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Abstract— Simultaneous Localization and Mapping (SLAM)
is commonly formulated as an optimization over a graph. A
popular approach is the pose graph, which seeks to solve for
robots poses that are constrained by pose-to-pose measure-
ments, such as odometry measurements or loop closures. For
range sensors, these pose-to-pose constraints can be achieved
by performing scan matching techniques, such as Iterative
Closest Point (ICP). However, in environments with insufficient
or degenerate geometric features, the ICP solution can be
unreliable and lead to significant drift in the trajectory of the
graph optimization solution.

In this paper, we propose a degeneracy-aware approach
which has two stages: (1) a degeneracy-aware ICP algorithm
and (2) a partially constrained loop closure factor to incorporate
the results from (1) into the SLAM pose graph optimization.
Our approach performs updates and optimizes both ICP and
the pose graph in only the well constrained directions of the
state space. These directions are selected on the basis of a
dynamic threshold, which updates at each iteration. We apply
the proposed algorithm to autonomous underwater mapping
with sonar. To evaluate the performance of this algorithm,
we conduct experiments in both simulation and real world
scenarios, and show the method’s robustness to navigational
drift and ability to reject poor loop closures in degenerate
environments, which would otherwise degrade the accuracy of
the trajectory and the quality of the resulting map.

I. INTRODUCTION AND RELATED WORK

SLAM systems utilizing laser range finders or RGB-D
sensors have become commonplace over the past decade.
A multitude of algorithms have been developed using these
sensors to provide accurate state estimates and consistent
maps in real-time [20, 21, 23], without the need for absolute
measurements from sensors such as a GPS. However, most of
these methods are prone to failure in certain scenarios. One
particular failure mode is when the scene in consideration has
degenerate geometry or insufficient features for the method
to get correspondences. Cadena et al. [1] note that the
absence of observable features, even temporarily, can hinder
the SLAM solution and necessitates the need for techniques
to deal with the lack of observability.

A variety of methods have been proposed to combat
degeneracy in SLAM. We can broadly categorize them
as either (1) limiting or (2) actively handling degenerate
situations. Limiting the occurrence of degenerate situations
can be achieved by effectively supplementing the system with
more information to minimize failure. Hsiao et al. [7] use
an IMU in their planar SLAM framework to maintain the
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Fig. 1: Pose graph representation of a SLAM problem: Green circles
represent the pose nodes xk to be estimated. The small black dots represent
measurement factors (odometry ui or loop closures lk) that are connected
through edges to one or more pose nodes. The prior p constrains the first
pose to remove a gauge freedom.

sensor pose for short durations when faced with texture-less
scenes. In their point-plane SLAM system, Taguchi et al. [16]
analyze the possible correspondences found to satisfy certain
properties, and reject the pairs likely to be degenerate based
on those properties. Tribou et al. [18] describes the use of
multiple cameras with different fields of view such that at a
given time at least one camera’s observation can be used for
localizing the system effectively, even if in a visually poor
environment. Other ways to limit degeneracy could be by
switching to different features or methods. For the mapping
of texture-less pipe systems, Ma et al. [11] substitutes
visual features with voids detected via ultrasonic scanners as
landmarks, effectively avoiding degeneracies which would
occur through visual measurements. Hu et al. [8] switch
between feature matching methods for RGB-D and RGB to
deal with different environments during mapping.

Actively handling degeneracy in a SLAM system requires
analyzing the constraints imposed by measurements, identi-
fying the degeneracies, and appropriately compensating for
them. Pathak et al. [12] describe a novel method of scan
matching using planes, where they determine and minimize
the geometric uncertainty of the configuration space. Cho et
al. [3] build upon Pathak et al.’s method and propose the
detection of degeneracy between two sets of plane features
by comparing the ratios of eigenvalues in the second moment
matrix. They then project the value of the IMU recorded
orientations in the directions estimated to be degenerate,
which is then used to optimize their state estimate. Rong
et al. [13] use the eigenvalues of the Empirical Observ-
ability Gramian to represent the observability of the system
parameters. They then use the local condition number to
determine the degeneracy online, and detect future motions
which may result in degenerate cases. As Zhang et al. [22]
define, an optimization problem in SLAM is degenerate if
there exist one or more directions in the state space of the
optimization which are not well constrained. However, even
if some directions in the optimization are degenerate, the
well constrained directions can still be used to update in
a subspace of the original optimization. They separate the
degenerate and non-degenerate directions and introduce a
technique called solution remapping to perform incremental



