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Information-Theoretic Online Multi-Camera Extrinsic Calibration
Eric Dexheimer1, Patrick Peluse2, Jianhui Chen2, James Pritts2,3, and Michael Kaess1

Abstract—Calibration of multi-camera systems is essential for
lifelong use of vision-based headsets and autonomous robots. In
this work, we present an information-based framework for online
extrinsic calibration of multi-camera systems. While previous
work largely focuses on monocular, stereo, or strictly non-
overlapping field-of-view (FoV) setups, we allow arbitrary con-
figurations while also exploiting overlapping pairwise FoV when
possible. In order to efficiently solve for the extrinsic calibration
parameters, which increase linearly with the number of cameras,
we propose a novel entropy-based keyframe measure and bound
the backend optimization complexity by selecting informative
motion segments that minimize the maximum entropy across all
extrinsic parameter partitions. We validate the pipeline on three
distinct platforms to demonstrate the generality of the method for
resolving the extrinsics and performing downstream tasks. Our
code is available at https://github.com/edexheim/info ext calib.

Index Terms—SLAM, Calibration and Identification

I. INTRODUCTION

MULTI-SENSOR calibration is an essential task as in-
creasingly complex intelligent systems are deployed

in the world. Cameras are low-cost, lightweight, and low-
power, which makes them suitable for robotics and con-
sumer headsets. Compared to monocular setups, multi-camera
systems allow for increased FoV, which in turn improves
robustness and facilitates richer scene understanding. However,
in order for these vision systems to operate continuously in
the real-world, sensor calibration is required. While factory
calibration using targets [1] is repeatable and accurate, it is
also time-consuming and not possible for systems deployed
in the wild. Ideally, platforms should be able to passively
correct for changes, such as from physical shock and thermal
deformation, during regular operation.

Accurate camera extrinsics are required for fundamental
building blocks of autonomous systems, such as visual odom-
etry (VO) and stereo matching. Typical online calibration
systems focus on monocular, stereo, or multiple cameras with
non-overlapping FoV. However, configurations vary greatly
across platforms, and may contain non-traditional FoV over-
lap. Although treating cameras independently is general, accu-
racy will be limited as compared to leveraging potential inter-
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Fig. 1: Overview of proposed calibration pipeline. Keyframes are
selected based on the extrinsic calibration entropy, the information
content of fixed-length motion segments are evaluated, and a bounded
database of segments is optimized to improve the extrinsics estimates.

camera observations. Thus, the calibration framework should
incorporate all information while remaining flexible.

In this work, we develop a general information-theoretic
framework for online multi-camera extrinsic calibration. The
frontend tracks intra-camera features temporally and matches
inter-camera features on select keyframes, while the backend
performs factor graph optimization of the extrinsics and auxil-
iary variables. Since the complexity can greatly increase with
a large number of cameras, we first propose a novel entropy-
based multi-camera keyframe selection method to sparsify the
set of body poses. After a number of keyframes, a motion
segment is generated, and its information content is checked
against a database of previous segments. Compared to previous
methods, the database scales independently of the number
of cameras by minimizing the maximum entropy across all
extrinsic parameter partitions. A high-level diagram of the
proposed method is shown in Fig. 1. We demonstrate the
performance of our pipeline on three distinct configurations: a
stereo camera on-board a micro-aerial vehicle (MAV) [2], an
8-camera human-facing headset rig over realistic simulation
data, and a 5-stereo platform on a ground vehicle.

