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Figure 1: We design a novel view synthesis system from outdoor camera-LiDAR datasets with a point-based NeRF framework
and 2D conditional GANs. (a) A LiDAR map (gray points) and queried novel view (blue). (b)-(e) Our method outperforms
previous BlockNeRF (with LiDAR depth supervision) [30, 38] and point-based NeRF [44] on Argoverse 2 dataset [42].

Abstract

We address outdoor Neural Radiance Fields (NeRF) [23]
with real-world camera views and LiDAR maps. Existing
methods usually require densely-sampled source views and
do not perform well with the open source camera-LiDAR
datasets. In this paper, our design leverages 1) LiDAR
sensors for strong 3D geometry priors that significantly
improve the ray sampling locality, and 2) Conditional
Adversarial Networks (cGANs) [15] to recover image
details since aggregating embeddings from imperfect LiDAR
maps causes artifacts. Our experiments show that while
NeRF baselines produce either noisy or blurry results on
Argoverse 2 [42], our system not only outperforms baselines
in image quality metrics under both clean and noisy
conditions, but also obtains closer Detectron2 [43] results
to the ground truth images. Furthermore, this system can be
used in data augmentation for training a pose regression
network [3] and multi-season view synthesis. We hope this
work to serve as a new LiDAR-based NeRF baseline that
pushes this research direction forward (released here).

1. Introduction

Despite the fact that recent works have made massive
improvements in novel view synthesis (NVS) for small
scenes [2, 10, 17, 21, 23, 25, 28], large-scale outdoor scenes –
such as street views and parks – are still challenging. Improv-
ing the NeRF results on large-scale outdoor scenes would
greatly benefit multiple applications, such as realistic simu-
lators for robot navigation [1], localization [20], active map-
ping and planning [46], and novel view augmentation [24].

The transition from indoor to outdoor presents a non-
trivial challenge. Typically, the training of NeRF models de-
mands densely sampled views to achieve good accuracy [7].
However, collecting densely sampled training views in out-
door scenarios requires much labor and storage space, and
the camera trajectories in outdoor settings are typically bi-
ased (straight and along the lane). Many parts of the scene
are often only observed by a limited number of views and
range of view angles. This lack of data coverage issue of
common outdoor datasets [9, 11, 42] is also addressed by
previous works [30, 38], where specially collected datasets
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instead of common public outdoor datasets were used. Fur-
thermore, previous methods using simple MLPs to repre-
sent large blocks tend to generate blurry results (Fig. 1 (b)).
On the other hand, it has been demonstrated that the de-
mand of dense training views can be effectively reduced
by geometry priors [7, 41], and modern outdoor robots –
such as autonomous vehicles – are often equipped with Li-
DAR sensors in addition to cameras. In contrast to previous
LiDAR-assisted works [5,30] that used LiDAR scans only as
supervision or as a guidance for ray sampling, our approach
treats the LiDAR map as sparse samples of the environment
and directly distributes localized embeddings on it.

Using localized embeddings instead of global represen-
tation can ease the burden of memorizing the whole scene
with a single MLP in NeRF, leading to better embedding
locality and convergence speed [13, 19, 44]. PointNeRF [44]
embedded per-point features to 3D point clouds (from CNN
prediction or COLMAP [34, 35]) and aggregated these point
cloud embeddings along ray samples for volume rendering.
However, the method in [44] is not directly applicable to the
common camera-LiDAR datasets we target. The real-world
LiDAR maps are prone to noise due to imperfect conditions
such as bad weather. Simply using the point-based NeRF
on outdoor LiDAR maps leads to noisy and unsatisfactory
image quality, as in Fig. 1 (c). The 3D point cloud refine-
ment techniques proposed in [44] requires the photometric
constraints from the texture of dense training views, and thus
are not suitable for the outdoor datasets where the views
are sparser and the scenes are more complex. Instead of
3D point cloud refinement as [44], we propose to leverage
strong 2D image refinement in this work.

The proposed pipeline takes a neural 3D point cloud (i.e.
the LiDAR map with embeddings) as input and aggregates
the LiDAR embeddings to perform volume rendering. In
addition, we propose a tight sampling strategy in contrast to
the naive radius-based counterpart in [44] to make samples
better align with the LiDAR geometry prior. Finally, we
refine the quality of synthesized views in 2D with a condi-
tional GAN (cGAN) [15]. The proposed cGAN module can
be trained end-to-end without additional data, and largely
improves the final image quality. Besides common image
metrics, we also show that the Detectron2 [43] detection
results from our rendered images are closer to the results
from ground truth images than the baselines. Last but not
least, the proposed system can serve several interesting ap-
plications, including data augmentation for training a pose
regression network [3] and seasonal appearance rendering.