updates only in the non-degenerate directions. To solve for
the occurrence of degeneracy, our contributions presented in
this paper are as follows:

1) A degeneracy-aware point-to-plane ICP algorithm,
based on the solution remapping technique [22].

2) A new degeneracy-aware partial factor, which allows
for the optimization of the pose graph only in the well
constrained directions, by using the results from the
degeneracy-aware ICP.

II. PROBLEM STATEMENT

We will now introduce the non-linear least squares op-
timization that is used to solve the maximum a posteriori
(MAP) formulation of the SLAM problem. MAP estimation
tries to achieve the most likely state x of a system given a
set of measurements z:

x∗ = argmax
x

p (x|z) (1)

= argmax
x

p (x) p (z|x) (2)

= argmax
x

p (x)

N∏
i=1

p (zi|x) (3)

The likelihood term p(zi|x) arises from a generative
model for the measurement zi with assumed additive Gaus-
sian noise so that p(zi|x) = N (hi(x),Σi). Here hi(x)
predicts the measurement zi based on a state estimate x.
MAP inference under Gaussian noise is equivalent to solving
a non-linear least-squares optimization [4]

x∗ = argmin
x

− log

N∏
i=1

p (zi|x) (4)

= argmin
x

N∑
i=1

‖hi (x)− zi‖2Σi
(5)

The prior p(x) can be dropped on the assumption that we
have no prior information about the state.

This optimization can be represented in graphical form
using a pose graph or factor graph [4]. Pose graphs are a spe-
cial form of factor graphs where all variable nodes are robot
poses, and the factors represent pose-to-pose constraints. A
typical pose graph is shown in Fig. 1 with robot poses
x1, ..., xn. Between adjacent poses we have pose-to-pose
odometry constraints, u1, ..., un−1. Loop closure constraints
lk connect two arbitrary poses. The variables nodes in
the graph are estimated using nonlinear least-squares using
Gauss-Newton or a similar algorithm.

Equation 5 gives us the general nonlinear least squares
form of the pose graph optimization. We now represent an
expanded version of the nonlinear least squares formulation
for the SLAM system represented in Fig. 1.

We assume a motion model f(x,u), where ui =
u1, u2, ..., un are the added odometry factors between poses
xi+1 and xi, along with a measurement model for loop
closures g(xi, xj). Then, for a sequence of poses X =

(a) (b)

Fig. 2: Examples of degeneracy:- (a) Planar registration: The smaller plane
while constrained in X (into the plane), pitch and yaw, is unconstrained in
the Y, Z and roll directions. (b) Degeneracy in mapping simulated pilings:
The optimization is unconstrained in the vertical direction as well as along
the curved surface, resulting in an incorrect registration when using point-
to-plane ICP.

{x1,x2, ...,xn}, the MAP estimate can be written as:

x∗ = argmin
x

(

N∑
i=1

‖fi,i+1 (xi,xi+1)− ui‖2Σi
+

N∑
i=1

‖gi (xi, xj)− lij‖2Σij
) (6)

To acquire a loop closure constraint lij between poses xi
and xj , a popular method for measurements from range scan-
ners and RGB-D sensors is the point-to-plane ICP algorithm
[2]. Here we introduce the linear least-squares optimization
for point-to-plane ICP as described by Low [10].

