training objective can be represented as

Loss = mén max L.(G,D)+ \11(G) (3)

where \ is the weight applied to the L1 loss term, and the
objective of cGANs L. and L1 loss term Ly are
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The discriminator’s task in ¢cGANs remains the same,
which is to differentiate real image pairs (x,y) from fake
pairs (z,G(x,z)). The added task for the generator is to
make sure the produced images are nearer to the label y,
encouraged by the loss term Ly.

Our proposed work provides noisy sonar images (as ) and
binary masks (as y) to pix2pix to generate close-to-ground
truth binary masks as an output. This approach is in inverse
to Lee et al. [24], who give binary masks (as x) and noisy
sonar images (as y) to the generator to get realistic imitations
of sonar images.

Fig. [] describes our training procedure of how the cGAN
is trained to obtain the inferred mask to filter the raw image
for real-world data. We provide a series of noisy raw data as
the input image, x, and a binary mask of the actual surfaces
for the same scenes as our target image, y. When G and

D are trained together with a sufficient number of image
pairs, we get a network that produces a well-defined binary
image mask as our output for raw input data. This mask
is then used to segment out the actual return in the sonar
image while eliminating a majority of the image noise. As
the generated mask typically has a buffer zone enveloping the
object in view, an unsharp filter is then applied to the trained
model’s outputs to further contrast the reflected signal from
the surrounding residual noise.
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Fig. 5: Conditional GAN for filtering sonar images. Raw and labeled mask
pairs are used to train the network. Passing raw data through the network
gives a binary mask of the segmented returns.

V. FILTERING RESULTS

In this section, we describe our prepared dataset and
training parameters before presenting results for both sim-
ulation and real-world sonar images. For our simulated data,
we use the HoloOcean simulator [25], [26] and for our
real-world data, we use a Bluefin Hovering Autonomous
Underwater Vehicle (HAUV) [27] equipped with a 1.2MHz
Teledyne/RDI Workhorse Navigator Doppler velocity log
(DVL), a Honeywell HG1700 inertial measurement unit
(IMU), and a BluePrint Subsea M1200d imaging sonar [28]
as seen in Fig. [I} The DVL/IMU navigation solution has a
time-based drift, estimated to be 1.1 meters in 20 minutes.
We train two models, one for simulated data, and the other
for real-world data separately.

To train our simulated data model, we generate 3000 frame
pairs of noisy raw data, and noise-free images converted
to binary masks. For the real-world data, we randomly
select 100 frames from a data log, and manually prepare
binary mask images to serve as the target frames. While
the HoloOcean simulator is modeled on the M1200d, we
observed different noise patterns in simulation and real data,
in part due to the small, enclosed nature of the test tank
which amplified multipath reflections. Thus attempts to fine-
tune a network trained on simulated data with real-world
data were unsuccessful. However, a separately trained model
worked exceedingly well, even with a modest amount of
hand-labeled image pairs. Images used for training were from



different environments than those used for testing, for both
simulation and real-world data.

Both models were trained using pix2pix [23] with an
Intel(R) Core(TM) i7-7820X CPU running at 3.60GHz and
a NVIDIA GeForce RTX 3080 Ti GPU for training. The
training time observed for 3000 simulated image frames was
roughly 4.5 hours.
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Fig. 6: Filtering results on simulated sonar data with added speckle noise.
The enhanced Lee and wavelet filter perform best for conventional filters.
Our method is able to remove background noise efficiently and give well-
defined borders for the returned signal.
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Fig. 7: Comparison of PSNR of our and selected conventional methods on
four different scenes from the HoloOcean simulator. Our method consis-
tently shows higher PSNR values for all scenes.

A. Simulation Results

We compare our method against four filters: 1. the orig-
inal Frost filter, 2. the enhanced Lee filter, 3. Anisotropic
diffusion, and 4. wavelet transforms using the VisuShrink
threshold [29]. Parameters were adjusted to attain the best
performance of each filter.