II. RELATED WORK

A. Multi-Camera Extrinsic Calibration

Since multi-camera calibration is a fundamental requirement
for many autonomous systems, a wide variety of online
methods across different platforms have been proposed. Stereo

https://github.com/edexheim/info_ext_calib
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extrinsic calibration methods minimize epipolar error or re-
projection error [3]. Beyond stereo setups, multi-camera rigs
have become very popular due to greater robustness for multi-
camera VO [4], [5]. However, deployment of these setups is
still a challenge, as resolving accurate calibration parameters
during operation is required to achieve suitable performance.
Online methods for multi-camera extrinsic calibration focus on
independent extrinsic rotation estimation [6], monocular map
matching, [7], non-overlapping extrinsic estimation for a car
with odometry [8], independent multi-camera visual-inertial
calibration [9], or non-overlapping stereo setups [10]. Treating
cameras independently when they have overlapping FoV can
allow significant relative extrinsic errors, which will hinder
downstream dense correspondence algorithms. An efficient,
general framework of calibration as a pose alignment problem
with an application to two cameras is presented in [11].
Therefore, all of these works either focus on specific use cases
or generalize the problem such that accuracy may be limited.

B. Entropy-based Keyframe Selection

Selecting informative keyframes is an essential compo-
nent of SLAM systems to bound computational complexity.
[12] thresholds a ratio of direct image alignment entropies,
specifically registering both the current frame and first frame
after the last keyframe to the keyframe. [5] follows a similar
ratio threshold, but instead measures the pose entropy based
on Perspective-n-Point (PnP) optimization with respect to
the current SLAM map. While these methods are suitable
for SLAM, pose estimation entropy from either keyframe
alignment or map estimation will largely be monotonic as
the pose uncertainty increases with exploration. For extrinsic
calibration, this is less clear, as the observability of parameters
depends on the motion itself, not just the registration to a
map. Furthermore, differential entropy can also be negative,
so the ratio will not generalize in all cases. [13] computes an
independent sum over entropy reduction for each map point.
In this work for tractable multi-camera calibration, we wish to
avoid maintaining a full 3D map for the frontend, and instead
delay structure computation until the backend. In addition,
each of these works lacks a probabilistic interpretation for
the ratio of entropy and sum of entropy reduction heuristics,
while we leverage a different measure in terms of conditional
mutual information.

C. Segment-based Self-Calibration

Calibration problems are expensive due to measurements
depending on calibration variables. Including landmarks in the
optimization can improve accuracy, but increases complexity.
Since all portions of a trajectory are not equally informative
about calibration parameters, some methods maintain a priority
queue of useful segments. This ensures the optimization is
tractable for real-time optimization of camera intrinsics [14]
visual-inertial parameters [15], and slowly drifting camera
extrinsics [11]. In this work, we develop a segment-based
framework specifically for the multi-camera use case to main-
tain accuracy while limiting the complexity of an increasing
number of cameras.

III. PRELIMINARIES

A. Problem Formulation

For a platform with K cameras, we denote each as Ck, k ∈
1, . . . ,K. The extrinsic transformation from camera frame k to
the body (rig) frame B is TBCk

∈ SE(3). In some cases, we
will work directly with rotations R ∈ SO(3) and translations
t ∈ R3. As input, the system receives a stream of synchronized
frames from each camera Ck, as well as an odometry estimate.
The position estimate is the transformation from the body
frame at time t to the world frame, and is denoted as TWBt

.
We focus on odometry information because it is applicable
to a wide variety of platforms, such as those generating
LiDAR or GPS-based state estimates, which can constrain
the scale of the extrinsics. As output, we wish to optimize
for the extrinsic calibrations TBCk

, k ∈ 1, . . . K, as well as
auxiliary variables. Specifically, we also optimize for body
poses TWBt

, t ∈ 1, . . . , T , temporally-tracked 3D landmarks,
lm,m ∈ 1, . . . ,M , and stereo landmarks sn, n ∈ 1, . . . , N .

B. Nonlinear Least Squares

We wish to perform maximum a posteriori (MAP) estima-
tion over a set of unknown variables x under the assumption
of Gaussian measurement noise. The nonlinear least squares
(NLLS) minimization is

x̂ = argmin
x

1

2

∑
i

||zi − fi(xi)||2Σi
(1)

where zi is the measurement, fi(xi) is a nonlinear prediction
function based on the current state, and Σi is the measurement
covariance. Given an initial guess for the state x0 and after
linearizing the constraints at the current variable estimates, we
can solve for a state update vector

δx̂ = argmin
δx

∑
i

||zi − fi(x
0
i )− Fiδxi||2Σi

(2)

where Fi is the Jacobian of the measurement function fi
evaluated at the current linearization point. This can be solved
by stacking the terms into the Gauss-Newton normal equations

JTΣzJδx̂ = JTΣzr (3)

where J stacks the Fi Jacobian terms, Σz creates a block-
diagonal matrix from the measurement covariances Σi, and r
stacks the residuals zi − fi(x

0
i ).