In summary, our pipeline amalgamates the strengths of
neural radiance field (for deep implicit 3D representation),
LiDAR maps (for geometric priors), and cGAN (for deep
realistic appearance rendering). The demonstrated applica-
tions also show foreseeable potential of our system to benefit
tasks that require a richer neural map representation.

2. Related Works
Large-scale NeRFs Neural Radiance Field (NeRF) [23]
is an implicit neural representation trained by overfitting an
MLP network to a set of posed 2D images, and can be used
to render novel views from complex 3D scenes. The MLP
takes a camera view direction and a 3D position as input and
predicts the corresponding color and density. When given
a novel camera pose and intrinsics, a NeRF system draws
rays from the query camera center through its virtual image
pixel positions into 3D space, sampling 3D points along
the rays, and accumulates the predicted color and density
of the 3D sample points for each ray to obtain color values
for each pixel. Given proper training data, a NeRF system
can render high-quality synthetic images with realistic visual
appearance and reasonable depth [2, 10, 17, 21, 23, 25, 28].
Here, we focus on large-scale outdoor environments. Since it
is inefficient to use a global MLP [23] to encode a large space,
existing work leverages the divide-and-conquer approach –
dividing the space into small parts such as street blocks [38]
or voxels [13,19,29,45], and assigning localized embeddings
to represent the small parts.

Existing methods have also shown that using depth pri-
ors can significantly reduce the required number of source
view images for NeRF [7, 17, 31]. Comparing to predicted
depth [17] and SfM point clouds [7], LiDAR measurements
are more robust and can better cover the geometry of texture-
less regions where depth values are not well-constrained by
photometric information. Rematas et al. proposed using Li-
DAR depth as supervision [30], and Carlson et al. proposed
using trainable occupancy grid to assist ray sampling local-
ity [5], but both [30] and [5] still use global MLPs. On the
other hand, PointNeRF [44] proposed a point cloud based
neural radiance field with localized embeddings, and greatly
improved NeRF sampling locality and convergence speed.
NPLF [27] aggregated point features into ray features with
self-attention mechanism. In this work, we look into ways to
improve [44] for challenging outdoor datasets and explore
more practical applications.
Generative Adversarial Networks Generative Adversar-
ial Networks (GANs) have been applied to support NeRF
in different ways [6, 16, 22, 26, 36]. For example, genera-
tive models were used to represent individual objects that
could be combined into a full image by controlling object
positions [26]. However, in general outdoor scenes, many
objects are not labeled and thus cannot be easily segmented
and represented with individual generative models. Previous
works also attempted to perform novel view synthesis with
3D-aware GANs [8, 16, 22, 36], while existing 3D-aware
GANs are limited to simple geometry such as small objects
or faces and cannot be directly applied to general scenes.

On the other hand, 2D conditional GANs can learn the
image translation between two distributions and produce
visually realistic appearance [15, 47]. In contrast to vanilla
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Figure 2: (a) We perform spatial interpolation to aggregate the LiDAR map embeddings (smaller dots pi) onto volume
rendering ray samples (larger blue dots xj). A cGAN is used to refine the volume rendering output X, where the generator G
contains volume rendering parameters and a CNN H that translates the volume rendering output image X to a refined image
Y′. The discriminator D aims to predict real or fake based on feeding the ground truth image Y or the generated image Y′. (b)
We process the per-LiDAR point information with an MLP F and aggregate the processed embeddings by spatial interpolation
with weights ωi,j . View-based appearance embeddings tj can be incorporated (blue block). Finally we predict sample color
cj and density αj with the other two MLPs Fσ and Fc.

GANs that demands many training data, cGANs benefit from
the conditional input and can be trained on much fewer data,
such as images captured by sonar and tactile sensors [18,
37]. GANcraft [13] applied a cGAN to translate semantic
segmentation images into realistic images. In our case, the
dense semantic labels are not available, but we also leverage
a 2D cGAN to refine the volume rendering output.

