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Abstract—1In this work, we develop a new surface recon-
struction pipeline that combines monocular camera images and
LiDAR measurements from a moving sensor rig to reconstruct
dense 3D mesh models of indoor scenes. For surface recon-
struction, the 3D LiDAR and camera are widely deployed for
gathering geometric information from environments. Current
state-of-the-art multi-view stereo or LiDAR-only reconstruction
methods cannot reconstruct indoor environments accurately
due to shortcomings of each sensor type. In our approach,
LiDAR measurements are integrated into a multi-view stereo
pipeline for point cloud densification and tetrahedralization.
In addition to that, a graph cut algorithm is utilized to
generate a watertight surface mesh. Because our proposed
method leverages the complementary nature of these two
sensors, the accuracy and completeness of the output model are
improved. The experimental results on real world data show
that our method significantly outperforms both the state-of-
the-art camera-only and LiDAR-only reconstruction methods
in accuracy and completeness.

I. INTRODUCTION

Dense 3D reconstruction has gained popularity in recent
years because of its growing applications, such as inspection
[20], cultural heritage preservation [6] and urban recon-
struction [14]. In computer vision, multi-view stereo (MVS)
methods employ only cameras to accomplish dense recon-
structions. Moving cameras enable precise reconstruction and
texture mapping of object surfaces. However, the perfor-
mance of MVS highly depends on the lighting condition and
the richness of textures. Even for scenes with appropriate
lighting and rich textures, MVS may still fail in areas with
similar camera viewing angles due to insufficient baseline.
On the contrary, 3D LiDARs that are widely used in robotics
for 3D perception, provide geometric information indepen-
dent of visual features or textures. However, it is difficult
for LiDAR-only methods to reconstruct compact objects
accurately in indoor scenes since LIDAR measurements are
sparse compared with pixel measurements from cameras.
Besides, the noise of LiDAR is relatively large for close-
up objects. Therefore, the complementary nature of the two
sensors enables us to obtain precise geometric information
for both small objects and low-texture structures in indoor
environments.

In the last decade, the combination of camera and LiDAR
has been widely utilized in the field of autonomous robotics
[22]. Previous research on reconstruction that employs the
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Fig. 1.
that exploits the complementary properties of cameras and LiDARs. Our
method preserves fine shapes while reconstructing textureless surfaces.

Textured mesh without shading from our reconstruction pipeline

combination of the two sensors typically adopts measure-
ments from only LiDAR in the final geometric surface
reconstruction stage, while images are only used to colorize
or texturize the surfaces. Different from previous methods,
our method utilizes measurements from both sensors to
generate 3D reconstructions in the form of a surface mesh.

The pipeline of our system consists of two main stages
as shown in Fig. 2. In the first stage, we use LiDAR mea-
surements as priors to improve point cloud densification from
images. In the second stage, for areas where the depth cannot
be estimated from images, we add LiDAR measurements to
the visual point cloud and extract a surface mesh from the
point cloud containing measurements from both sensors. Our
proposed method leverages integral advantages of 3D LiDAR
and camera, hence improves the reconstruction results over
state-of-the-art MVS pipelines. Our main contributions are:

e A new pipeline combining LiDAR and camera in a
MYVS reconstruction framework to create a dense point
cloud of indoor environments;

o An extension of the Delaunay tetrahedra and graph
optimization framework described in [9] to include
both LiDAR and camera measurements in surface mesh
extraction;

o Evaluation against state-of-the-art MVS pipelines
(PMVS2 [5], OpenMVS [2]) and LiDAR-only recon-
struction on real world data.

II. RELATED WORK

Over the past few decades various algorithms that combine
LiDAR and camera data for the purpose of 3D mapping or
reconstruction have been developed [21][14]. These works
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Fig. 2. Diagram of our reconstruction pipeline. Boxes marked in red are the parts that we modify based on MVS pipeline. Notations are detailed in

following sections.

can be divided into two categories. The first category creates
the surface mesh or other representations using only the
LiDAR points and uses camera data for texture mapping. The
second category uses the LiDAR points as priors for multi-
view stereo to generate a dense point cloud from images.