Let si = (six, siy, siz, 1)> and di = (dix, diy, diz, 1)>

represent the source and their corresponding destination
points. ni = (nix, niy, niz, 0)> is the unit normal vector at
di. The resulting error metric can be represented as follows

Topt = argmin
T

∑
((T · si − di) · ni)2 (7)

where T is the 3D rigid body transformation for transforming
the source points such that the total error is minimized. As
derived in [10], on further simplification our original metric
can be re-arranged into a matrix expression as

xopt = argmin
x
|Ax− b|2 (8)

Here, A is our covariance matrix obtained from our source
points and the corresponding normals, and x is the 6×1
vector of the unknown transformation.

In controlled environments, coupled with only small in-
crements in orientation, point-to-plane ICP converges well
when a unique global minimum exists and thus provides
an optimal solution. However, complications arise when
the optimization might get trapped in a local minimum.
This is common in cases of degeneracy due to planar and
textureless environments, in which all 6 degrees of freedom
(DoF) are not constrained. In these situations the registration
either fails completely and aborts, or even worse, gives an
incorrect solution in some directions. Visual examples of
such degeneracies are shown in Fig. 2.

Using the background provided by Equations 8 and 5,
Section III describes the formulation of the degeneracy-
awareICP and partial loop closure factor, which help in
avoiding the situations described above.



Algorithm 1 Degeneracy-aware ICP
Input: Initial relative transformation from odometry Todom
Output: Relative ICP transformation Ticp

1: Ticp ← Todom
2: while nonlinear operations do
3: Linearize the optimization problem at Ticp

to get A>A
4: Compute eigenvalue λi and eigenvector vi of A>A

for i = 1...6
5: Determine an eigenvalue threshold λt
6: Construct matrix V containing all the eigenvectors
7: Construct matrix Vf containing only

well conditioned directions based on λt
8: Compute update ∆xf ← (A>A)−1A>b
9: Ticp ← Ticp + V −1Vf∆xf

10: end while
11: return Ticp

III. APPROACH

A. Degeneracy-Aware ICP and Solution Remapping

As mentioned earlier in Section II, the point-to-plane
ICP can provide an incorrect registration due to degeneracy,
which can result in a very poor trajectory estimate when
the loop closure is added to the pose graph. To combat
these errors, we need to detect the degenerate, or poorly
constrained, directions of the state space, and make use
of only the well-constrained directions in the optimization-
step for ICP. Zhang et al. [22] show how to iteratively
solve a nonlinear system by performing updates only in the
well constrained directions. After determining the values of
eigenvalues λi and eigenvectors vi from the A matrix of a
linearized system, the method of Zhang et al. constructs three
matrices Vd, Vf and V . The three matrices are constructed
such that Vd contains the degenerate direction’s eigenvectors,
Vf the fully constrained direction’s eigenvectors and V the
complete set of eigenvectors. This division is based on
the comparison of the individual eigenvalues λi against a
common threshold λt. The linearized system as usual is
solved as xf = (A>A)−1A>b. Then, this standard solution
is projected onto the space of well-constrained directions.
This incremental update is added to the state estimate, and
the procedure repeats at the new linearization point.

In our degeneracy-aware ICP system, we only use the well
conditioned directions to update the optimization solution,
and ignore the directions determined as degenerate. The
degeneracy-aware ICP algorithm is described in pseudo-code
in Algorithm 1.

The degeneracy-aware ICP was implemented by extending
the Point Cloud Library’s [14] point-to-plane ICP method.
The linearization of the point-to-plane error metric to obtain
A>A and A>b was achieved by the method described
in [10]. The fundamental difference between the solution
remapping technique presented by [22] and our proposed
degeneracy-aware ICP is that at each iteration we re-compute
the well conditioned directions on the basis of a different

covariance matrix (A>A). By doing so we acknowledge the
fact that at each iteration where we linearize at an updated
Ticp, the degenerate directions might differ.