3. Method
Given a camera-LiDAR data sequence with known poses,

we first build a LiDAR map P by accumulating the LiDAR
scans, and then assign trainable per-point embeddings to the
LiDAR map as our localized neural radiance field represen-
tation (Fig. 2). These neural LiDAR points represent sparse
samples of the underlying neural radiance field.

For a queried novel view pose, we perform volume ren-
dering that interpolates and aggregates LiDAR point em-
beddings to generate pixel colors (Sec. 3.1). This volume
rendering step generates an initial image X, which is refined
with a cGAN to generate a final image Y′ (Sec. 3.3). We
train the whole pipeline in an end-to-end fashion with super-
vision from training source views Y, conditional adversarial
losses (Sec. 3.3), and LiDAR map geometry (Sec. 3.4).

3.1. Point-based Volume Rendering

We follow the conventional volume rendering method and
compute the per-pixel radiance via ray marching [23, 44].
First, a ray is drawn from the camera center to the pixel
center in 3D space, and M ray sample positions {xj ∈
R3|j = 1, . . . ,M} are selected along the ray. Afterwards,
the sample color cj , and density σj are computed at each of
the M points. Finally, samples along the ray are accumulated

to compute the pixel color C:

C =

M∑
j=1

τj(1− exp(−σjδj))cj ,

τj = exp(−
j−1∑
t=1

σtδt),

(1)

where δj and δt are the intervals between adjacent ray sam-
ples, and τj is the transmittance accumulated from the den-
sity of the ray samples between xj and the camera center.
Point sampling with priors. A main challenge in large-
scale volume rendering is to determine the positions of ray
samples xj . Ideally, xj should cover the potentially occupied
regions, but in practical systems, the number of samples
and their coverage is limited. The geometry prior from
LiDAR maps provides important guidance for sampling at
the occupied locations and skipping the large empty space.

Specifically, we first uniformly sample M0 positions
along a camera ray and compute the distances ρ from each
sample to its nearest LiDAR point. Among the samples with
ρ < ζ, where ζ is an assigned radius threshold, we select
the first M samples that are closest to the camera center. To
collect local information from our point-based neural radi-
ance field, we query the k-nearest LiDAR point neighbor set
ϕkNN
j for the M selected ray samples xj :

ϕkNN
j = {pi ∈ R3| ||pi − xj || < ζ and pi ∈ P}. (2)

In practice, k varies among samples but is upper-bounded
by an assigned parameter K. The radius threshold ζ depends
on the noise and density of the LiDAR map.

The above radius-based selection simply dilates the 3D ex-
tent of LiDAR point distribution. However, for datasets with



good LiDAR quality (such as autonomous driving datasets),
the LiDAR points are usually tightly distributed near object
boundary, and we only need to fill the holes without dila-
tion. The dilated regions are most likely to be empty, and we
would place unnecessary ray samples in those empty regions
(Fig. 3 (b2)) if using naive radius based selection like [44].

To solve this issue, we propose to trust the LiDAR geome-
try more by tightening the extent of xj . This can be achieved
by removing the xjs that are not surrounded by the LiDAR
points in ϕkNN

j as in Fig. 3 (a1)(a2). Let p0 be the nearest
LiDAR point in ϕkNN

j , we discard the sample xj if

(xj − p0) · (xj − pi) > 0, ∀i ∈ {1, . . . , k}. (3)

A visualization of the tightened ray samples is in Fig. 3 (b3).
A quantitative comparison is in the supplementary material.
Feature aggregation. After collecting pi ∈ ϕkNN

j , we
aggregate their map embeddings to predict the color and
density for sample xj . Specifically, we first concatenate
the LiDAR point embeddings fi ∈ RFm with spatial offsets
oi,j = pi − xj , and then pass the concatenated embeddings
through a light-weight MLP F to obtain processed embed-
dings f ′i,j . Afterwards, we aggregate f ′i,j onto xj via spatial
interpolation to obtain the sample embedding hj ∈ RFh :

f ′i,j = F(concat(fi, γ(oi,j))),

hj =

∑k
i=1 ωi,jf

′
i,j∑k

i=1 ωi,j

,
(4)

where γ(.) represents the positional encoding function. Us-
ing the spatial offset oi,j ∈ R3 instead of simple distance
makes f ′i,j anisotropic and richer. The weights ωi,j are de-
signed to favor embeddings from closer LiDAR points:

ωi,j = exp(−β||pi − xj ||). (5)

The choice of weighting function should depend on the
LiDAR sensor and map characteristics. In our case, LiDAR
points are locally dense around the object surface, and we
found Eq. 5 works well in our experiments. Finally, the
per-sample color and density, cj and αj , are predicted from
hj with two other MLPs, Fα and Fc, as shown in Fig. 2 (b).