In the first category methods, their reconstruction is mostly
represented as a registered LiDAR point cloud. Zhang and
Singh [24] generate a map in the form of registered LiDAR
point clouds. This system applies camera measurements to
help with the state estimation, but the final surface model
is made from only LiDAR measurements. With a 2D range
sensor and a camera, Martin et al. [13] present an algorithm
that extracts a surface model from rangefinder measurements
and maps image textures to that model. Similarly, [19] and
[16] also utilize texture mapping in their algorithms. While
they exploit the advantages of LiDAR in planar and distant
scenes, the geometric information in images is not combined
with range data in the reconstruction or mapping stage.

For methods in the second category, [12] and [15] both
utilize 3D LiDARs and cameras to estimate dense depth
maps. Although these methods adopt probabilistic methods
to generate accurate visual point clouds with LiDAR priors,
LiDAR points are not directly integrated into the recon-
struction stage. These methods also only apply to single
view depth estimation, while we are interested in larger-scale
reconstruction from a sequence.

For vision-only reconstruction, a number of MVS al-
gorithms have been developed in recent years [17]. Fu-
rukawa and Ponce [5] developed a patch-based MVS pipeline
(PMVS) to reconstruct compact objects. Since PMVS de-
pends on finding pixel-level correspondences across images,
low texture environments result in low completeness maps. In
[23], Vu et al. proposed a dense scene reconstruction pipeline
which can generate a surface mesh even under uncontrolled
imaging conditions. With global visibility taken into account,
Vu’s pipeline improves the accuracy of the surface mesh.
However, its performance still relies on a number of features
to extract a dense point cloud for generating a precise mesh.

In this paper, we use OpenMVS [2] as our baseline
method, which is implemented based on Vu’s method. We
assume the followings are provided: known camera and
LiDAR poses, sparse 3D feature points from SfM pipeline,
and the known calibration between the LiDAR and camera
for registering images and LiDAR scans into a common
coordinate frame.

III. LIDAR-IMPROVED POINT CLOUD DENSIFICATION

There are three stages in point cloud densification: depth
map initialization, refinement, and fusion. We incorporate
LiDAR measurements in the first stage to initialize the depth
map. We denote the registered LiDAR point cloud from
multiple scans using corresponding poses as P;. Input image
frames are represented by the set I = {lo,...,[,—1}, and
corresponding depth maps are denoted by the set D
{Dy, ..., Dy,—1}. Comparing to the method in [3], which
randomly initializes the depth for each pixel but can not
always converge to the correct depth, our method uses
LiDAR measurements as prior to improve the initialization.
We initialize the depth map D;, by projecting points in P;
back to I;’s image frame. There are several cases when we
initialize the depth for one pixel:

o Several projected LiDAR measurements available: only
the closest measurement to the camera center is used for
initialization, which accounts for occluding surfaces.

o Sparse feature points available: we take the depth infor-
mation from the sparse feature point for initialization,
even when projected LiDAR measurements exist for
the pixel. As mentioned above, the sparse feature point
is from structure from motion, which employs robust
multi-view geometry methods to calculate feature point
positions, therefore it is more accurate than LiDAR
measurements.

o Neither camera points nor projected LiDAR measure-
ments available: We use the initialized pixels which are
outputs from previous two cases as vertices to form a 2D
triangulation inside the image plane. For each triangle
facet in the triangulation, the depth of uninitialized
pixels inside it is set to the distance from camera center
to the facet.

After the initialization, we find matching patches and
perform spatial propagation for refinement as detailed in [3].
Finally, we project all depth maps in D to 3D space and
use the fusion method of [18] to reject inconsistent depths.
Fig. 3 shows that OpenMVS [2] fails to estimate depth in
textureless areas, but incorporating LiDAR measurements
improves the depth map estimation. Eventually, we generate
a dense point cloud P, from images in I.
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Fig. 3. Comparison of depth maps from OpenMVS and our pipeline. (a)
Textureless areas, such as the wall and chairs, result in poor depth estimation
when using image-based MVS. (b) Fusing LIDAR measurements with the
MVS depth map significantly improves depth estimation in the low texture
regions.

IV. SURFACE RECONSTRUCTION FROM FUSED
MEASUREMENTS

We modify the OpenMVS pipeline to use LiDAR mea-
surement during surface reconstruction. After generating the
point cloud P, from the previous step, we combine it with a
subset of LiDAR points downsampled from P; into one point
cloud P,;;. Then, we use 3D Delaunay tetrahedralization on
P.;; and fit the resulting tetrahedra into a graph for s-f cut
algorithm to label each tetradedron as either inside or outside
of the surface. Finally we generate a watertight surface mesh.