B. Thresholding
To determine which directions are degenerate, we need

to set a threshold λt to be compared to the eigenvalues we
receive from the degeneracy-aware ICP. Zhang et al. [22] use
a sample dataset with predetermined degenerate and non de-
generate sections, and determine their threshold based on the
mid point of the minimum eigenvalue distribution they get.
However this method is not suitable for real-time evaluation.
Cho et al. [3] compare the ratios of eigenvalues amongst
the different directions and set up a ranked list, using their
sensor properties to determine their fixed threshold. Similar
to [13] we use the condition number, i.e. the ratio between
the maximum and minimum eigenvalues, λmax and λmin, for
each iteration as our eigenvalue threshold for the loop closure
candidates. The benefit of this threshold is largely seen in
highly degenerate cases, where λmin might be an extremely
small value, along with other directions, thereby making λt
much larger. This automatically rejects that constraint on
account of it being unreliable.

C. Partial Loop Closure Factor
After obtaining the matrix of fully constrained eigenvec-

tors Vf through the degeneracy-aware ICP, we incorporate
this result into the pose graph formulation with our proposed
partial loop closure factor. Given a measurement model for
loop closures g(xi, xk), and referring to our least squares
approach to SLAM optimization in Section II, we can use
the matrix Vf as follows:

x∗ = argmin
x

∑
(i,k)εL

‖Vf (g(xi, xk)− lik)‖2VfΛikV >
f

(9)

where L is the set of all tuples (i, k) for which we consider
loop closure constraints, and Λik is the covariance for the
registration between xi and xk. This formulation of the
measurement model enables the generation of a partial factor
for the well constrained directions of the tuple (i, k). The
covariance for loop closure constraints, Λik, is updated at
each iteration as VfΛikV

>
f to reflect the selected well con-

strained directions. Upon incorporating our partial factor, we
can perform MAP inference on the resulting pose graph as
to determine the value of unknown poses xi that maximally
adhere to the information given the uncertain measurements.

IV. APPLICATION AND EVALUATION

We apply our degeneracy-aware framework to underwater
mapping using multi-beam sonar. To evaluate the perfor-
mance of the degeneracy-aware loop closures, we use a
volumetric submap-based pose graph approach as described
in [17], where we implement the degeneracy-aware ICP
formulation through solution remapping, and incorporate the
partial factor for loop closures. This system is typically
used for the inspection of ship hulls and structural pilings
at harbors. A description of the system is presented in the
following subsections.



Fig. 3: Bluefin Hovering Autonomous Underwater Vehicle (HAUV)

A. Platform

Our experiments were performed using the Hovering Au-
tonomous Underwater Vehicle (HAUV) [5]. The HAUV is
equipped with five thrusters enabling control of all degrees of
freedom barring roll and pitch. For on-board navigation, the
HAUV houses a 1.2MHz Teledyne/RDI Workhorse Naviga-
tor Doppler velocity log (DVL), a Paroscientific Digiquartz
depth sensor, and an attitude and heading reference system
(AHRS) fitted with a Honeywell HG1700 IMU. The onboard
computer of the HAUV is capable of providing odometry
estimates by fusing readings from these sensors. The depth
sensor, and AHRS are capable of providing highly accurate
and drift free measurements of Z, pitch, and roll. However, in
comparison the measurements for X , Y and yaw rotation are
subject to drift as they are estimated through dead reckoning
from the DVL and AHRS readings.

For the purpose of mapping, we utilize a dual-frequency
identification sonar (DIDSON) [15]. This sonar has 96
beams, using a 2D transducer array. We modify it for use
in “profiling” mode by fitting a concentrator lens which
reduces its vertical field of view to 1◦. Similar to [6, 17],
we assimilate a fixed number of these sonar profile scans
to form a single submap, which is used as the basis of our
mapping system.

B. Pose Graph Formulation

For each time instance ti, we have a new pose estimate
xi and sonar scan Si available. The odometry between two
subsequent scans is given by the difference between their
poses

ui,i+1 = xi+1 	 xi (10)

where 	 expresses the first pose in the local coordinate frame
of the second pose.