We also make Lambertian assumption and discard view
direction dependency since modeling reflective surfaces is
not our focus (see Sec. 6). Although one can also include
view direction as in [38,44] or model the lighting for specific
objects with object shape priors as in [39], we found this
setup suffice the applications we explored (Sec. 5).

3.2. Additional Appearance Embeddings

Additional latent variables can be incorporated to manipu-
late synthesized image appearance. Here we use view-based
embeddings tj (Fig. 2 (b)). A season change demonstration
with timestamps as tj is presented in Sec. 5.

3.3. Image Refinement with cGAN

Conditional Adversarial Networks (cGANs) have been
known for the ability to perform image translation that gen-
erates visually pleasant details [13, 15, 47], and is trainable
from small datasets [18, 37]. Overall, we follow the pix2pix
framework [15]. For a training pair (Y, θ) consisting of a
training source view image and its pose, we perform vol-
ume rendering from the neural LiDAR map to generate an
initial image X from θ, and use a CNN H (Fig. 2 (a)) to
translate X into a realistic domain image Y′ = H(X, z),
where z is the introduced noise vector described in [15]. We
train the whole pipeline in an end-to-end fashion, so our
generator G not only contains parameters from H , but also
the volume rendering MLPs, F ,Fσ,Fc, and the neural map
point embeddings fi (Sec. 3.1). A discriminator D takes the
concatenation of X and Y′, X and Y as input, and predicts
high scores for Y and low scores for Y′. The cGAN loss
contains an adversarial term and a L1 norm term:

LcGAN =Ex,y[logD(X,Y)] + Ex,z[log(1−D(X,Y′)],

L1 =||Y −Y′||1.
(6)

Finally, we solve the following optimization problem:

argmin
G

max
D

LcGAN(G,D) + λL1(G). (7)

In practice, we discard the noise vector z to obtain con-
sistent image outputs for natural video rendering. The same
strategy is also used in CycleGAN [47]. The application
of CNN H also enables us to slightly dilate the RGB cov-
erage on the cGAN output (see the difference in black area
in Fig. 4 (d) and (e)). We use a 6-layer autoencoder with
three ResNet blocks in the middle as H. Interestingly, we
can further control the output image style of cGAN with the
strength of LcGAN. Stronger LcGAN adds more fine details to
Y′, leading to lower PSNR but higher LPIPS. We present
ablation study for LcGAN strength in the supplementary ma-
terial. This system can be trained with only the log sequence
(∼155 images (Sec. 4)) without additional data.

3.4. LiDAR Depth Loss

We introduce this LiDAR depth loss to constrain the
estimated depth to be close to the LiDAR measurements.

To achieve this, we render pseudo ground truth depth from
the LiDAR geometry as supervision. We assume the LiDAR
measurements form a thin layer of opaque material on object
surfaces to render the pseudo ground truth depth image,
denoted as Dl. Specifically, for each ray sample xj , if its
distance to the closest LiDAR point is less than an assigned
threshold µ, we consider it opaque (i.e. exp(−σjδj) = 0 in
Eq. 1), otherwise transparent (σj = 0). Next, we accumulate
the samples to obtain the pseudo ground truth depth image
Dl with Eq. 1. Let D be the depth map output from Sec. 3.1,



(a1) (a2) (b1) 3D view

(b2) Loose (b3) Tight (b4) RGB
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Figure 3: (a) Examples of the proposed tight sampling strategy. The LiDAR points pi in ϕkNN
j are in light orange, and the

nearest LiDAR point p0 is in dark orange. The white sample xj in (a1) is discarded because all the pis are in the same side as
p0, meaning xj is not surrounded by LiDAR points. The blue sample in (a2) remains because its surrounded by LiDAR points.
(b1) The LiDAR map points are in gray, and the loose and tight ray samples are in red and blue. (b2)(b3) Overlaid initial depth
projection and the rgb of loose and tight sampling strategies. (b4) Artifact around object boundary due to mismatch between
depth and rgb (upper right). The object boundary from the tight sampling strategy (lower right) is better aligned with rgb. (c)
The proposed depth loss pulls rendered depth in (c2)(c3) closer to the LiDAR depth (c4).