A. Point insertion

We insert all points in P, into the tetrahedralization based
on the method in [9] since they are accurate from the point
cloud densification, but not insert all points from P;. The
first reason is that it is expensive for graph-cut algorithm
to run through a large number of nodes. Secondly, LiDAR
points usually have larger noise! than triangulated camera
points for short distance measurements, which make the
reconstructed surface bumpy. Therefore, we downsample P;
to P4 by clustering points in P; within a given radius r to
a single mean point. After downsampling, for each point
p in Py, we project it back to every camera frame I;. If
p is inside I;’s camera view, we record I; in a set I,,, of
which the corresponding set of depth maps is called D,,. If
the depth of projected p is not calculated in any depth map
in Dy, p is inserted into the tetrahedralization. As a result,
inserted LiDAR measurements do not pollute the camera
measurements in the same areas.

'Up to £3cm for Velodyne VLP-16 according to its datasheet.

B. Graph-based extraction of surface mesh

For 3D mesh generation, previous methods [10][9][7] use
a graph-cut algorithm [4] to extract a surface. In our proposed
method, we fit a set of tetrahedra T in the s-¢ cut framework
similar to [23]. We build a directed graph G = (V, E) and
apply the s-r cut to G. In graph G, each node V' denotes
a tetrahedron and each edge E between adjacent nodes V
represents the facet shared by two adjacent tetrahedra. We
add the source s and sink ¢ nodes connecting to each node
in V, which denote the interior and exterior of the surface
respectively [9]. In GG, we assign weights for each node and
edge based on the energy function in Eq. 1. In the last step,
the labeling process is accomplished by solving the minimum
s-t cut on G.

E(T) = Evisibility + )\qualityEquality + )\lidarElidar (1)

Terms Eyisivitity + Aquality Equality were first derived in
[10] for range data. Since two sensors are incorporated in this
framework, we introduce a new energy term FEj;q4,,, which
accounts for the different noise model of the camera and
LiDAR to smooth the bumpy surfaces from noisy LiDAR
measurements. Since we maintain the original formulation
of the quality term from [10] in our pipeline, Section IV-
C and IV-D provide details about our formulation of the
visibility and energy terms. After calculating the energy of
the whole graph based on Eq. 1, we apply the minimum
s-t cut algorithm to determine the binary label of each
tetrahedron.

C. Visibility information

Since we have camera and LiDAR measurements, the
visibility term can be divided into two parts accordingly.
For the camera visibility term, [7] has derived a weighting
scheme for tetrahedra T to be consistent with the visibility
of the camera by penalizing visibility conflicts. Specifically,
Quyis 1S introduced as the unit confidence value for each
ray from the center of camera to a visual point, which is
proportional to the number of camera views seeing the point.
For LiDAR points, ;s is calculated in a different method
since they are sparsely distributed in different locations
across different scans. Due to the downsampling of the
LiDAR point cloud during point insertion, we set a,;s for
each point in Py proportional to the number of points in
r, which is calculated during downsampling for visibility
consistency. This removes redundant points while keeping
the additional visibility support that these points offer.

In three cases, the edge weight is incremented by a.,;s for
measurements and its corresponding sensor’s center:

o For the ray from a sensor to a point inside its view
intersecting the facet f; shared by tetrahedra n; and
ng, the corresponding edge weight in the graph is
incremented.

o For the cell directly behind the line of sight which is
the line segment connecting the sensor and the point,
its edge connected to the source node is incremented.

« For the cell containing the sensor, its edge connected to
the target is incremented.



Algorithm 1 Ej;4,, calculation
1: for node i in G do
2:  for facet f of node i do
3: if vertex of f from both LiDAR and visual points
then
weight(f)+ = v
else
weight(f)+ = 3
end if
end for
end for

R AN

D. LiDAR smoothing term

As mentioned in Section IV-A, LiDAR points have rela-
tively larger noise than that of camera points. However, the
visibility and quality terms cannot account for the different
noise levels of LiIDAR and camera measurements, since these
two terms do not identify the source of vertices in tetrahedra.
For example, Fig. 4 shows the scenario where both LiDAR
and camera points exist for a surface. With original visibility
and quality terms, the extracted mesh surface is bumpy and
mostly determined by LiDAR points lying out of the surface
because of their larger noise. Therefore, we add the LiDAR
smoothing term to improve the quality of the surface where
LiDAR and camera measurements overlap. We alternate the
weights of tetrahetra which contain both LiDAR and camera
points as vertices, hence these tetrahedra are more likely to
be labeled as out of the surface by the graph-cut algorithm.
As Fig. 4 shows, in zoomed view, only the facet in red of
the tetrahedron is marked as inside. For the set of tetrahedra,
the extracted surface is mostly determined by camera points
closer to the real surface.