C. Posterior Information Content

We are often interested in approximating the uncertainty
of the posterior instead of just the point estimate. We can
efficiently recover a Gaussian approximation to the posterior
via the Laplace approximation [16] with the Fisher informa-
tion matrix Ix = JTΣzJ. The differential entropy of a d-
dimensional multivariate Gaussian can be used to express the
information content as a scalar value:

H(x) = −1

2
ln |Ix|+

d

2
(1 + ln (2π)). (4)
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Fig. 2: Example of active and inactive constraints with current frame
and corresponding entropy measures for keyframe selection.

IV. FRONTEND

The framework consists of a frontend, which tracks monoc-
ular features, selects keyframes, and finds stereo correspon-
dences, and a backend, which incorporates this information
to optimize for the extrinsics, as shown in Fig. 1. Within
the frontend, the proposed entropy-based keyframe selection
method ensures a minimal number of poses are selected for
backend optimization, while providing sufficient information
to resolve the extrinsics. Since there may be potentially
many pairs of cameras with FoV overlap, we conduct stereo
matching after a fixed number of keyframes. Furthermore,
since stereo matching is performed across cameras at a single
timestep, it can operate at a lower frequency than keyframing.

A. Entropy-based Keyframing

Each camera performs independent feature detection and
tracking as to not bias the calibration. First, features are
detected using FAST corners [17] with grid bucketing to
ensure an even distribution of features. Next, features are
tracked temporally using KLT [18], and each camera performs
5-point essential matrix RANSAC to prune outliers [19].

While every frame could be passed to the backend, this
would introduce redundancy, as little information about cali-
bration parameters is gained without significant motion. Com-
mon keyframe heuristics include motion or feature thresholds,
but these methods do not generalize across camera rigs and
environments. Entropy-based keyframe selection has been
leveraged for visual odometry [12], [13], [5], but pose esti-
mation is not equivalent to calibration. For example, motion
could be well-constrained for image alignment or PnP in a
straight-line trajectory, but the extrinsic translations would not
be. The uncertainty of the current pose will increase since the
last keyframe, while the calibration uncertainty is less clear.

We introduce an approximate entropy-based keyframe se-
lection method. We do not require a sparse map for pose
estimation, and since explicitly maintaining one as in [13],
[5] is expensive, we defer the use of triangulation and bundle
adjustment to the backend. Given only feature tracks, esti-
mates of the extrinsics, and the locally-accurate odometry,
we wish to determine when a keyframe provides sufficiently
new information. By formulating a NLLS problem with the
extrinsics as unknowns, we can measure the entropy of the
extrinsics H(TBC) =∆ H(TBC1

, . . . ,TBCK
). Therefore, a

residual function dependent on the extrinsics is required.
The multi-camera rig can be viewed as a generalized camera

rig without a single center of projection, which follows the

generalized epipolar constraint (GEC) [20]. From the notation
in [21], the jth Plücker line in camera k is denoted as

`kj =
[
(RBCk

x̂kj)
T ([tBCk

]×RBCk
x̂kj)

T
]T

(5)

where x̂kj is the normalized image coordinates, while RBCk

and tBCk
are the extrinsic rotation and translation, respec-

tively, of camera k. Then, each Plücker line correspondence
is related by the GEC:

rkj = `′Tkj

[
[t]×R R

R 0

]
`kj ≈ 0 (6)

where R and t are the relative rotation and translation,
respectively, between the two body frames, while `kj and
`′kj are Plücker line correspondences between two time steps.
In reality, these terms will be nonzero due to noise in the
odometry, extrinsics, and data association. However, we are
only interested in the information content of the extrinsics,
and treat the body poses as locally accurate. We thus formulate
these correspondences into the NLLS

argmin
RBCk

,tBCk
,k∈1,...,K

K∑
k

∑
j

||rkj ||2 . (7)