our LiDAR depth loss is:

Ll =
1

|ϕvalid|
∑

n∈ϕvalid

|Dn −Dl
n|,

ϕvalid = {n|Dl
n > 0},

(8)

where ϕvalid is the set of pixels with valid LiDAR depth.
A potential alternative way is to apply an additional loss

term that enforces σj of the ray samples close to LiDAR
points to be large. However, the LiDAR sensor only returns
measurements on object surfaces. Ray samples inside objects
might be far away from LiDAR points but still have high
density, and thus their density cannot be constrained by
the nearest distance to LiDAR points. In our case, the ray
samples inside objects are not constrained because they are
occluded by the opaque samples on the object surfaces (close
to LiDAR points) along the same ray.

3.5. Moving Object Removal

Our focus is to render static scenes, and the neural LiDAR
maps are also assumed static. The dynamic objects captured
by training views and LiDAR scans would introduce un-
wanted inconsistent appearance information and cause blurry
shadows in the rendered images. To overcome this issue, we
use the 3D semantic labels [42] to filter out dynamic objects.
We first extract the provided 3D bounding boxes of dynamic
objects by thresholding the trajectory length of each labeled
object. Afterwards, we extract the LiDAR points within the

bounding boxes of dynamic objects from each LiDAR scan.
For each training image, we project the extracted dynamic
LiDAR points from its temporally nearest LiDAR scans onto
the image space to form a binary mask, which indicates the
pixels occupied by the dynamic objects. We also removed
the dynamic LiDAR points from our LiDAR maps. Finally,
we apply the mask to Eq. 6.

4. Experiments
4.1. Datasets

We extracted 8 sequences from the Argoverse 2
dataset [42]. Each sequence contains 3 cameras (front,
front-left, front-right). The sequences were selected to avoid
crowded scenes and scenes with large number of moving
objects. The image contents are mostly city scenes with
different ratio of artificial buildings and natural textures. We
accumulated and resampled the LiDAR scans of the training
images with provided ground truth poses to form the LiDAR
maps. The LiDAR scans were collected at 10 Hz by two
VLP-32C LiDARs with 64 beams in total. Since the original
Argoverse 2 dataset only provides 10 Hz LiDAR poses and
20 Hz imagery without assigned poses, we first extracted the
10 Hz posed imagery by using the temporally closest LiDAR
poses as image poses to reconstruct a visual map. And then
we registered the other half of unposed images to the visual
map with COLMAP to obtain totally 20 Hz image poses
that match the LiDAR pose scale. We subsampled one in

https://www.argoverse.org/av2.html
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every four images from the original 10Hz posed imagery for
validation, and added the images with COLMAP poses to
the training set. In total we have 155 training images and 22
validation images for each sequence. The number of points
in our LiDAR maps range from 3.0× 105 to 5.8× 105 and
the camera trajectory lengths span from 6.49m to 31.6m
(details in the supplementary material).

Note that we collected images from 3 front-facing cam-
eras in contrast to the 12 ring camera setting in [38], and
our LiDAR point cloud is much sparser than [30]’s. These
makes our dataset more challenging than previous works.

4.2. Baselines, Metrics, and Implementation

We compared with the point-based NeRF [44] and the
outdoor state-of-the-art BlockNeRF [38].
Point-based NeRF. We compared our final results with
our volume rendering pipeline output, which is based on [44],
but with view direction dependency and point cloud refine-
ment module removed. We kept the rest of the pipeline (e.g.
point sampling, weighting functions) the same as our system
except for the refinement module for fair comparison. We
applied the same LiDAR depth and L1 losses to the point-
based NeRF output. Each model was trained with Adam
optimizer using one whole image as one batch and learning
rate 1× 10−4 for 1000 epochs until convergence.
BlockNeRF [38] + LiDAR [30]. For the image-only base-
line, we compared with [38], the state-of-the-art outdoor
large-scale NeRF. The longest camera trajectory of our col-
lected Argoverse 2 sequences (31.6m) is within a reasonable
range of block size in [38], so we used one block for each
sequence. Furthermore, we also compared with the BlockN-
eRF with LiDAR depth supervision [30] for fair comparison.
Because the original code of both [38] and [30] are not
available, we ran experiments with an unofficial BlockNeRF
implementation, and incorporated the depth loss as described
in URF [30]. Each model was trained with Adam optimizer
with learning rate 5 × 10−4 and batch size 1024 for 500
epochs, where the validation error converged.
Metrics. We compared PSNR, SSIM, LPIPS as in [23].
We masked out the regions without LiDAR depth (the black
regions in the volume rendering outout) since our pipeline
does not focus on generating those pixels (Sec. 6). The
same masks were applied to all the compared results when
computing the metrics for fair comparison. Otherwise the
evaluation result would be diluted by the large black regions.
Note that our numbers are not directly comparable to the
numbers reported by previous works due to these masks.
Implementation details. We first built a k-d tree from
our LiDAR maps, and queried the nearby LiDAR points to
ray samples with the k-d tree. After obtaining the set of
ray samples and kNN LiDAR points, we implemented our
volume rendering with DGL [40] and PyTorch. A hetero-
geneous local graph was built with pixels, ray samples and