We examine the three vertices of each tetrahedron’s facet
to decide the term Ej;44,. When three vertices are composed
by LiDAR points or camera points only, we add a large
constant value 3 to the edge in G that corresponds to the
facet. The large value represents a large penalty to cut the
edge off. On the other hand, when both LiDAR points and
camera points are included in three vertices, we give this
edge a small weight +, which indicates higher probability

- with LIDAR

O .O O ..... smoothing
6

Args

Camera/LiDAR O
O LiDAR s Tl

.
(] 9 00 ; ’
points surface

w/o LIDAR
smoothing

o Q
o
Q CI(S) O visul

points

Fig. 4. Different LiDAR and visual points noise level around the ground
truth surface and a zoomed view of a tetrahedron around the surface. In
zoomed view, based on the term Ej;44.-, the facet with red edges is most
likely to be labeled as inside since it has larger weight than the other three
facets containing LiDAR points.

(a) Mesh result without Ej;qqr,

Fig. 5. Comparison of reconstructed mesh with/without the LiDAR
smoothing term (Ej;44.-)- The smoothing term reduces noise from LiDAR
measurements while preserving fine structures recovered from vision.

(b) Mesh result with Ej;qqy
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(a) The sensors within the red boxes are
used to collect datasets

(b) Pictures of data collection scenes

Fig. 6. Our data collection device and experiment scenes. In (b), from left
to right, data are collected in lift lobby, hallway, and kitchen.

to cut the edge off in s-¢ cut algorithm. (See tetrahedron in
Fig. 4 and Algorithm 1). In this way, the labeling process
is much more robust to noise around surfaces from LiDAR
measurements as can be seen in Fig. 5.

In terms of the selection of v and £ in Algorithm 1, we
need to consider the density of LiDAR points and camera
points. In this paper, we choose f = “¢= and v = 1, in
which «,,;s refers to the visibility value of LiDAR points and
we choose a,,;s = 32 based on [10]. When 3 value increases,
small structures or objects are wiped out in the model. It is
important to keep the visibility term dominant in the energy
function for correct geometry in the final model, and select
a moderate ;s and 5.

V. EXPERIMENTS AND RESULTS
A. Implementation

We implement our method in C++ based on the open
source library OpenMVS [2], by integrating depth map
initialization, LIDAR measurements processing and the new
formulation of the energy function into the pipeline. We use
CGAL[1] to manipulate tetrahedra and Delaunay triangula-
tion. All experiments are run on a Ubuntu desktop with Intel
i7-7700 @3.60GHz CPU and 32GB RAM.

B. Experimental settings

Our method requires high-resolution images and LiDAR
scans to reconstruct indoor scenes, but currently no public
benchmark datasets containing such data exist. Therefore,
we collect our own datasets using a custom-built sensor
rig (Fig. 6a) with a Velodyne VLP-16 LiDAR and a FLIR
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Fig. 7. Shaded meshes of the kitchen dataset. By combining LiDAR and vision, our method preserves fine shapes while reconstructing textureless surfaces.

Grasshopper3 camera. We use a survey LiDAR scanner
FARO Focus 3D to collect the ground truth model. We
compare our method with state-of-the-art algorithms PMVS2
[5], OpenMVS [2], and a LiDAR-only method [10] on three
indoor datasets.

C. Evaluation

A qualitative comparison of reconstructed models is pre-
sented in Fig. 7. The mesh model from the LiDAR point
cloud can accurately depict the structure of the room, but
it has two shortcomings. First, it cannot keep thin struc-
tures or small objects in the final result because of its
sampling sparsity. Second, with more LiDAR points added
for reconstruction, more noise and artifacts from the sensor
are introduced to the mesh model. This may be seen in
Fig. 7b, where the floor and walls are bumpy and display
repeated stripe-shaped artifacts that correspond to the laser
scan lines. For OpenMVS (Fig. 7c), the geometry of the
scene is wrong starting from the point densification step (see
Fig. 3). The PMVS2 result (Fig. 7d) is relatively accurate
in terms of patch positions, but only edges and corners are
reconstructed in textured areas. The surface mesh from our
method (Fig. 7a) can preserve the details of thin structures
and small objects, and recover the textureless surfaces more
accurately and smoothly.