As mentioned in Section III, the entropy provides a scalar
value measuring how well the extrinsics variables are con-
strained. Since each camera’s correspondences are independent
given fixed body poses, this can be efficiently calculated using
the block diagonal determinant rule:

H(TBC) = −1

2
ln(|IR1

| · |It1
| · · · · · |IRK

| · |ItK |) + C (8)

where C is the constant term from Eq. 4. As mentioned in [12],
[13], [5], absolute thresholds on entropy do not generalize. We
are also specifically interested in whether significant informa-
tion about the calibration parameters is gained by inserting
a new keyframe. Therefore, we evaluate the entropy using
features with a reference keyframe, denoted active, as well
as the entropy with both these features and features with no
keyframe reference, denoted inactive. As shown in Fig. 2,
active features have a correspondence with their first keyframe
observation, while inactive features have one with their first
observation in a pose buffer since the last keyframe.

The ratio heuristics proposed in [12], [5] do not generalize,
as differential entropy can be negative, so sign flips are possi-
ble. Instead, we propose a principled threshold by leveraging
the conditional mutual information:

I(TBC ; Xi, x̂i|Xa, x̂a) =

H(TBC |Xa, x̂a)−H(TBC |Xa, x̂a,Xi, x̂i) (9)

which measures the information that we can observe about the
calibration unknowns by incorporating the inactive poses Xi

and normalized image coordinate correspondences x̂i, when
the active poses Xa and correspondences x̂a are already
observed. Since mutual information is in the range [0,∞),
we select a threshold p ∈ (0, 1] such that a new keyframe is
chosen when

I(TBC ; Xi, x̂i|Xa, x̂a) > − ln(p). (10)
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Fig. 3: Example of stereo constraints for an 8-camera human facing
rig. Both static and dynamic observations are included, which im-
proves robustness of matching against the large viewpoint changes.

B. Stereo Observations

While the temporal feature tracking and keyframing treats
cameras independently, calibrating based only on monocular
information is not sufficient for tasks such as dense correspon-
dence and reconstruction when FoV overlap is present. These
relative constraints may also improve robustness to odometry
drift, as stereo constraints do not rely on temporal information.
Furthermore, this allows for handling points that violate the
static landmark assumption, such as points on the human body,
which may provide essential information about the extrinsics.
As a user-specified input, a set of pairs of cameras to attempt
stereo matching is listed, which can be determined via rough
FoV estimates or inspection of images.

For each pair, a matching procedure similar to [22] is
performed. First, in addition to the current tracked features in
each image, FAST features [17] are detected while ensuring
distribution across the image via bucketing. While [22] uses
BRIEF descriptors [23], we use ORB descriptors [24] since the
cameras are not assumed to have near-identity rotation as in
most stereo pairs. Features are undistorted to normalized image
coordinates, and before being matched with cross-consistency
and a uniqueness threshold, potential matches are pruned using
the current extrinsics and a loose epipolar Sampson threshold
[25]. Then, 5-point RANSAC [19] finds a single hypothesis,
and if there are enough matches that triangulate in front of
both cameras, features are passed to the backend. An example
of stereo constraints for a human-facing 8-camera rig is shown
in Fig. 3, where consecutive pairs are checked.

V. BACKEND

The backend takes in temporally-tracked and stereo features,
as well as initial keyframe pose estimates. A motion segment
is generated after a fixed number of keyframes. The segment’s
information content with respect to the calibration parameters
is evaluated based on the factor graph formulation in Section
V-A. A segment is accepted by the segment database if
it improves the total information content in the database,
which is formulated specifically for the multi-camera use case
as described in Section V-B. If a new segment is added,
the database factor graph is modified, and optimization will
recommence.

Fig. 4: Factor graph for 3-camera system consisting of body poses,
extrinsics, and landmarks as the unknowns to be solved. In this
example, stereo matching is conducted every 4 keyframes.