LiDAR points as nodes. Different types of edges connect
pixels to the corresponding ray samples, and ray samples to
the nearby LiDAR points. The MLPs and the aggregation
function were implemented as graph functions. We used
K = 10, M0 = 1000, M = 16, ζ = 0.15m, β = 10,
µ = 0.05m, λ = 100, Fm = 8, and Fh = 32 as design
parameters. The numbers of MLP layers in F , Fσ, and Fc

are all 3. The parameters and network structures here are
tuned with clean Argoverse 2 sequences and applied to all
the datasets. Our current system takes about 5s to render an
image. For each sequence, we trained independent models
with the whole pipeline in an end-to-end fashion for 1000
epochs with Adam optimizer, using one whole image as a
batch and learning rate 1× 10−4. It takes about 0.5 days to
train a model on a single GeForce RTX 3090 GPU at image
resolution of 256× 256.

4.3. Comparison with Baselines

We observed that the proposed 2D refinement strategy
outperformed point-based NeRF by a large margin in every
sequence tested, as shown in Fig. 5. From the rendered im-
ages in Fig. 4 (d)(e), we observed significant image quality
improvement with the proposed image refinement stage. The
refinement module not only reduced the noise but also ren-
dered details better. Besides, we obtained very blurry results
from BlockNeRF even with LiDAR depth supervision, as
shown by the metrics in Fig. 5 and the visualizations in Fig. 4
(a)(b). Incorporating the LiDAR depth supervision signif-
icantly improved the depth map quality from BlockNeRF
(Fig. 3 (c2)) but the rgb result is still blurry. Although the ren-
dered image area of BlockNeRF is not as limited as ours (e.g.
the sky), it would require specially collected datasets with
better view coverage to improve this result. This drawback
of image-only NeRF was also pointed out by [7, 30, 31].

4.4. Resistance to Noise

Although the LiDAR measurements are relatively more
accurate than SfM, they can degrade greatly in bad weather
conditions. We simulated such LiDAR noise in rainy
days [12] before accumulating single LiDAR scans into
LiDAR maps, to evaluate the resistance to noise (visuals in
supplementary material). Quantitative evaluation for these
harder cases are shown in Fig. 5. We observed that our
method still outperformed the purely point-based baseline in
the evaluated metrics and also recovered reasonable visual
details as shown in Fig. 6 (d).

We also provide additional ablation study in the supple-
mentary material, including the quantitative comparison of
the sampling strategy, cGAN loss strength, and the positional
encoding module.

https://github.com/dvlab-research/LargeScaleNeRFPytorch


(a) [38] (b) [38]+depth (c) Our depth (d) Point-based (e) Our RGB (f) GT (g) Enlarged

Figure 4: From the enlarged image patches (g) we can observe that our results (e) have better image quality and are visually
closer to the ground truth patches (f). More visualizations are in the supplementary material.

Figure 5: Quantitative comparisons. (Top) our method significantly outperformed the baselines. The BlockNeRF results are
very blurry, as reflected by the high LPIPS scores. (Bottom) results with noisy LiDAR maps.