We choose the peak signal-noise ratio (PSNR) as the error
metric to compare the filtration results. As speckle noise is
generally formed due to the constructive and destructive in-
terference of reflected signals from largely uneven surfaces, it
has been observed that HoloOcean’s simulated images were
unable to replicate the effect due to the smooth simulated
surfaces on the environment models. To make our com-
parison more realistic we add normally distributed speckle
noise to all images across four scenes from HoloOcean’s
list of available environments. Fig. [6] shows the qualitative
comparative results of filtration of a sample frame. We note

that our method provides a much sharper distinction of object
boundaries, while conventional filters cannot achieve so to a
satisfactory degree. In Fig. [/| we compare the baseline filters
and our method through the average PSNR per scene. Across
all the scenes, our method produces a higher PSNR value,
indicating better performance and robustness to noise.

TABLE I: Average run time per frame for filtering methods.

Frost  Anisodiff Wavelet
22.54 0.03 0.04

\ Filters [ Lee Enhanced

Ours |
| Time per frame (s) | 8.75

036 _|

We also compare the time taken for obtaining a filtered
image from raw data for different methods as seen in Table.[l|
All methods were run on the CPU. While our method takes
significantly more time for inference compared to methods
such as the wavelet transform and anisotropic diffusion,
the higher filtering performance is more desirable. When
it comes to slow-moving Autonomous Underwater Vehicles
(0.5-1.5 knots [27]), the time taken per frame is not as
detrimental.

B. Real World Results

For our real-world data, we use the Blueprint Oculus
M1200d in its high frequency (2.1MHz) mode which gives
a minimum range of 0.1 meters and is configured to a max
range of 5 meters, with a 60° horizontal field of view. Fig. [§]
compares the filtration performance of our model for a single
frame versus the same aforementioned conventional filters.
We see that our method is better able to filter surrounding
noise and give a sharp contrast to the returned signal.
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Fig. 8: Filtering results on real-world sonar images from test tank exper-
iments. Ground truth image is prepared by manually removing noise and
sharpening the actual return from the tank wall. While contours resulting
from multipath propagation exist, our result filters out most noise compared
to other conventional methods.

VI. APPLICATION TO OCCUPANCY MAPPING AND
EVALUATION

Before an AUV can infer its surroundings for mapping
purposes, the estimation of free space is important. For active
exploration and mapping, a robot must know the obstacle-
free space surrounding itself to plan safe and efficient paths
to unexplored regions. Thus, in this section, we apply our
method to underwater occupancy mapping. The complete
framework we use for underwater occupancy mapping with
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Fig. 9: Underwater occupancy mapping framework. Raw images passed through the network produce a binary mask which is used to segment the original
raw image. After passing through an unsharp filter, the image goes through a histogram equalization to generate a higher contrast image for thresholding.

Using vehicle poses, we obtain our final occupancy map.

imaging sonar is shown in Fig. 0] Raw sonar image frames
are passed through the filtering module to provide denoised
images which are then passed to the mapping module. With
the filtered range images and known robot poses from the
DVL/IMU, the Cartesian coordinates of obstacles can be
computed using Equation|[I]and utilized in the 3D Bresenham
line drawing algorithm [30] to update the values within the
corresponding occupancy grid cells.

We begin with the inverse sensor model for our occupancy
mapping framework, and then present and evaluate the
occupancy maps generated with both simulation and real-
world data.

A. Inverse Sensor Model

Once we have the denoised sonar image, histogram equal-
ization is performed [31] which increases the contrast, giving
the regions of interest a higher intensity. The intensity of cor-
responding pixels within sonar range images will determine
the occupancy of the grid at the pixel location. We define
the occupancy of a grid cell in an occupancy grid map m in
the log-odd form as:

p(mg y[z)
1 —p(m, ,|2)
where my y denotes a binary status of a grid cell at position
x,y, and z are the measurements from the sensor from time
1 through time 7' [32].