A. Factor Graph Formulation

An example of a factor graph for a 3-camera rig is shown in
Fig. 4. Extrinsic calibration variables are densely connected to
projection factors, and stereo matching is run pairwise between
cameras after a fixed number of keyframes. Given the set
of landmarks observed by camera Ck observed at time t as
O(Bt, Ck), the NLLS problem is:

min ||p(TWB1
, zp)||2Σp

+

T−1∑
t=1

||o(TWBt ,TWBt+1
, zo)||2Σo,t

+

K∑
k

T∑
t

O(Bt,Ck)∑
lm

||rt,k(lm)||2Σr
+

O(Bt,Ck)∑
sn

||rt,k(sn)||2Σr

 (11)

where the prior error p constrains the 6-DOF gauge freedom
to a frame origin zp, the odometry error o enforces 6-DOF
consistency with relative measurement zo, and rt,k(l) = zr−
π(TWBt ,TBCk

, l) is the reprojection error for a landmark l
with observation zr. Measurement covariances are assumed to
be known a priori. Stereo landmarks lack temporal constraints,
so they only enforce relative constraints between cameras,
while monocular landmarks are temporally tracked. However,
these may still incorporate observations from other cameras if
they are matched via stereo.

B. Segment Database for Multi-Camera Extrinsic Calibration

While all keyframes and landmarks could be continuously
added to the optimization, the factor graph will grow un-
bounded. In addition, not all motions or environments are
conducive for observing calibration parameters, so we follow
the methodology of [26] and [27], in which a priority queue
of the most informative segments is maintained. However,
both [26] and [27] have a bounded number of parameters, as
they only focus on monocular intrinsics and monocular visual-
inertial odometry, respectively. In [27], calibration parameters
are partitioned into three distinct partitions, each of which has
a maximum number of segments. This ensures that all sets of
calibration parameters are well-constrained, as a single priority
queue could be dominated by only the most observable pa-
rameters. Following this technique for the multi-camera case,
however, can create significant variation in the total number
of segments. For example, 8 cameras each with rotation and
translation partitions, along with a maximum of 4 segments
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Fig. 5: Number of 10-pose segments that fall below D-optimality
threshold for different keyframe measures. Five representative thresh-
olds are tested per method, with the entropy and feature thresholds in
{0.1, 0.3, 0.5, 0.7, 0.9} and translation threshold in {0.01, 0.05, 0.10,
0.50, 1.00} meters. Greater transparency indicates a lower threshold.

per partition, can result in a full database ranging from 4 to
64 segments. Instead, we propose to limit the absolute number
of segments by minimizing the maximum entropy across all
partitions.

To calculate the information content of a segment, land-
marks are initialized via robust triangulation, and the segment
factor graph is optimized so that the Laplace approximation
can be utilized. For each camera Ck, we then obtain the
marginal information in the extrinsic rotation IRk

= Σ−1
Rk

and translation Itk = Σ−1
tk

separately. Since different types of
motion and observations may be useful for resolving rotation
and translation, we keep them separate. To quantify informa-
tion content with a scalar for new segment S̄, we calculate the
entropy as in Eq. 4 for each of the 2K parameter partitions
θj , which is denoted as H S̄(θj). Then, the partition with the
maximum entropy in the current database D is approximated
by independently evaluating each segment Si and adding the
marginal information matrices for a given partition ISi

θj
:

IDθj
=
∑
Si

ISi

θj
(12)

HD(θj) = −1

2
ln |IDθj

|+ d

2
(1 + ln (2π)) (13)

jmax = argmax
j

HD(θj). (14)

Note that the information content depends only on obser-
vations within a segment, which as mentioned in [15], is a
conservative estimate, but is efficient and avoids biasing the
estimation. If the entropy for partition jmax of the new segment
H S̄(θjmax) is less than that of the segment with maximum
entropy in the same partition, then the new segment is a
candidate. However, in order for the new segment to replace
the old one, all entropy partitions must not increase beyond the
current maximum entropy, HD(θjmax). This greedy selection
strategy ensures that the maximum entropy across all partitions
in the database never increases.