Quantitatively, we evaluate our pipeline against other
methods using metrics presented in [8]. The ground truth is
provided in point cloud format, but our resulting model is a
surface mesh. Hence, for comparison, we extract the vertices
of tetrahedron facets which are labeled as inside the surface

in the mesh as a point cloud. Since the camera and LiDAR
sensors have different coverage of the scene, we manually
bound our resulting point clouds to areas that are viewed
by both sensors. After aligning the reconstructed model with
the ground truth, we compare them according to the metrics
in [8]. In [8], precision P(d), recall R(d), and F-score are
defined for measuring the accuracy and completeness in the
unified metric. Here d is a threshold of distance. P(d) is the
percentage of points in the reconstructed model of which the
distance to their closest point in the ground truth model is
smaller than d. R(d) is calculated the other way around, by
computing a similar percentage score from the ground truth
model to the reconstructed model. Recall R(d) indicates the
percentage of the ground truth model that is captured by the
reconstructed model. F-score is a summary measure, which
is the harmonic mean of precision and recall given threshold
d. In our evaluation, we set d to 0.05m.

2P(d)R(d)

F-score = m

)

Precision and recall of reconstructed models are visualized
as false-color map in Fig. 8. We compare across three
datasets, collected in lift lobby, hallway, and kitchen, respec-
tively. The kitchen dataset is considered as the most difficult
one since it contains many small objects, thin structures and
occlusions. Lift lobby is the least challenging one because
most surfaces are flat walls, the floor, or the ceiling. In
the experiments with other pipelines, the parameters are set
to default values as provided in open source code or the
corresponding literature.
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Fig. 8.

(e) PMVS2 [5] precision

(f) LiDAR-only [10] recall

(a)(b)(d)(e) False-color map for precision which evaluates reconstructed models against ground truth model are shown to the left. (c)(f) False-color

map for our model and LiDAR recall. In (f), almost all compact objects in red are missing. The color representation of the error is shown in the bottom.

As Table I shows, the F-score of our method is better
than the state-of-the-art pipelines on all three datasets. In
terms of precision and recall, LIDAR-only and OpenMVS
methods both do well in precision, but their coverages are
mostly on large structures and textured objects respectively.
From LiDAR recall error in Fig. 8f, we can see that the
chairs around the table are missing in the LiDAR-only result,
while the walls in OpenMVS [2] and PMVS2 results (Fig. 8d,
8e) are in poor reconstruction. So their recall percentage is
relatively low in the indoor scenarios. Because of integrating
both LiDAR and camera visibility information, our pipeline
can reconstruct the scene with both clustered objects and
textureless structures accurately.

TABLE I
PRECISION/RECALL/F-SCORE FOR DIFFERENT PIPELINES. BEST RESULT
SHOWN IN BOLD.

Method Lift Lobby Kitchen Hallway

Ours 96.6/88.8/92.5 91.9/82.3/86.9 93.1/75.2/83.2
OpenMVS 88.6/28.4/43.0  90.0/64.0/74.8  93.7/16.3/27.8
PMVS2 [5]  86.8/26.1/40.2 87.8/44.1/58.7  34.4/10.9/16.5
LiDAR [10] 95.7/85.1/90.1 86.2/69.1/76.7 91.6/66.3/77.0

VI. DISCUSSION AND CONCLUSION

In this paper, we present a novel LiDAR-integrated MVS
dense reconstruction pipeline for indoor environments, which
contains textureless areas and various compact objects. Inte-
grating LiDAR measurements as priors during point densi-
fication enhances the accuracy of visual point clouds. By
extending the graph-cut framework to accommodate both
LiDAR and camera measurements, we fuse measurements
from both sensors into a surface mesh. We demonstrate the
advantages of our pipeline in indoor scene reconstruction,
specifically the improvement of the reconstruction accuracy
of smaller objects as well as textureless areas.

Limitations of our current system include the assumption
of known camera and LiDAR poses. Errors in these pose
estimates will impact the accuracy of our reconstruction.

In the future, our pipeline can be improved by incorporat-
ing more geometric features from both sensors such as lines,
which is an active research topic in dense reconstruction [11].
In terms of mesh quality, a mesh refinement step can be
added into the pipeline inspired by [23], which can refine
the mesh vertices by minimizing the reprojection error from
vertices to image pairs.
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