As shown in Fig. 4, our factor graph is formulated such
that each subsequent pose xi, xi+1, ... is represented as a
node in the graph, and the odometry constraint between con-
secutive poses, ui,i+1, is a factor that is connected to these
pose nodes. The second row depicts the submap formulation
where we combine a fixed number of scans together to form
a submap. Each individual scan is registered to the coordinate
frame for the first scan and is referred to as the base pose of
submap mi. The base poses for consecutive submaps mi and
mk are connected via a factor representing the accumulated
odometry constraints for submap mi, ui,k. The third row
shows our degeneracy-aware loop closure factor li,j that can

Fig. 4: Pose graph formulation for underwater SLAM

be added between any two submaps satisfying the necessary
conditions [17].

We use an Euler-angle representation for a pose xi as
a vector

[
φxi , θxi , ψxi , t

x
xi
, tyxi

, tzxi

]>
, where txxi

, tyxi
and tzxi

represent the translation in X,Y and Z, and φxi
, θxi

, and
ψxi

are the heading, pitch, and roll angles respectively.
Our odometry factors are split into ui,i+1 and vi. ui,i+1

is a 3 degree of freedom (DoF) XYH factor, represented
as ui,i+1 = [txui,i+1

, tyui,i+1
, φui,i+1 ]. vi is a unary ZPR

constraint linked to the base pose of the submap mi, repre-
sented as vi = [tzvi , θvi , ψvi ]. A more detailed representation
of the XYH and ZPR factors can be found in [19]. We
use the iSAM library [9] for our factor graph framework
optimization.

1) Odometry Prior: As previously mentioned in Section
IV-A, the HAUV’s AHRS and depth sensor give highly accu-
rate and drift free measurements. To take further advantage
of this information, we take the readings for depth tzxi

, pitch
θ, and roll φ and improve the performance of the 6 DoF ICP
algorithm by biasing the transform with a priori odometry
information.

Section II introduced the linearization of the ICP trans-
formation Ticp between two poses xi and xj , which can be
represented as an over determined system Ax = b.

We use ∆ to represent the vector difference between the
depth z, pitch θ, and roll φ of the two poses. Thus ∆ =
(tzxj
− tzxi

, θxj −θxi , φxj −φxi). Let Xpred denote predicted
measurements for the same Xpred = (tzpred, θpred, φpred).

To add the prior odometry information in this case is
equivalent to adding more constraints to the original matrix
A and vector b from our linearized system. Let the matrix P
and vector d be used to encode the prior constraints. Through
whitening we simplify to get [4]:

P = Σ−1/2X>pred (11)

d = Σ−1/2∆> (12)

Thus, our system can now be represented as:(
A
P

)
x =

(
b
d

)
(13)

Upon solving this system, we get a 6 DoF ICP transfor-
mation estimation biased towards our odometry prior.



2) Partial Factor for Loop Closure: Consider two poses
xi and xj with overlapping submaps which satisfy the
conditions for a loop closure to be triggered. The relative
transformation between them through odometry measure-
ments can be represented as lodomi,j = xi 	 xj . Let the re-
sulting measurement from point-to-plane ICP (with solution
remapping) be denoted as licpi,j . As explained in Section III-A,
we can find the eigenvalues and eigenvectors of the resulting
of A>A matrix. Let V be the resulting matrix of eigenvectors
for all 6 DoF, and Vf the well constrained matrix. To prevent
double-counting due to the added odometry prior in the ZPR
directions, we introduce a constant matrix C, such that the
diagonal for X , Y and yaw are 1, and the rest are 0. Referring
to Section III-C, our final loop closure measurement model
can be represented as:

g(xi, xj) =
∥∥∥Vf (C[(xi 	 xj)	 licpi,j ])

∥∥∥2

VfΛijV >
f

(14)

Our factor is constrained to be a maximum of 3 DoF for
the X , Y and yaw directions on account of the matrix C.

C. Simulated Datasets

To evaluate the performance of the degeneracy-aware ICP
and loop closure factor, we compare the maps generated by:
(1) odometry only, (2) point-to-plane ICP with odometry
prior (PTP-OP) and full loop closure factor, and (3) our
proposed degeneracy-aware ICP with the partial loop closure
factor, supplemented with the odometry prior.