C. Optimization

If a new segment is added, a new optimization will be
triggered to determine the calibration variables. Segments are
joined using odometry constraints or based on sufficient land-
mark co-visibility similar to [15]. For collections of segments

(a) Stereo odometry noise.

(b) Stereo segments.

(c) Headset segments.

Fig. 6: Extrinsic errors across keyframe methods.

that are disjoint, we need to place a pose prior on the first pose
of each collection in order to constrain the gauge freedom.
Observations of common features across segments are merged,
and landmarks are initialized using robust triangulation. We
use Levenberg-Marquardt to minimize the nonlinear objective.
In practice, reprojection factors from Eq. 11 use the Huber cost
for robustness against outliers.

VI. RESULTS

A. Entropy-based Keyframe Selection

In Fig. 5, we compare the proposed entropy-based keyframe
method against two baselines, a relative threshold on tracked
features and an absolute translation threshold across three
unique datasets. The plots look at the determinant of the
extrinsic marginal covariances, known as the D-optimality, of
generated 10-pose segments. In order to pass the threshold,
every camera in the rig must have a D-optimality less than
the threshold. An ideal threshold would induce a steep curve
as far to the left as possible, indicating that many informa-
tive segments are being generated. Across all datasets, the
proposed entropy threshold performs best, as it induces steep
curves for a low number of segments, while the baselines have
varying performance. Note that generating the largest number
of segments is not the most desirable, as quality is sacrificed
for quantity. For example, the translation threshold performs
poorly in the indoor datasets, while the feature threshold
generates the least informative segments in the outdoor dataset.
The translation baseline performs the best in the outdoor
experiment due to the fast vehicle motion and low frame
rate, so almost all frames are selected. Since the proposed
entropy threshold leverages the GEC, which does not directly
correspond to the SfM problem used for marginal covariances,
there can be some discrepancy in the objective for the outdoor
dataset. The Plücker line correspondences may provide some
information, but they do not account for all of a feature’s
observations, and if the points cannot be triangulated, which
is often in the case of a forward-moving ground vehicle,
then they provide no information for the extrinsic marginal
covariance. The highest threshold of 0.9 for the proposed
entropy method generalizes well across all datasets by gen-
erating highly-informative segments and a substantial number
of useful ones, so this is used in the framework.
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(a) (b)

Fig. 7: EuRoC results. 7a Mean error of extrinsics vs. max number
of segments. Data points on y-axis and corresponding lines indicate
average error from offline batch solution. 7b Baseline error vs.
simulated odometry error with and without stereo factors.

To further evaluate the impact on the final extrinsic es-
timates, we conduct experiments on the two indoor envi-
ronments, as we have a reliable comparison to the offline
calibration of the stereo pair, and the simulated 8-camera
dataset has known ground-truth extrinsics. We do not include
the 5-stereo ground vehicle data, as there are no reliable known
extrinsics since the pairs do not significantly overlap. In Fig.
6a, we limit the number of segments to 4 and run ten trials for
each odometry noise parameter. The thresholds are selected
according to the best curves from Fig. 5 for a low number
of segments. Despite assuming locally accurate odometry in
the formulation, the proposed entropy method is not severely
affected, and is still able to perform well. In Fig. 6b and Fig.
6c, ten trials are run for an increasing number of segments, and
the entropy method performs best, especially for a low number
of segments. This demonstrates the ability of the method
to provide informative segments. Once more segments are
allowed, the methods all converge to similar errors as there is
sufficient information present for all in the optimization. This
result demonstrates that the proposed entropy-based keyframe
procedure reduces the influence on the amount of data, and is
useful for limiting the problem size in real-time operation.