For the given sonar range image data, we place higher
confidence on the estimated free grid cells rather than occu-
pied cells. This is due to the elevation ambiguity observed
in imaging sonars, and the possibility of cells estimated as
occupied might not have a significant obstacle along the
entire elevation arc. We model our occupancy using the
following inverse sensor model:

lr,y = 10g (6)

. l if z < t,
inverse_sensor_model(m, x,z) = { " . (7)
loce otherwise,

where m represents the status of an occupancy grid cell, x
denotes the state of the sensor itself, z is the measurement
of intensity from sonar images, and ¢ is the threshold used
to detect the obstacles within the range image. We use
the following probability ratios for free and occupied cells,
which performed the best for simulations: pge. = 0.55, and
Docc = 0.05 [32].
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Fig. 10: Average False Positive (a) and False Negative (b) rates for generated

occupancy map using different filtering algorithms and pixel intensity
thresholds for simulated data.

B. Occupancy Map Evaluation for Simulation Data

For measuring the accuracy of our occupancy map, we use
the assumption that a positive cell value from our inverse
model indicates that the grid cell is free. Hence, a false
positive occurs when a grid cell is indicated as free but is
actually occupied. Similarly, a false negative means that a
cell is occupied while it is literally free. We do not make
assumptions about unknown grid cells. Using this model
we plot the average False Positive Rate (FPR) and False
Negative Rate (FNR) for all scenes across different pixel
intensity thresholds, ¢ from 0 to 60 for uint8 images.
These results are as seen in Fig. As anticipated, our
method performs the best across all threshold values. As the



threshold increases, the enhanced Lee filter gets closer to the
performance of our method. But given its filtration run-time,
it is not good for online estimation of free space.

The qualitative results of the generated occupancy map
for the wavelet transform and our method compared to the
ground truth and raw map are shown in Fig. [T1] where we
see that our method can provide better free and occupied
space information compared to the wavelet transform. We
demonstrate the result from the wavelet transform since
the chosen method performs the best among conventional
filtration approaches for simulations.

(a) Ground Truth

(c) Wavelet (d) Ours

Fig. 11: Final occupancy maps obtained from different filtering strategies
using simulated data

C. Occupancy Map Evaluation for Real-world Data

Real-world data collected from our test tank, where a
static obstacle board was placed adjacent to the tank wall,
as seen in Fig. [I] was used to qualitatively compare the free
and occupied space maps generated by our method and the
wavelet transform baseline as seen in Fig. We find that
our method is more accurate for the experiment environment
in determining both, free and occupied cells.

We also experiment to analyze the number of manually
labeled image pairs needed for a robust estimation of free
space. In Fig. [[3| we compare the free space map generated
by models using 25, 50, and 100 image pairs for training.
We see that the segmentation quality of the trained model
improves quickly with the addition of more training pairs,
giving more accurate free space estimates. We note that our
algorithm is sample efficient as even a small number of hand-
labeled data is enough to generate accurate maps of real-
world environments like a test tank.
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Fig. 12: Occupancy maps generated through wavelet filtering and our
method from real data in the test tank. Our method is able to infer available

free space more accurately
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Fig. 13: Occupancy maps by our filter using Conditional GAN. Each model
is trained by different pairs of raw data and hand-labeled masks.

VII. CONCLUSION AND FUTURE WORK

In this paper, we presented a novel application of cGANs
to filter noisy sonar images. Compared to conventional filters,
our approach can recognize and filter noise patterns better by
distinguishing between obstacles and image artifacts. These
results are attainable even with a small training set of raw
data and hand-labeled mask pairs.

Using both simulated and real-world data, we showcase
the applicability of our method to the downstream task of
occupancy mapping, highlighting how our denoising method
has a significantly better inference of free and occupied space
compared to conventional methods.

For future directions of this work, we aim to find a solution
to account for multipath reflections, something our method
cannot disambiguate presently. Apart from autonomous plan-
ning and exploration, we aim to study the suitability of our
method for feature-based SLAM and 3D object reconstruc-
tion using imaging sonar.
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