The two datasets we used are the simulated pilings and
propeller. The pilings dataset in particular is an extreme
example of degeneracy given the nature of the loops made
around the pilings and submaps formed by the system. We
model the motion of our simulated robot to mimic the
real HAUV. We also add additional Gaussian noise to the
odometry to compare how well the accumulated navigational
drift can be corrected. Fig. 5 shows the top down view of
the simulated pilings reconstruction. Here, the reconstruction
in black corresponds to the ground truth, and the SLAM
solution is shown in a progressive color scheme from blue
to yellow, signifying increasing error.

Fig. 6 show the maps generated for the propeller dataset.
The Root Mean Square Error (RMSE) comparisons for the
two datasets is shown in Table I. The results for our proposed
algorithm show a marked improvement over the standard
point-to-plane ICP formulation, which tends to substantially
drift from the ground truth. For comparison, the PTP-OP
results had 34 loop closures, whereas our proposed algorithm
only accepted 9 for the simulated pilings dataset. Similarly,
for the simulated propeller we see 45 loop closures for PTP-
OP and 17 for the proposed algorithm. This is expected on
account of the threshold we set, which rejects loop closures
with very small λmin values. Both algorithms were provided
with identical parameters.

D. Real World Datasets

Our algorithm was also tested for real world datasets
induced with additional Gaussian noise. We compare our

TABLE I: RMSE values for simulated datasets. The proposed algorithm
gives better results over the standard point-to-plane ICP formulation, as
well as considerable improvements over the odometry solution.

Dataset Odometry PTP-OP Degeneracy-aware
Pilings 0.183 0.618 0.173

Propeller 0.346 0.429 0.168

results with an odometry only solution as well as results
from Teixeira’s [17] original submap SLAM formulation.

We first test against a similar dataset used by Teixeira
which is the running gear (rudder + propeller) of the SS
Curtis. We use the odometry only solution, without added
noise, as the reference solution for each of the three SLAM
solutions which are under additional noise. Fig. 7 shows the
three results. The reference point cloud is in gray and the
3 solutions are represented by a progressive color scheme
ranging from blue to yellow, representing increasing error
from the reference, similar to the simulated datsets.

The second dataset is of pilings from the pier. Fig. 8 de-
picts the environment of the dataset. Each piling is identical
and rotational motion of the HAUV to navigate around them
increases the chances of degenerate observations. The visual
results are shown in Fig. 9. The same color scheme as before
applies here as well. The original algorithm by Teixeira et
al. was specifically formulated for the mapping of ship hulls
which are continuous surfaces that are locally mostly planar,
explaining the poor result for the pilings. Our method shows
its versatility for the mapping of different types of structures,
giving consistently better results.

Fig. 8: Environment in which the pilings dataset was created

V. CONCLUSION

To create a pose graph optimization robust to degeneracies
in the sensor data, we present a degeneracy-aware ICP
algorithm for loop closure registration and show how to
create partial factors that only incorporate well-constrained
dimensions. For evaluation we use an underwater volumetric
submap SLAM framework by integrating the degeneracy-
aware ICP and loop closure formulation. We demonstrate
the ability and robustness of our approach to correct for
navigational drift by showing improvements over standard
point-to-plane ICP for loop closure registration.

In future work, automatic selection of the threshold λt
should be investigated. Our experiments have shown that dif-
ferent types of environments benefit from different threshold
values, indicating the need to calculate the threshold from
properties of the sensor data.



(a) Odometry solution (b) PTP-OP solution (c) Proposed solution

Fig. 5: Results for simulated pilings, top down view (RMSE)

(a) Odometry solution (b) PTP-OP solution (c) Proposed solution

Fig. 6: Results for simulated propeller (RMSE)

(a) Odometry only solution (b) Texeira et al. solution (c) Proposed solution

Fig. 7: Results for running gear dataset, bottom up view



(a) Odometry solution

(b) Teixeira et al. solution

(c) Proposed solution

Fig. 9: Results for pilings dataset
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