B. MAV Stereo Pair (EuRoC)

1) Effect of Segment Database Size: First, we evaluate
the accuracy of the calibration against the maximum number
of segments permitted in the database. We run 25 trials
with simulated error on the pose estimates from the ground-
truth motion capture and on the extrinsics provided via off-
line calibration. Since the database can be maintained over
multiple sessions, we run on the datasets V1 02 medium
and V2 02 medium, which provide reasonable motion for
constraining the calibration parameters. The mean error from
the offline calibration versus the number of segments is shown
in Fig. 7a. In general, the error for the more easily observable
rotation only decreases until 5 segments, while translation
error stabilizes at 8 segments. We also plot the average error
from a batch solution using all possible segments which does
not run in real-time. The online method demonstrates asymp-
totic convergence to the batch solution, but also shows bias
from the offline Kalibr calibration. As mentioned in [2], there
are potential errors accumulated in the IMU-Vicon calibration
due to deteriorated motion tracking and time offsets.

Fig. 8: Summary of errors across 12 datasets for 8-camera system
with varying odometry noise. Each boxplot is for 96 data points.

2) Effect of Stereo Factors: While optimizing for each
of the extrinsics without relative constraints is often done,
we show the effect of the estimated baseline direction vs.
increasing odometry noise in Fig. 7b. Note that using stereo
factors every 3 keyframes avoids any significant increase in
the baseline error, which will improve disparity estimation.

C. Simulated 8-Camera Human-Facing Headset Rig

We also conduct experiments on an 8-camera human-facing
rig in a realistic simulation setup. Seven-thousand frames of
human animation were captured using an Xsens MVN Link
suit, and the motion was then retargeted to Mixamo bodies
with varying size and appearance. A differentiable renderer,
Unity HDRP DX12, provides a physically-based material
and lighting setup for the human model and environment.
Matterport environments with point lights and shadows were
used to create realistic situations, as shown in Fig. 3.

A total of 12 datasets with varying indoor environments and
characters were tested. Compared to standard stereo setups,
there are significant viewpoint changes, wide-angle lenses, and
potential overlap beyond neighboring pairs. In addition, a large
portion of the image is dynamic, but these points can still be
leveraged by stereo factors. We utilize a human segmentation
mask by taking the ground-truth and roughly dilating it, which
could alternatively be provided by learned methods.

1) Accuracy Across Datasets: We test three configurations:
without stereo constraints, using 1-nearest neighbor (1NN)
stereo constraints, and up to 2-nearest neighbor (2NN) con-
straints. This results in 0, 8, and 16 pairs to be checked. Stereo
matching is only run every 10 keyframes, or once per segment.
The segment database is limited to 4 segments to achieve real-
time performance. A summary of the simulated results are
shown in Fig. 8. Each boxplot contains 8 cameras across 12
environments, for a total of 96 data points. As expected, both
absolute rotation and translation errors increase with odometry
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(a) Without stereo observations. (b) With 1-neighbor stereo observations.

(c) With 2-neighbor stereo observations. (d) With ground-truth extrinsics.

Fig. 9: Point clouds for 8-camera rig via pairwise stereo rectification, SGBM [28] disparity
estimation, and triangulation.

Fig. 10: 5-stereo NIR data with
poses, landmarks, images, and rig.

noise. All methods are comparable for rotation, while 2NN
performs best for absolute translation, followed by 1NN, since
the additional long-range constraints are able to better resolve
the extrinsics. For relative errors, not using stereo results in
significant baseline errors with increasing noise, while both
1NN and 2NN stereo configurations are able to constrain these
errors. In terms of relative calibration errors, 2NN performs
slightly better than 1NN, while no stereo demonstrates that
the lack of relative constraints permits significant errors.

2) Qualitative Stereo: A qualitative example example of
dense correspondence after calibration is shown in Fig. 9
where semi-global block matching (SGBM) [28] is used. With
no stereo observations, the quality of the disparity is not
sufficient, as the epipolar lines are not accurate. Clearly, the 3D
cloud accumulated by triangulating 3D points is inconsistent,
especially in the ground plane. For 1NN, the disparity, or
local consistency, is improved significantly, but the global
consistency and flat ground is more evident for 2NN.