5. Applications

Although many NeRF works have been published since
2020, most of the advancements were for improving image
quality. Recently, more and more researchers start to explore
wider uses such as robot navigation and SLAM [1, 32]. This
trend implies the great yet not well-explored potential of
using NeRF in more applications. From this application-
oriented standpoint, we should evaluate the NeRF outputs
not only based on image quality, but also the performance in
targeted applications, as it is what matters in the end.
Object detection simulator. We compared the detection
results on our synthetic images and the ground truth images
using Detectron2 [43]. Considering that the car class usually
dominates autonomous driving applications, we performed
this comparison on two logs with more visible vehicles (log

0a13 and 4d7b). Our results show that the detected object
masks are visually similar on synthetic and ground truth im-
ages, and our mean IoU for the car class among the validation
images outperformed the baselines (Fig. 6 (a)). This result
indicates that the synthetic images rendered by our system
can potentially be used to further simulate the detection-
related robot behaviors, such as object tracking when robot
is moving, or path-planning considering the existence of
other objects.
Data augmentation. Data collection is essential for many
deep neural network applications. However, collecting real-
world data can be an expensive and time-consuming process,
because it typically requires driving a mobile robot across
the desired environment for multiple passes. One possi-
ble way to lighten the burden is to first train a NeRF with
some collected images, and augment the dataset with syn-



(a1) [38]+depth (a2) [44] (a3) Ours (a4) GT (a5) Car IoU (b) Pose prediction errors

(c1) Season 1 (c2) Season 2 (c3) Season 3 (c4) GT (d1) [44] (d2) Ours (d3) GT (d4) LiDAR

Figure 6: (a1-4) Object mask from [43]. (a5) Our rendered images get higher car IoU against GT than the baselines. (b) Data
augmentation with our synthetic images significantly reduced the pose prediction errors of MapNet [3]. (c1-4) Synthesized
images and GT with different appearance embedding t rendered from the same validation camera pose. (d1-4) Rendered
images, ground truth rgb and depth from the noisy LiDAR map.

thetic images rendered by NeRF. This is especially useful
for data-hungry deep networks such as pose regression net-
works, whose performance largely depend on the training
set size [33]. Inspired by [24], we augmented our collected
Argoverse 2 sequences (Sec. 4.1), and compared the Map-
Net [3] performance with the same real validation set before
and after the augmentation. The MapNet network takes a
RGB image as input and predicts a 6-DoF camera pose. For
augmentation, we added uniformly random noises within
range [−0.5,+0.5]m in xz for translation, and [−3,+3]
degree in yaw for rotation. The results in Fig. 6 (b) show
significantly lower pose errors in the cases with data augmen-
tation, indicating that our synthetic images provide useful
information for MapNet despite the black regions.
Changing seasons. If trained with seasonal information,
the proposed system can perform season changing visual
effect. With this ability, we can potentially use our system
as a simulator with the control of seasonal appearance. We
performed this experiment with the NCLT dataset [4], a
long-term camera-LiDAR dataset that was collected through
different seasons. We extracted multi-season sequences from
NCLT, each with multiple passes of similar trajectories in
different seasons. For the appearance embedding, we used a
scalar t ∈ [0, 1] to represent the normalized timestamp when
the data was recorded (e.g. t = 0.33, 0.66, 1 means spring,
summer and winter). We first encoded t with positional
encoding, and used the encoded t, tj with an AdaIN [14]
module to incorporate tj into hj (the blue box in Fig. 2
(b)). After training, we applied different t values to a given
validation view pose to obtain different seasonal appearances

(Fig. 6 (c)). More details are in the supplementary.

6. Limitations

Our pipeline skips and returns black color at the pixels
where the LiDAR depth is unavailable. The same limitation
was presented in PointNeRF [44]. The black regions are
mostly on the sky, top of tall buildings, and objects too far
away. Another current limitation is that non-lambertian sur-
faces, such as transparent and reflective objects, are currently
unmodeled. This can potentially be improved by introduc-
ing latent variables to model these materials in the volume
rendering MLPs. For now our implementation relies on
accurate camera-LiDAR calibration, therefore optimizing
the calibration parameters with NeRF can be a future work.
Also, here we focus on offline image rendering quality but
runtime still has room to improve. For example, we expect
the point embeddings to be repetitive and can be pruned and
compressed. Besides, large moving objects with inaccurate
3D labels might cause bad results. Visualizations of failure
cases are in the supplementary material.

7. Conclusion
The proposed pipeline performs NVS from outdoor

camera-LiDAR datasets. Our system combines the strength
of LiDAR sensors, NeRF, and cGAN, and outperforms the
baselines significantly. We believe that the practical use of
NeRF is an uprising research area, and look forward to future
developments in this field.

http://robots.engin.umich.edu/nclt/
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