D. 5-Stereo Ground Vehicle

We test calibration on a 5-stereo near-infrared (NIR) rig
with a front-facing 190 degree FoV setup on a ground vehicle
(GV). The datasets are challenging, as the vehicle can move
up to a few meters per second in forest environments, yet the
camera system only has 4 frames-per-second (FPS). One 650m
trajectory is used for calibration purposes, while a second
2300m trajectory is used to evaluate VIO performance.

ORB matching [24] is included as a backup to KLT [18]
since there is significant motion between frames. The database
size is limited to 4 segments, and stereo matching is performed
every 3 keyframes. A prior with 1cm standard deviation on the
extrinsic translations from CAD is included due to the lack
of observability while allowing the baseline to be optimized.
The odometry estimates come from a GPS-IMU state estimate,
which is modified with 5e-3 noise to create drift, and the
extrinsics are initialized with perturbed values. An example
visualization of the data is shown in Fig. 10.

The multi-stereo VIO pipeline uses the extrinsics to perform
disparity estimation, and matching is conducted for 2D-3D
ORB correspondences from disparity. Outlier rejection selects
P3P models from the front stereo pair as it is the most
reliable, while inliers are checked across all cameras. Stereo
reprojection factors and IMU preintegration factors [29] are
added to a fixed-lag smoother inspired by the backend of [30].

MAV
2 cam
1 stereo

Headset
8 cam
8 stereo

Headset
8 cam
16 stereo

GV
10 cam
5 stereo

Feature Tracking 18.6 50.4 55.2 84.4

Keyframe Selection 0.2 1.3 1.3 0.5

Stereo Matching 82.4 274.6 470.1 59.0

Segment Info Calculation 128.3 910.9 1185.8 970.7

Database Proposal 58.8 77.6 108.2 268.3

Optimization Step 0.004 0.006 0.010 0.005

TABLE I: Timing in milliseconds for key steps of framework across
datasets. All results are run on a 2.7 GHz Quad-Core Intel Core i7.

Four configurations are tested: offline calibration in conjunc-
tion with a CAD estimate of the IMU pose, online calibration
without stereo constraints, calibration with stereo constrains,
and a batch offline solution with stereo where the number
of segments is not limited so that the entire trajectory is
used. Qualitative VIO trajectories and relative pose error
(RPE) statistics comparing the four are shown in Fig. 11.
Without stereo constraints, the extrinsics are not suitable, and
allow significant drift in the ground plane. Including stereo
constraints, however, produces a significantly better trajectory.
While there is some z-drift for stereo and batch as compared
to the offline/CAD calibration, this is largely due to a single
bad pose estimate, as seen by the maximum RPE, which also
skews the standard deviation. As expected, the batch solution
performs best overall in terms of the RPE statistics, but the
stereo case is very competitive while also running online.

E. Timing

Timing results in milliseconds for significant components of
the calibration pipeline across each of the datasets are shown in
Table I. Note that these steps operate at different frequencies.
Frames in the 30 Hz headset datasets are dropped for feature
tracking, but in the future, processing for each of the 8 cameras
could be parallelized better. The keyframe selection method is
very lightweight. Since the segment information calculation
and database proposal only happens every 10 keyframes, and
given the sparsity of frames selected as keyframes, one second
is sufficient for real time operation. In the future, landmark
triangulation could be reused between steps.

VII. CONCLUSION

We have developed a general online multi-camera extrinsic
calibration framework. In order to achieve efficient operation,
we proposed a novel information-theoretic keyframe selection
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Fig. 11: 5-stereo VIO trajectory comparison and RPE statistics.

method and created a segment database approach specifically
for multi-camera systems. We evaluated the pipeline on three
distinct platforms to demonstrate the generality of the method,
and showed that integrating inter-camera constraints improved
results when possible. By ensuring accurate relative and abso-
lute extrinsic transformations, we exhibited improved down-
stream tasks such as dense correspondence and VIO. For future
work, it would be interesting to leverage the change detection
from [31] into the segment-based calibration framework for
true life-long operation. Lastly, performing degeneracy-aware
optimization could alleviate issues with low observability.
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